Category Archives: Curriculum

Boredom, the Evil Destroyer of Motivation vs. Inquiry, the Motivation Maker

Students have an innate desire to learn and more learning takes place when doing rather than when listening. (4)  This begins in pre-school and kindergarten when children have fun while learning by playing with blocks, coloring, drawing, etc.  This is their first experience with active learning.  But then as education progresses through grade school, high school and college, something bad happens.  That is, fun learning activities are slowly replaced with often very boring listening activities filled with inane factoids, and consequently, students often become disinterested.  The disinterest is seen in the form of poor class attendance, and the lack of motivation is palpable through continual yawns, bobbing heads, and walking to the back of the classroom and looking at student laptops to see how many are streaming Netflix or shopping for shoes.  As educators that take part in this process, we actively destroy their innate desire to learn.  We do not do this intentionally, as all of us want our students to learn as much as possible.  However, with the ever increasing and endless mountain of information, we cannot teach them everything, and often feel that we should be actively teaching, rather than letting them actively learn. (3)  Thus, after hours, days and years of sitting in class “listening”, the traditional “sage on the stage” can slowly chip away at the inner desire to learn.  But, if this internal motivation can be decreased by boring activities, can it also be increased by fun or intriguing activities?


As educators, we hold an awesome power that has the potential to inspire and increase student motivation.  Student-centered learning activities that include but are not limited to collaborative group testing, inquiry-based learning, team-based learning and laboratory exercises (5) provide students with the opportunity to apply their minds, to have fruitful discussions with their peers (2) and to see and appreciate the complex beauty that science and medicine are.  If we can provide our students with learning activities that open their imaginations and make them feel excitement, we can actively increase their innate desire to learn, and improve their chances of success. (1)  In doing so, the awesome potential power that we hold can become fully realized in the form of life-long learners.



  1. Augustyniak RA, Ables AZ, Guilford P, Lujan HL, Cortright RN, and DiCarlo SE. Intrinsic motivation: an overlooked component for student success. Adv Physiol Educ 40: 465-466, 2016.
  2. Cortright RN, Collins HL, and DiCarlo SE. Peer instruction enhanced meaningful learning: ability to solve novel problems. Adv Physiol Educ 29: 107-111, 2005.
  3. DiCarlo SE. Too much content, not enough thinking, and too little fun! Adv Physiol Educ 33: 257-264, 2009.
  4. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, and Wenderoth MP. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci U S A 111: 8410-8415, 2014.
  5. Goodman BE. An evolution in student-centered teaching. Adv Physiol Educ 40: 278-282, 2016.



Robert A. Augustyniak is an Associate Professor and Physiology Discipline Chair at Edward Via college of Osteopathic Medicine- Carolinas Campus, Spartanburg, SC. Rob received his Ph.D. in Physiology at Wayne State University School of Medicine, Detroit, MI, and subsequently completed a post-doctoral fellowship at the University of Texas Southwestern Medical Center, Dallas, TX. A cardiovascular physiologist by training, his studies have focused on the blood pressure regulation during exercise and in heart failure and hypertensive states. In 2009, Rob became a founding faculty member at Oakland University William Beaumont School of Medicine where he began to focus on the scholarship of medical education. These research interests continued to grow when he moved to Spartanburg, SC in 2013. He is profoundly interested in how medical student motivation impacts learning and in finding best practices in teaching and assessment that can increase motivation. For the past several years, he has been and continues to be active within the leadership of the APS Teaching Section.

Putting More Physiology into A & P

thinker-28741_640It’s tough being an undergrad student nowadays.  It’s expensive. State funding has cut into the budgets that used to go to offset tuition, and buildings for new classrooms have been on hold forever. Still they keep coming, paying higher and higher fees and tuition, crowded into larger and larger classroom sizes, getting shut out of labs: these are just the surface to larger problems in general. What kind of education are students getting now?  I ponder this as I teach A & P again after teaching physiology at a medical school for the last six years and A & P in smaller class sizes four years before that at universities and community colleges. Things have changed, and not for the better.  I’ll toss around some ideas that may or may not resonate with you, but these are things I feel we need to improve upon.


  1. How can we get class sizes smaller so we can teach and communicate? The depth of what students know goes not far beyond binge and purge. We can have small group discussion, more TBL and other models for active learning (if they read the pre-class material) and we’ll always have the good students, but for many lectures have become something to avoid. I get students who ask for my PPTs beforehand and use them as note templates, yet many rely on those as a sole source. The chances to integrate material become less frequent as we teach to the room and decrease the amount of material students can absorb. The long term rewards to learning are not being reinforced. I have students submit corrections for points in paragraph form, making them compose answers.


  1. Students need learning skills. Something I learned the hard way, but even in the prehistoric 1970’s note taking was essential. I implore students to do this as a way to create schemas even providing handouts with study skills that I have collected over the last thirty years. Of course the good students use this info, while the middle of the packers might but only after the first exam. We have more students who are being advised that health professions are good careers but not telling them how steep the competition is and how much is expected. Do I want an ED nurse who might forget that NaCl is not the same as KCl? Maybe I don’t have to weed them out, but I want their expectations to be parallel to the challenge and this should be considered the beginning of their career.


  1. Lastly, I propose perhaps a new approach to A & P; let’s separate the classes. Some institutions do this having advanced anatomy and general physiology classes for exercise science, why not do these for pre-health majors as well? The texts nowadays for A & P are humongous, with tons of information that skims the surface without enough integration. Let’s teach physiology with a chance to do more hands-on experiments and not have lab just being anatomy. I poll my students about whether they have seen frog muscle or heart experiments or any Mr. Wizard styled presentations. Few have, maybe from the more affluent secondary schools, therefore descriptions of diffusion or tetanus become an abstraction without the physical connection. They do ECGs and FEV1s in the second half of A & P, why not have that be the whole year?


Personally my career in physiology began when I walked into a behavioral neuroscience lab and ran my own independent study experiments for undergrad credit, all the while learning about the other research going on. I was happy that one of my biology students worked over the summer on an Integrative and Organismal NSF summer fellowship (that I know from my APS Porter Committee membership go underutilized) because statistics show that these students will go on in science.  I’d like to see our future caregivers have that depth as well.





William Johnson received his Master degree in Education from Johns Hopkins University in 1990. After teaching high school on the Dine reservation, he then pursued and obtained his PhD in Biology from Northern Arizonan University, studying angiotensin in desert anurans. After teaching physiology at University of South Florida Colleges of Public Health and Medicine, William has returned to his alma mater to teach anatomy and physiology and human physiology, as well as being involved in the summer program for Journey for Underrepresented in Medical Professions HRSA grant at NAU.


Description of an Innovative Undergraduate Human Biology Program


The series of PECOP blogs has provided many examples of the positive changes that biology educators are making in what we teach and how we facilitate student learning. I would like to share a new program that was developed by a faculty team at Bastyr University.

We responded to the call for changes in biology education by developing an undergraduate program in integrated human biology that was launched in 2012. We used backwards design and competencies recommended in Scientific Foundations for Future Physicians: Report of the AAMC-HHMI Committee as a foundation to develop a progressive, premedical curriculum. The program competencies also align well with the AAAS/NSF Vision and Change core concepts and competencies. The IHB program competencies are listed in Table 1. We are continuing to use the program competencies and PULSE Vision and Change rubrics in our work to improve assessment at both the course and program level.

Table 1. Integrated Human Biology Program Competencies
Use mathematics and quantitative reasoning appropriately to describe or analyze natural phenomena.
Demonstrate understanding of the scientific process and describe how scientific knowledge is developed and validated.
Demonstrate understanding of basic physical principles and apply these principles to living systems.
Demonstrate understanding of basic principles of chemistry and apply these principles to living systems.
Demonstrate knowledge of how the 4 categories of biological molecules contribute to the structure and function of cells.
Demonstrate an understanding of the link between structure and function at all levels within a living organism: molecular, microscopic, and macroscopic.
Explain how internal environments are maintained in the face of changing external environments.
Demonstrate an understanding of the theory of evolution by natural selection.
Demonstrate an understanding of the biological basis for human behavior.
Demonstrate an understanding of the connection between the human organism and the biosphere as a whole.
Communicate effectively within and between scientific disciplines and with nonscientists.

Integrated Human Biology Program Highlights

  • The program includes a series of integrated human biology courses that require that students apply core concepts at multiple levels of complexity from cell and molecular to organismal in the context of organ systems.
  • Students are also required to apply physical principles from physics courses to biological systems in the integrated human biology series and through a parallel biophysics series.
  • The curriculum includes a required bioethics course and elective courses that require students to examine the applications of science to world problems.
  • Courses are team-taught by a group of faculty from different sub-disciplines who collaborate to create course materials and exams.
  • Classes are organized so that students are active participants.
  • Competencies are assessed in courses in a variety of ways including projects, presentations, papers, and exams.
  • All laboratories require students to participate in inquiry-based activities.
  • A majority of IHB students have completed a research project and presented their work at a University Research Symposium.
  • Student surveys have demonstrated that students appreciate the integrated approach to learning.
  • The first class graduated from the program in 2014, and a majority of those students have entered medical school or are working in research.

Have you developed or revised a program or curriculum in response to initiatives aimed at improving life sciences education?  Please share your experiences and recommendations.

Lynelle Golden is Goldena broadly trained physiologist who currently serves as Professor and Dean of the School of Natural Health Arts and Sciences at Bastyr University near Seattle Washington. She has more than 20 years of experience teaching junior/senior level physiology for biology majors and anatomy and physiology for allied health, nutrition and exercise science students. Her experience at Bastyr also includes teaching integrated case studies and physiology courses for medical students. While at Bastyr, Lynelle has been actively involved in curriculum development and revision. She has been a member of the teaching section of the American Physiological Society since 1986, and she currently serves as Chair of the Programming Committee for the APS Teaching Section. Lynelle earned an M.S. and a PhD in Life Sciences/Physiology from the University of Tennessee, Knoxville, and she completed postdoctoral research in Cardiovascular Diseases at the University of Alabama at Birmingham.