Category Archives: Course Design

Putting More Physiology into A & P

thinker-28741_640It’s tough being an undergrad student nowadays.  It’s expensive. State funding has cut into the budgets that used to go to offset tuition, and buildings for new classrooms have been on hold forever. Still they keep coming, paying higher and higher fees and tuition, crowded into larger and larger classroom sizes, getting shut out of labs: these are just the surface to larger problems in general. What kind of education are students getting now?  I ponder this as I teach A & P again after teaching physiology at a medical school for the last six years and A & P in smaller class sizes four years before that at universities and community colleges. Things have changed, and not for the better.  I’ll toss around some ideas that may or may not resonate with you, but these are things I feel we need to improve upon.


  1. How can we get class sizes smaller so we can teach and communicate? The depth of what students know goes not far beyond binge and purge. We can have small group discussion, more TBL and other models for active learning (if they read the pre-class material) and we’ll always have the good students, but for many lectures have become something to avoid. I get students who ask for my PPTs beforehand and use them as note templates, yet many rely on those as a sole source. The chances to integrate material become less frequent as we teach to the room and decrease the amount of material students can absorb. The long term rewards to learning are not being reinforced. I have students submit corrections for points in paragraph form, making them compose answers.


  1. Students need learning skills. Something I learned the hard way, but even in the prehistoric 1970’s note taking was essential. I implore students to do this as a way to create schemas even providing handouts with study skills that I have collected over the last thirty years. Of course the good students use this info, while the middle of the packers might but only after the first exam. We have more students who are being advised that health professions are good careers but not telling them how steep the competition is and how much is expected. Do I want an ED nurse who might forget that NaCl is not the same as KCl? Maybe I don’t have to weed them out, but I want their expectations to be parallel to the challenge and this should be considered the beginning of their career.


  1. Lastly, I propose perhaps a new approach to A & P; let’s separate the classes. Some institutions do this having advanced anatomy and general physiology classes for exercise science, why not do these for pre-health majors as well? The texts nowadays for A & P are humongous, with tons of information that skims the surface without enough integration. Let’s teach physiology with a chance to do more hands-on experiments and not have lab just being anatomy. I poll my students about whether they have seen frog muscle or heart experiments or any Mr. Wizard styled presentations. Few have, maybe from the more affluent secondary schools, therefore descriptions of diffusion or tetanus become an abstraction without the physical connection. They do ECGs and FEV1s in the second half of A & P, why not have that be the whole year?


Personally my career in physiology began when I walked into a behavioral neuroscience lab and ran my own independent study experiments for undergrad credit, all the while learning about the other research going on. I was happy that one of my biology students worked over the summer on an Integrative and Organismal NSF summer fellowship (that I know from my APS Porter Committee membership go underutilized) because statistics show that these students will go on in science.  I’d like to see our future caregivers have that depth as well.





William Johnson received his Master degree in Education from Johns Hopkins University in 1990. After teaching high school on the Dine reservation, he then pursued and obtained his PhD in Biology from Northern Arizonan University, studying angiotensin in desert anurans. After teaching physiology at University of South Florida Colleges of Public Health and Medicine, William has returned to his alma mater to teach anatomy and physiology and human physiology, as well as being involved in the summer program for Journey for Underrepresented in Medical Professions HRSA grant at NAU.


Course Preparation for a First Timer – Tips and Example Steps to Take


This summer has been a uniquely exciting time for me as I prepare to teach my very first course, Human Physiology! What are the steps you take for preparing your courses? If it is your first time teaching, preparation seems overwhelming, and a challenge to figure out where to even begin. In this blog, I will be describing the steps I’ve taken to get ready for teaching my first course at our nearby minority-serving community college this fall. Full disclosure — I am definitely not an expert in course preparation, but I’ve included some tips and resources for what has worked for me.

Step 1: Reflection and determining my teaching philosophy

Reflecting on my time as an undergraduate student, I realize that learning how to learn did not come easy. It took me more than half way through my undergraduate years to figure out how to do it, and it was not until I was a graduate student that I mastered that skill. Thinking about my future students, I sought training opportunities to aid me in becoming a teacher who effectively facilitates student learning. I especially am interested in teaching practices that foster learning in first-generation college students who are not yet experienced with knowing how to learn and study. I want to make sure that my teaching style is inclusive of as many diverse student populations as possible. To do this, I have to educate myself on learning theories and effective teaching methods.

Early this summer, I attended the West Coast National Academies’ Summer Institute on Scientific Teaching to educate myself on teaching methods, and went home with understanding of the practices that fit my style and my philosophy. I highly recommend others to take advantage of these types of events or workshops (such as those offered by CIRTL) to familiarize yourself with various techniques. Aside from formal workshops, informal meetings with teaching mentors or experienced teachers gives valuable insight into the kinds of things to expect, things to avoid, suggestions and tips, teaching experiences, and inspirational words of wisdom. Use your network of mentors! Overall, inward reflection, formal workshops, and informal conversations with experienced mentors are ways that have helped me formulate the teaching practices that I will use for the course.

Step 2: Book and technology selection for the course

This sounds like an easy task, however, it can be a challenge if it is the first time you learn how to deal with choosing a book and the technology for your course. Luckily, one of my teaching mentors introduced me to the publisher’s local representative who met with me for several hours to discuss various book options and the technological tools that could be combined with my order. The rep helped me register my course in their online tool (Mastering A&P) and trained me to use this technology for creating homework, quizzes, interactive activities, rosters and grading. Thus far, I’ve spent countless hours exploring and learning how to use this technology before class starts. After all, I can’t expect my students to maneuver it if I can’t do it myself!

Step 3: Creating a syllabus, alignment table, and rubrics

The most important, hence time-consuming, task thus far is selecting the major topics and level of depth for the course while deciding the most important concepts, ideas, and skills for students to take away from the course. In order for students to meet expectations and become successful learners in the course, both the instructor and students should have this information clearly written out and understood at the very start of the course. The course syllabus is the first place where overall learning goals, outcomes, and expectations for the students for this course is presented. Furthermore, the syllabus should include information about grading, and any institutional policies on attendance, add/drop deadlines, and disability services.

Fortunately, the course that I am preparing has been offered multiple times previously, and thus I do not need to completely design a new course from scratch. However, I am re-designing and modifying sections of the course to include active and interactive teaching techniques. To guide this process during the semester, creating an alignment table for the course is beneficial to effectively execute learning activities and teach key concepts, ideas and skills. The components included in this table are: course learning goals, daily learning objectives, assignments, summary of activities, and assessments for each class period.

Take note that assessments should be determined first in order to prepare the content and activities for the class period accordingly (backwards design). Assessments could include an in-class activity, post-class assignments, exam and quiz questions. Rubrics of assessments should be made without ambiguity to formally assess students and to make sure the class period addresses the major points that students will be expected to learn. Preparing each class period, with flexibility for modifications based on gauging student grasp of the material, will help the semester run more smoothly and with less difficulties.

Step 4: Preparing content presentation and materials for activities

The last step I will take for course preparation is making and uploading any PowerPoint slides, handout materials, assignments, quizzes and exams, and any other material required for activities. With an alignment table already made, this portion of preparation should be relatively easy, but it will still take a significant amount of time.

Final Tips

Overall advice, plan ahead!! At minimum, it should take an entire summer to successfully prepare for a new course. With a well-planned course ahead of time, the hope is to be able to spend more energy throughout the semester to transfer and translate faculty enthusiasm for teaching into student enthusiasm for learning physiology!

Additional resource: Course Preparation Handbook by Stanford Teaching Commons





Angelina Hernández-Carretero is an IRACDA Postdoctoral Fellow at UC San Diego and is an adjunct faculty member at San Diego City College. She earned her Ph.D. in Cellular & Integrative Physiology from Indiana University School of Medicine. Her research interests involve diabetes, obesity, and metabolism. Angelina has a passion for mentoring, increasing diversity in STEM education and workforce, and inspiring the next generation through outreach.




The art of revamping an Introductory Biology course (and curriculum) around Vision & Change

blue cycling arrowsWhen Vision & Change: A Call to Action was published and distributed, University of Alaska Anchorage (UAA) Biology department (like many other departments across the country) answered the call. The rubrics for Vision and Change gave people a means to evaluate one’s department and how student instruction occurred. This led to great discussions on what needed to be remodeled within our courses and curriculum. This was good. The previous UAA Introductory Biology course had a 20% withdrawal rate and (by estimates only) an additional 20% of students who would not succeed in the course (D or F grade). If we wanted to increase retention in the major and increase the diversity of people pursuing a biological sciences undergraduate education, something needed to be done.

I want to take this opportunity to spend a bit of time on our process; not simply because I am excited about the positive changes that are happening at our biology department, but to share our brief story in hopes to hear from others.

The problem – UAA had a 2 semester introductory biology (survey based) course that had, in some instances, 40% reduction of students for each semester.

Our solution – Create a 1 semester laboratory/experiential learning introductory biology course (Principles and Methods of Biology; BIOL A108) that is founded on the principles laid forth in Vision and Change.

What does this really look like, other than a lot of work?

The basic flow is to have 3, 5-week (10 sessions) modules within the semester, which focus on three core concepts: evolution, information flow, and structure and function. These modules are tied together by principles of the scientific method and student led experiments. Each module has a different content lead instructor. The unifying instruction is led by a lab coordinator that follows the theme of scientific method to ensure students are practicing and utilizing each part of the scientific method throughout the duration of the course.

  • Module 1 focuses heavily on observation, creating and testing hypotheses, finding and using credible sources, and creating basic graphs for communication purposes.
  • Module 2 continues to build on observation, creating and testing hypotheses, creating graphs, and adds the component of applying the collected data into a greater context using credible sources.
  • Module 3 takes the components of modules 1 and 2 and asks the students to interpret their data using credible sources.

These modules culminate at the end of the course by having the students present a hypothetical experiment based on a current biologically relevant observation.

This course set up requires a large amount of group work and coordination among the students. We encourage discussions through specific assignment prompts and ask the students to present their data (6 times) as a group (they switch group members for each module). Presentations are assessed on flow of information, clarity of information, and accuracy of information. We include concept quizzes (3 per module), but no high stakes exams. There are a series of assignments that are formative to allow instructor feedback to be incorporated into summative assignments (presentations and experimental write ups).

Is it working? – We’ve tracked these changes with pre/post tests and student retention rates. Initial data show 96% of students passed (defined as a C or better grade) with a withdrawal rate of 2% in the first semester (Fall 2015). Data from the current semester (Spring 2016) suggest a similar trend. A second goal of the program revision was to increase student learning and engagement about the process of the scientific method; in this our data suggest we were successful. Within one month of BIOL A108, students have improved their use of the scientific method to tackle challenging biological questions and core concepts. Preliminary assessment data show 96% of BIOL A108 students can create and use hypothesis statements correctly. Additionally, BIOL A108 student pre/post data indicate a 25% improvement in their comprehension of Mendel’s principles.

These changes have required a lot of work by many people; including learners from all levels. Transparent communication between instructors and students have been paramount to our initial success. This communication includes informing the students that the changes within the course structure are based on discipline based educational research and is founded by using current data from evidence-based teaching to shape the course.

Additional data that we are collecting include student demographics and end of semester student perception surveys. I hope to gather information regarding how this course is perceived by students and their personal successes as scientists. Why would we care about our student demographics? Anchorage, Alaska has three high schools in the top ten diversity ranking of high schools. A majority of our students enrolled in UAA’s biological science degree program are from the Anchorage and greater Alaska area. Collectively, if we want to increase the diversity of people trained in the biological sciences; UAA’s biological sciences program is one place to start. Maybe our course redesign will help others with their curricular transformations.

I am really interested in learning about how other departments and programs have remodeled their courses following the guidelines of Vision and Change, and what outcomes they are tracking. Let’s share ideas and materials within the LifeSciTRC and PECOP resources!



Aguirre, K. M., Balser, T. C., Jack, T., Marley, K. E., Miller, K. G., Osgood, M. P., & Romano, S. L. (2013). PULSE Vision & Change Rubrics. CBE-Life Sciences Education, 12(4), 579-581.

Brewer, C. A., & Smith, D. (2011). Vision and change in undergraduate biology education: a call to action. American Association for the Advancement of Science, Washington, DC.

Brownell, S. E., & Kloser, M. J. (2015). Toward a conceptual framework for measuring the effectiveness of course-based undergraduate research experiences in undergraduate biology. Studies in Higher Education, 40(3), 525-544.

Farrell, Chad R. (2016). “The Anchorage Mosaic: Racial and Ethnic Diversity in the Urban North.” Forthcoming chapter in Imagining Anchorage: The Making of America’s Northernmost Metropolis, edited by James K. Barnett and Ian C. Hartman. Fairbanks, AK: University of Alaska Press

Hanauer, D. I., & Dolan, E. L. (2014). The project ownership survey: measuring differences in scientific inquiry experiences. CBE-Life Sciences Education13(1), 149-158.
PECOP rachael hannah


Rachel Hannah is an Assistant Professor of Biological Sciences at University of Alaska, Anchorage. Helping people become scientifically literate citizens has become her major career focus as a science educator. As a classroom and outreach educator, Rachel works to help people explore science so they can apply and evaluate scientific information to determine its impact on one’s daily life. She is trained as a Neurophysiologist and her graduate degree is in Anatomy and Neurobiology from the University of Vermont College of Medicine. Recently, Rachel’s research interests have migrated to science education and how students build critical thinking skills.

A Journey to Develop a First-year Course in Critical Thinking. And the Learning Community it Created

thinkingHow do you develop a course called “Critical and Creative Thinking in the Life Sciences”? A course that isn’t content-driven – a course that will be taught by multiple instructors in multiple sections to all incoming students within a program that encompasses 7 majors and 2 colleges? How do you get that course approved by the various committees? Where does it fit into the curriculum for graduation? These were just some of our questions. The following is a brief history of our triumphs and struggles.

First-year programs, increasingly common in undergraduate institutions, have been shown to have positive consequences both for students and for the schools. At NC State, we instituted a Life Sciences First Year Program (LSFY) and included a new course entitled Critical and Creative Thinking in the Life Sciences (LSC 101).  We cited a call to critical and creative thinking – less content – more active learning from multiple sources: Vision and Change, Paul and Elder’s Guide to Critical and Creative Thinking, countless publications supported by NSF, HHMI, AAAS – the list goes on. It was the thing to do – all the “cool” schools were doing it! We thought we were completely prepared to tackle this.

Course Goals: (A struggle in itself to get 5 amiable colleagues to agree)

  • challenge students to apply the intellectual standards of critical and creative thinking
  • guide students to an understanding and appreciation of the rhetoric of science
  • help students gain an understanding of fundamental principles of the nature and conduct of science within the life sciences
  • encourage and challenge students to become active, engaged learners through an understanding of effective approaches to learning

These goals seemed reasonable…and vague. How do we achieve them? The curriculum committees would need to see specific activities and assessments. They would want to see…a syllabus. NOW what do we do? We need outcomes! We need backward design! The scientists in the room panicked like their hair was on fire – what WERE these terms? (I should admit that we were all trained as research scientists who had done extensive teaching and discovered we loved it.) Most of us had attended the National Academies Summer Institute. We were doing many of these things in our classrooms already – we just didn’t realize these approaches had names.

Our team was fortunate to have the support of our college and passing our syllabus through the various committees was relatively painless. Many schools have a 1-2 credit hour course that welcomes freshmen to the university. We replaced that course with this and made sure to incorporate information about research, internship, advisement, and other opportunities.

Activities: (More of a triumph – we had lots of ideas)

Ultimately, the course used a variety of approaches, with case studies and extensive group work incorporated into each class. Some of the case studies came from the NSF case study website, others were developed by our team. Students were required to solve problems, design experiments, and interpret data. They created and critiqued arguments. They evaluated scientific writings from peer-reviewed journals. We used classic communications like Nature’s classic Watson and Crick paper and the Avery, MacLeod, and McCarty paper from the Journal of Experimental Medicine to contrast different styles, target audiences, and impact of scientific communications. Students discussed mini-ethics cases from news sources (a student favorite). They wrote mini grant proposals (A shout out to Kover et al!). They learned the fundamental principles of the neurobiology of learning and developed their own strategies for learning. And almost all of these activities as well as some of the formative assessments were done within small groups of students working together as a cooperative team.

Back to the struggles:

We learned quickly that it was critical to have an instructor resource page to dump content, ideas, lesson plans, and anecdotes about time management, pitfalls, and student interest. As the student community grew, the discussion of “fairness” came up. “The other section didn’t have to do THAT assignment” or “I wish we had done THAT”. The site is very much a work in progress as we match activities with learning outcomes and work to create a bank of options for each. Ideally, these activities are dynamic as we incorporate current issues into the assignments.

And it was critical (and helped solidify the faculty community) to meet with each other weekly to discuss ideas and present a unified front. I know. I hate meetings too. So we set a stopwatch for 15 minutes. We met at a coffee shop on campus and we touched base. Honestly – 15 minutes is all it needs to be – think elevator talk.

What We Ultimately Learned:

So I mentioned we inadvertently created a learning community – it’s in the title – it must be true. And as a scientist, I thought I would provide a little data. (Very little data.) In many large universities, introductory courses populated by first-year students are large lectures with little opportunity for interaction. By creating small sections (30-40 students) of a required first semester course and structuring it so that much of the assessments relied on interaction, we hoped it would create learning communities that would last beyond those first few months. According to survey data, 94% of the students made new friends, 64% of these students purposefully scheduled classes with each other for future semesters, and 47% have formed study groups for courses other than LSC 101 (typically, chemistry and biology). It is our hope that providing this additional vehicle for forming learning communities will increase retention and overall GPA. So far, we have increased retention of students from freshman to sophomore year from 92% to 95%. And so far, students have been excited by the course. We will continue to track this information….”we” referring to our newly-formed faculty community of LSC 101 instructors and 15-minute coffee drinkers.



  1. R. Paul and L. Elder. (2008). The Thinker’s Guide to Critical and Creative Thinking
  2. Brewer, C. A., & Smith, D. (2011). Vision and change in undergraduate biology education: a call to action.American Association for the Advancement of Science, Washington,
  1. Stone E.M. (2014). Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment. Cell Biology Education
  2. Stefanou, C.R. and Salisbury-Glennon, J.D. (2002). Developing motivation and cognitive learning strategies through an undergraduate learning community. Learning Environ Res 5:77-92.
  3. Jamelske, E. (2009). Measuring the impact of a university first-year experience program on student GPA and retention. High Educ 57:373-391.
  4. Handelsman J., Ebert-May D., Beichner R., Bruns P., Chang A., DeHaan R., Gentile J., Lauffer S., Stewart J., Tilghman S., Wood, W. (2004). Scientific Teaching. Science 304:521-522.
  5. Kover, H., Wirt, S.E., Owens, M.T., and Dosmann, A. J. (2014). “Thinking like a Neuroscientist”: Using Scaffolded Grant Proposals to Foster Scientific Thinking in a Freshman Neuroscience Course. Journal of Undergraduate Neuroscience Education, 13(1): A29-A40.


Lisa Parks, North Carolina University


Lisa Parks is the Honors Program Director and Teaching Associate Professor in Biological Sciences at North Carolina State University. In addition to her regular teaching load of cell biology and advanced human physiology, she helped develop and currently teaches in the new Life Science First Year Program. She has been a participant and a mentor in the National Academies Summer Institute where she was bitten by the “research as pedagogy – inquiry-based learning – critical thinking” bug. She gladly drops what she is doing to talk about this course. Lisa received her BS in Zoology from Duke University and her PhD in Biology with a concentration in cell physiology at Georgia State University.