July 19th, 2021
Using Google Jamboard for Collaborative Online Learning in Human Physiology

Active and cooperative learning strategies are useful tools for engaging students in the classroom and improving learning (Allen & Tanner, 2005; García-Almeida & Cabrera-Nuez, 2020; Montrezor, 2021). These learning strategies require students to engage with course content by “seeking new information, organizing it in a way that is meaningful, and having the chance to explain it to others” (Allen & Tanner, 2005, p. 262). Both active and cooperative learning emphasize peer interactions and give students opportunities to demonstrate understanding.

The COVID-19 pandemic provided an opportunity for instructors to practice new pedagogies in face to face, hybrid, and remote learning environments. Prior to the pandemic, I often asked students to use the classroom white boards collaboratively to draw diagrams, processes, and outline concepts. Given limitations on face to face interactions in hybrid and remote classes, I used Google’s Jamboard to recreate this in-class experience for a virtual Human Anatomy & Physiology course. Students were Exercise and Health Science majors and minors. The course was offered in 15, three-hour class periods over a four-week course block in spring 2021. The three-hour class periods necessitated a variety of pedagogies to maintain student engagement.

Jamboard is a virtual white board space that can be used collaboratively by sharing a link with others. Before sharing, the link settings must be adjusted to allow any user with the link to edit the Jamboard. Each board can hold up to 20 different frames, or white board spaces, which can be modified by adding figures, text, drawings, and sticky notes. I began the first day of class demonstrating to students how to use Jamboard. We started with a blank frame and I asked students to add “sticky notes” to the board with thoughts about how they would stay engaged with the course during our three-hour meeting time. Students also practiced using various editing tools such as the pen, textbox, and creating shapes. The students and I both found Jamboard very user friendly and easy to navigate.

In subsequent classes, I created specific Jamboard frames prior to class with the outline of an activity or figures. Some frames were created for the class to contribute to collaboratively, similar to a jigsaw format. For example, a picture of a neuron was added to one frame (Figure 1).

Preassigned student groups worked in Zoom breakout rooms to identify one anatomical location and describe its primary function on the neuron. Each group was assigned a different neuron structure and reported back to the class after their group work. During the cardiovascular physiology unit, student groups were each assigned one component of the cardiac cycle on a Wigger’s diagram. Groups worked in Zoom breakout rooms to identify their component of the cycle and write an explanation on the diagram. Groups also collaboratively completed a chart with each group completing one row or column in the chart (Figure 2). Jamboard was also useful for students to order and label steps in a physiological process. In the skeletal muscle unit, students worked in groups to correctly order the steps of muscle contraction. Each group was assigned one picture on the Jamboard frame, groups placed their picture in the correct order and used a textbox or sticky note to describe the picture.

 

 

 

 

 

For other activities, frames were created once and duplicated for each group with the group number noted at the top of the frame. Frames containing concept map instructions or feedback loop skeletons were duplicated for each group. For example, groups worked in Zoom breakout rooms to design a concept map demonstrating the relationships between cell membrane components (Figure 3) or outline a control system for different responses to deviations for homeostasis. During the homeostatic control system activity, each group was assigned a different control system. Groups reported back to the class as a whole and described their work to the class (Figure 4).

 

At the end of the course, students were surveyed about our Jamboard use. Of 17 students, 11 completed the survey. Overall, students indicated that Jamboard was an effective learning (100%, n=11) and group engagement tool (100%, n=11). In open-ended responses, students indicated that Jamboard was most effective for engaging in collaboration and checks for understanding during class. They especially liked that Jamboard helped create an in class feeling and kept them engaged with their class and their group in an interactive way. Even though groups were often labeled on Jamboard (e.g.- one frame labeled “Group 1 Concept Map” or a diagram with a “1” and arrow pointing to a specific area for identification for Group 1), several students remarked that they liked the anonymity provided by Jamboard and the lower perceived pressure to answer correctly. Students listed labeling diagrams (n=10), creating concept maps (n=7), and drawing physiological processes (n=6) as their favorite Jamboard activities. The students also appreciated that the boards were available after class for review. I posted the Jamboard link to our learning management system (Canvas) and students could return to the boards to review after class. 100% (n=11) of student respondents indicated they went back to the Jamboards two or more times after class to review.

From the instructor perspective, Jamboard provided an easy online collaborative tool for teaching physiology. Jamboard was user-friendly, flexible, and easy to set up before or during class. I found that my students were able to sustain engagement during three hours of remote class. The Jamboard group assignments were not graded, but asking student groups to report back to the class was effective motivation for producing quality group work. Challenges associated with Jamboard were consistent with most online activities including student access to a computer and reliable internet. Students occasionally had issues accessing the board anonymously if they were logged into their personal google accounts.

In moving back to face to learning, the Jamboard activities could be easily done on a whiteboard; however, collaborative drawing and annotating diagrams and charts might still be difficult without appropriate projectors or smartboard technology. Additionally, extra steps involved in taking a picture of the white board and uploading the picture to a course webpage may be barriers to making the collaborative work available after class for review. Jamboard could also be used for out of class individual or group assignments such a pre- or post- class assignments or for brainstorming activities. While the class size in the present example is quite small (17 students), use of Jamboard in these ways would be easily adaptable to larger classes and may improve student engagement in large classes (Essop & Beselaar, 2020)

 

Overall, Jamboard was an effective online collaborative tool for teaching and learning human physiology. Jamboard was user-friendly, easy to prepare before class, and kept students engaged with the class and their groups.

 

 

 

 

 

 

 

References

Allen, D., & Tanner, K. (2005). Infusing Active Learning into the Large-enrollment Biology Class: Seven Strategies, from the Simple to Complex. Cell Biology Education, 4(4), 262–268. https://doi.org/10.1187/cbe.05-08-0113

Essop, M. F., & Beselaar, L. (2020). Student response to a cooperative learning element within a large physiology class setting: Lessons learned. Advances in Physiology Education, 44(3), 269–275. https://doi.org/10.1152/advan.00165.2019

García-Almeida, D. J., & Cabrera-Nuez, M. T. (2020). The influence of knowledge recipients’ proactivity on knowledge construction in cooperative learning experiences. Active Learning in Higher Education, 21(1), 79–92. https://doi.org/10.1177/1469787418754569

Montrezor, L. H. (2021). Lectures and collaborative working improves the performance of medical students. Advances in Physiology Education, 45(1), 18–23. https://doi.org/10.1152/advan.00121.2020

Dr. Mary Stenson earned her B.S. in Biology from Niagara University and her M.S. and Ph.D. in Exercise Physiology from Springfield College. She is an Associate Professor of Exercise Science and Sport Studies at the College of Saint Benedict/Saint John’s University in Saint Joseph, Minnesota. Dr. Stenson teaches exercise physiology, research methods, anatomy & physiology, and health & fitness. Her research focuses on recovery from exercises and improving health of college students. Dr. Stenson mentors several undergraduate research students each year and considers teaching and mentoring the most important and fulfilling parts of her work.
July 6th, 2021
Reworking the recipe: Adding experimentation and reflection to exercise physiology laboratories

What do you get when you follow a recipe? We suppose it depends on how carefully you follow the instructions, but assuming you stay true to the steps and have the requisite skills, you get something that approximates the taste described on the food blog (it never looks as good). While following a recipe can get you an expected result in the kitchen, it does not make you a chef—you probably will not learn to create new dishes, improve tired ones, or reverse-engineer your favorite take-out order. What do you do if you run out of vanilla!? We think the same is true in a science laboratory: You don’t develop the skills of a scientist by just following instructions. Sure, scientists follow instructions, but they also need to choose, create, and improve instructions. How do scientists become nimble with their craft? They experiment, make mistakes, troubleshoot, and iterate (or “Take chances, make mistakes, and get messy” for those who grew up with Miss Frizzle). If we asked you where undergraduate students learn to become scientists, we expect “laboratories” would be the most common answer, but unless laboratory activities are intentionally designed to develop the curiosity, creativity, and skills to pose and answer questions, they won’t produce adept scientists. In contrast to traditional laboratory activities, inquiry-based laboratory activities allow learners to develop important scientific skills.

Two years ago, we began a project aimed at improving student learning by replacing recipes with authentic science in exercise physiology laboratories. With one year remaining in our project, this blog post will explore our rationale, progress, and future plans.

Section 1: Put the scientist cookie-cutter back in the drawer

In undergraduate exercise physiology courses, laboratory-based learning is common, but it focuses more on students learning techniques than experimenting (9). In our experience, a typical undergraduate laboratory activity requires students to follow step-by-step procedures to measure one or more variables in a limited number of participants, most commonly their lab mates. Students administer exercise protocols on bikes, treadmills, and dynamometers to collect a variety of data, including oxygen uptake, heart rate, and muscle strength. These labs are largely descriptive. For example, a quintessential undergraduate exercise physiology laboratory involves performing a graded exercise test to measure the maximal rate of oxygen uptake (V̇O2max). Students assume the role of physiologist, repeatedly increasing the speed of a treadmill (or power output of a cycle ergometer) while sampling expired gases until the participant is unable to continue due to exhaustion. Students are discouraged (actually, prohibited) from altering the protocol and rarely given the chance to fix mistakes in a future laboratory (don’t forget the nose clips!). While the specific results may not be known in advance—they depend on characteristics of the participant—this activity is not an experiment. This traditional approach to laboratory teaching is standard (8, 11, 13). In contrast, an inquiry-based approach allows students to act like scientists and experiment.

There is a terrific description of levels of student inquiry in science for interested readers outlined in Bell et al. (4) and summarized in Table 1 below. The authors describe four levels of inquiry, and in our early stages of reforming labs, we found these levels very helpful for grappling with and revising laboratory learning activities and assessments. In our experience, only level 1 inquiry-based activities are regularly included in undergraduate laboratories: For example, our students compare post-exercise blood lactate concentration responses to passive and active recovery. Even though the results are known in advance and students are following the instructor’s procedures for level 1 inquiry, learners are frequently assessed on their ability to create laboratory reports where they find themselves toiling over uninspired post hoc hypotheses and rewriting a common set of methods in their own words. This process is disingenuous. Furthermore, knowing that they are attempting to verify a known result may lead some students to engage in questionable research practices to obtain that result (14).

Table 1. The four levels of inquiry, as described by Bell et al. (4).

Level Type Description of student activities
1 Confirmation Students verify or confirm known results
2 Structured inquiry Students investigate instructor-determined question using instructor-determined procedures (results not known in advance)
3 Guided inquiry Students investigate instructor-determined question using student-determined procedures
4 Open inquiry Students develop questions and procedures for rigorously answering them

 

We think traditional laboratory teaching goes against the spirit of what science actually is: The application of rigorous methods in the pursuit of answers to questions. Although students may develop technical skills by completing descriptive activities and low-level inquiry activities (e.g., data acquisition, data analysis, technical writing), there is a missed opportunity to develop the habits of mind and skills of a scientist in traditional laboratories. More than that, there is a misrepresentation, or at least obfuscation, of science. If we pretend these laboratories represent the scientific process, how do we expect students to become curious about, inspired by, and ultimately capable of doing science on their own? Students need to progress to higher levels of inquiry-based learning, but implementing these types of laboratories can be challenging in exercise physiology.

It is understandable that exercise physiology laboratories tend to exclude inquiry-based learning, as all tests are performed on human participants. First, there are legitimate safety concerns in exercise physiology laboratories, as participants are asked to exert themselves, often maximally; manipulations have physiological consequences; and some techniques are invasive. It would be irresponsible to let students change data collection protocols on the fly and jeopardize the health and safety of their peers. Second, as multiple testing sessions may be required to collect experimental data, manipulating independent variables may also be impractical for an undergraduate course aiming to cover a broad curriculum. For example, with sessions spread over multiple weeks, standardizing for diet is difficult. Third, the types of interventions that would have large enough effect sizes to be observable with small sample sizes (with a reasonable amount of “noise”) may be impractical or inappropriate in an undergraduate laboratory. For example, learners may not want to exercise for prolonged durations in the heat or deplete their muscle glycogen in advance of an exercise test. And finally, laboratory instructors may be uncomfortable or inexperienced with facilitating inquiry-based laboratories that go beyond level 1 (to say nothing of the confidence and ability of the learners themselves).

In addition to the practical concerns of adding more inquiry to undergraduate labs, we know students must learn the technical skills associated with fitness assessment, as exercise physiology is a health profession. If students pursue exercise physiology as a career path, they will apply advanced technical skills to accurately measure variables that impact exercise prescription, health assessments, and disease prognosis. Technical rigor is paramount in this profession, and imparting these skills is a major reason to offer exercise physiology laboratories. Unless specializing in research, exercise physiologists may not perform scientific experiments in their occupation. It is also challenging to collect most physiological data, and certainly learners cannot become scientists without acquiring data collection skills. Students need to practice and develop confidence using laboratory equipment before they can answer their own questions.

We understand that performing true experiments (especially student-led experiments) is difficult in undergraduate exercise physiology laboratories and we also appreciate why technical skills are essential. Yet, we do not believe that an exclusive focus on technical skills is the best strategy for students to learn scientific reasoning, critical thinking, and problem-solving skills. Regardless of a students’ career path, these are transferrable skills, and a laboratory is the ideal venue to nurture scientific thinking.

Section 2: Can we move beyond cookbook style laboratories?

What makes a good scientist? This answer probably varies across disciplines: Some scientists may be skilled in animal surgery, some may interrogate enormous data sets, and others may focus on theoretical concepts and proofs. There is probably no single skill set that is common among all scientists. But, if we put the specific technical skills aside, students need to ask questions, create hypotheses, solve problems, and think critically in order to conduct experiments. The mechanism for developing any skill is practice: Learners need opportunities to develop and refine their skills, whether they are technical or cognitive. Some students may be able to walk into a first-year laboratory and create an experiment, but many more will need additional support to reach this level of competency. In short, students need to practice being scientists. To be effective, this practice must be authentic: As scientists do not just follow instructions, a recipe-based approach to laboratory learning will not develop a good scientist. The higher levels of inquiry, (see Table 1), are where students get to practice being scientists.

Including higher level inquiry-based learning in exercise physiology isn’t entirely novel. For example, Kolkhorst et al. (11) described the implementation of an inquiry-based learning model in an undergraduate exercise physiology course. The structure of this course was (i) an introductory laboratory session; (ii) five laboratory sessions focused on key concepts in exercise physiology; and (iii) nine laboratory sessions to complete two separate research projects (4-5 sessions each). In the latter portion of the course–an example of level 4 inquiry (Table 1)–students proposed research questions and hypotheses and worked with instructors to devise an experiment, collected and analyzed data, and presented their results to the class. After addressing one research question, students repeated this process with a new research question focused on a different physiological system. Following the initial iteration—from which Kolkhorst et al. (11) noted students were not sufficiently prepared for undertaking the research projects—the authors devised a more structured transition, providing students with more opportunities to practice answering research questions and developing technical skills (i.e., level 2-3 inquiry). The results of this shift in laboratory learning were largely positive: The authors reported that students were more enthusiastic about the inquiry-based labs and better able to describe and discuss physiological principles. A separate study (8) indicated that students reported preferring high-level as opposed to low-level inquiry in exercise physiology laboratories, crediting the independence, responsibility, freedom, and personal relevance as key influences on their satisfaction. These qualitative results are further supported by quantitative data from Nybo and May (13), which demonstrated greater test scores for students who completed an inquiry-based laboratory session related to cardiopulmonary exercise physiology compared to a traditional laboratory on the same topic. Collectively, these studies demonstrate that enabling students to experiment in undergraduate exercise physiology is possible and beneficial.

Although writing specifically about physics education, Drs. Emily Smith and Natasha Holmes (14) advise us to eliminate confirmation (level 1) work and attempts at learning theory in laboratories. Based on extensive research, they suggest increasing the amount of laboratory time students spend (i) making predictions about what they think might happen; (ii) doing activities that involve trial-and-error; (iii) practicing decision making; and (iv) processing how things went. By allowing students to devise questions, design experiments, and collect data (with the opportunity to fix mistakes), students are practicing being scientists. By design, inquiry-based laboratory activities facilitate the first three suggestions; however, whether Smith and Holmes’ fourth recommendation occurs in inquiry-based laboratory activities is hard to determine, but this recommendation is important. This processing phase of laboratory learning improves students’ capacities to make good decisions over time. Including this reflective step in laboratories is something we have taken to heart and into all of our reformed labs.

Section 3: Adding inquiry and mixing reflection into exercise physiology laboratories

In our project, we are focused on two specific exercise physiology courses, an introductory undergraduate course (n = 80-200 students, depending on the semester) and an advanced graduate course (n = 10), both of which have a weekly 3-hour laboratory session. Prior to intervening, we surveyed the nature of laboratory teaching in each course, finding that students indeed followed step-by-step instructions without the opportunity to make decisions or investigate new questions. The only form of inquiry-based learning was level 1 (Table 1). We planned to make two broad types of changes: (i) provide students with more autonomy in the laboratory, and (ii) encourage students to reflect on the activities they were completing. As the graduate course was much smaller, this was deemed the easier place to start, and because of its size, this course was also allowed to remain in-person during the COVID-19 pandemic. Accordingly, most of our progress to date has been in revising this graduate exercise physiology course.

Initially, our changes to the graduate course’s laboratory focused on asking students to make and validate predictions while using a standard set of protocols (i.e., level 1 inquiry). In our first iteration, we modified four laboratory sessions to focus on the “unexpected” breakdown in the linear relationship between oxygen uptake and cycling power output that occurs during exercise with constant-load efforts and the difficulty in identifying the boundary between the heavy and severe exercise intensity domains (10). We (and students in the course) felt these activities were successful, so we modified the laboratory again the following year to allow students to focus on answering novel questions rather than verifying results. Using a gradual implementation approach similar to Kolkhorst et al. (11), students were first asked to create and test unique hypotheses for a set of data they collected over four laboratory sessions, combining aspects of level 2 and 4 inquiry (i.e., instructor-led procedures and student-led questions). Next, based on an article read earlier in the course (1), students worked as a group to determine whether fatiguing one limb influenced measures of exercise performance and fatigue in the contralateral limb when contractions were isometric (level 2). Finally, with a focus on inquiry-based learning and professional development, students were challenged to develop their own laboratory activity for a hypothetical course, which required devising an experiment to teach an important concept in exercise physiology and collecting pilot data to demonstrate feasibility (nearing level 4). To fully understand the impacts of these changes, we have collected survey and semi-structured interview data from students in reformed laboratories, which we hope to formally report at the end of the project.

Despite teaching our undergraduate exercise physiology course online this year, we attempted to create a virtual exercise physiology laboratory that focused on developing the skills needed to answer research questions. Learning activities focused on hypothesis creation, research design, data analysis, and statistical analysis. For one activity, we asked students to design a hypothetical study comparing mechanical aspects of sprinting for two groups of athletes (e.g., bobsleigh vs. fencing). Although new to research design, students were given the freedom to choose the sample size, the variable of interest, and the two types of athletes (selected from normative data published by Haugen et al. (7)). Martin used the students’ choices to simulate datasets, and students performed statistical analysis to test their hypotheses. While students couldn’t collect their own data, this activity allowed them to pose and answer a question, while learning about sprinting and research design. When this lab returns to in-person learning, plans are being formulated to include inquiry-based learning, similar to the structure that Kolkhorst et al. (11) and Henige (8) reported.

After two years of tinkering with our graduate course and beginning to reform our undergraduate course (despite its online format), we have realized that we simply need to give students more time in the laboratory to work on their own questions. Note that Kolkhorst et al. (11) and Henige (8) each provided 4-5 sessions for their level 4 inquiry laboratory activities. This can be a tough sell for instructors (ourselves included): It means we need to cover fewer topics. But, sometimes the best addition to a recipe is a subtraction (e.g., prohibiting pineapple on pizza). The battle over which absolutely essential topic has to be removed has already begun!

While we think increasing autonomy and inquiry in the lab is an important part of enhancing student learning, we also think students need to be able to debrief learning activities and process their experiences to enrich their learning. For both courses described above, students were asked to engage in reflective activities each week. We know reflection can move learning from surface to deep and even transformative levels (12). Reflection is a form of cognitive housekeeping and processing that enables students to develop their understanding of complex or unstructured ideas (12). When students actively engage in a constructive sense-making process, they understand complex systems and concepts better (6). Metacognitive practices are shown to improve self-regulation and commitment to lifelong learning; however, instructional strategies often neglect or assume students are engaging in metacognition (2). Evidence suggests metacognition at the end of STEM learning activities enriches learning (17). Based on this evidence and our experiences with reflection as a catalyst for curiosity and connection-making, we integrated a small amount of reflection with learning activities and added a low-stakes assessment in both courses. Students were asked to thoughtfully reflect on and respond to a specific prompt in approximately 100 words at the end of each lab. Questions like those listed below acted as a call to metacognition:

What did you find most challenging (or surprising, or interesting) in this lab and why?

What did you learn in this lab? What would you still like to know?

What do you think is the major obstacle to performing high-intensity interval training?

How would you explain the importance of fat oxidation to a lay person interested in exercise?

By asking students to connect their experience, knowledge, ideas, and sometimes uncertainty to their lab learning activities, we hoped to support them in deepening, extending, and amplifying their learning.

As we reformed student learning activities and move away from recipe-only laboratories, our teaching practices needed to change too. Recognizing that the laboratory instructors had mostly been trained through traditional style laboratories, we identified a need for some targeted professional development for our group of educators. To meet this need, Cari developed an asynchronous learning module called “Teaching to Enable Learning in Exercise Physiology,” for the instructional team to complete prior to the start of term, and we debriefed this 6-8 hour module together at our first meeting. This meeting set the tone and expectation in many ways for the teaching practices we were expecting teaching assistants to try in labs. We took a community of practice (CoP) approach to supporting laboratory teaching and learning throughout the semester. A CoP is a group of practitioners who meet regularly, reflect and problem solve collaboratively to learn to do their practice (for us, teaching) better (16). CoPs have been used to facilitate teaching and learning change in many higher education projects (5, 15). Each week, we (Martin and Cari) invited the lab technician, the teaching assistants (i.e., laboratory instructors), and a graduate student researcher (Joy Camarao) to reflect on and share both positive and negative teaching experiences from the week that was.

Conclusion

Years after completing an undergraduate degree in biology, the laboratory activities that stuck with me (Martin) the most are those that let me experiment. My favorite laboratory activity involved transplanting barnacles from the exposed side of a breakwater to the inner harbor on the coast of Nova Scotia to examine phenotypic plasticity in leg morphology. My lab mates and I chose the topic and designed the experiment, basing our question on a relationship observed in a related species of barnacle (3). We drove to the coast to find and transplant the barnacles, and we returned weeks later to collect the barnacles for analysis, hypothesizing that they would increase their leg length to optimize feeding in the calmer waters. Unlike most of my other laboratory experiences, we were performing a real experiment with real hypothesis and a (somewhat) novel question. Our study had flaws, and our results weren’t perfect, but the laboratory report was authentic, and so was my excitement. This type of lab is a challenge in exercise physiology, but it’s possible and worthwhile. As we enter the final year of our project, we hope to give students more opportunities to experiment.

Image Credits: Image 1- Nicole Michalou, Image 2- Maarten VanDenHeuvel, Image 3 William Choquette, Image 4- Frans VanHeerden.

 

References

  1. Amann M, Venturelli M, Ives SJ, McDaniel J, Layec G, Rossman MJ, Richardson RS. Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol 115: 355–364, 2013.
  2. Ambrose SA, Bridges MW, DiPietro M, Lovett MC, Norman MK. How learning works: Seven research-based principles for smart teaching. John Wiley & Sons., 2010.
  3. Arsenault DJ, Marchinko KB, Palmer AR. Precise tuning of barnacle leg length to coastal wave action. Proceedings Biol Sci 268: 2149–2154, 2001.
  4. Bell RL, Smetana L, Binns I. Simplifying inquiry instruction. Sci Teach 72: 30–33, 2005.
  5. Elliott ER, Reason RD, Coffman CR, Gangloff EJ, Raker JR, Powell-Coffman JA, Ogilvie CA. Improved student learning through a faculty learning community: How faculty collaboration transformed a large-enrollment course from lecture to student centered. CBE—Life Sci Educ 15: 1–14, 2016.
  6. Eyler JR. How humans learn: The science and stories behind effective college teaching. West Virginia University Press, 2018.
  7. Haugen TA, Breitschädel F, Seiler S. Sprint mechanical variables in elite athletes: Are force-velocity profiles sport specific or individual? PLoS One 14: e0215551, 2019.
  8. Henige K. Undergraduate student attitudes and perceptions toward low- and high-level inquiry exercise physiology teaching laboratory experiences. Adv Physiol Educ 35: 197–205, 2011.
  9. Ivy JL. Exercise Physiology: A Brief History and Recommendations Regarding Content Requirements for the Kinesiology Major. Quest 59: 34–41, 2007.
  10. Keir DA, Paterson DH, Kowalchuk JM, Murias JM. Using ramp-incremental VO2 responses for constant-intensity exercise selection. Appl Physiol Nutr Metab (2018). doi: 10.1139/apnm-2017-0826.
  11. Kolkhorst FW, Mason CL, DiPasquale DM, Patterson P, Buono MJ. An inquiry-based learning model for an exercise physiology laboratory course. Adv Physiol Educ 25: 117–122, 2001.
  12. Moon JA. A handbook of reflective and experiential learning: Theory and practice. Routledge, 2013.
  13. Nybo L, May M. Effectiveness of inquiry-based learning in an undergraduate exercise physiology course. Adv Physiol Educ 39: 76–80, 2015.
  14. Smith EM, Holmes NG. Best practice for instructional labs. Nature 17: 662–663, 2021.
  15. Tinnell TL, Ralston PA, Tretter TR, Mills ME. Sustaining pedagogical change via faculty learning community. Int J STEM Educ 6: 1–16, 2019.
  16. Wenger-Trayner B, Wenger-Trayner E. What is a community of practice? [Online]. 2011. https://wenger-trayner.com/resources/what-is-a-community-of-practice/ [25 Jun. 2021].
  17. Wieman C, Gilbert S. The teaching practices inventory: A new tool for characterizing college and university teaching in mathematics and science. CBE—Life Sci Educ 13: 552-569., 2014.
Dr. Martin MacInnis is an assistant professor who studies exercise and environmental physiology from an integrative perspective, focusing on the skeletal muscle mitochondrial content, red blood cell volume, interval training, and applications of wearable technology. Martin teaches courses in exercise physiology at the undergraduate and graduate levels, and his SoTL research, in collaboration with Dr. Cari Din, focuses on using labs to develop scientific thinking.
Dr. Cari Din, PhD,  is an instructor, leadership fellow, and teaching scholar at the University of Calgary in the Faculty of Kinesiology. She works closely with Dr. Martin MacInnis, to support continuous improvement in teaching and learning experiences for students and graduate teaching assistants in the courses Martin leads. Cari works to enable agency, curiosity, and connection between learners in all of her work. She lives near the Rocky Mountains and appreciates hiking in them.
June 21st, 2021
Pandemic, Physiology, Physical Therapy, Psychology, Purpose, Professor Fink, Practical Exams, and Proficiency!

Pandemic

To say that the COVID-19 pandemic has affected education would be an understatement.  Physical distancing measures that were introduced across the world to reduce community spread of SARS-CoV-2 (the COVID-19 pathogen), necessitated a cessation or reduction of in-person instruction, and the introduction of what has come to be known as “emergency remote education”(1, 2).  Emergency remote education or teaching (ERE or ERT) is different from remote or online education in that, it is not planned and optional, but rather, a response to an educational emergency (3).

Physiology for Physical Therapy Students

Against the backdrop of the COVID-19 pandemic, as I was trying to keep my primary research program on regenerative and rehabilitative muscle biology moving forward (4), engaging with the scientific community on repurposing FDA-approved drugs for COVID-19 (5, 6), and working on the Biomaterials, Pharmacology, and Muscle Biology courses that I teach each year; I was requested to take on a new responsibility.  The new responsibility was to serve as the course master and sole instructor for a 3-credit, 15-week course on Physiology and Pathophysiology for Professional Year One (PY1) Doctor of Physical Therapy (DPT) students.  I had foreseen taking on this responsibility a couple of years down the road, but COVID-19 contingencies required that I start teaching the course in January 2021.  I had always believed that within the Physical Therapy curriculum, Anatomy, Physiology and Neuroscience, were courses that could only be taught by people who were specialists – i.e. you had to be born for it and should have received a level of training needed to become a master of Shaolin Kung Fu (7).  With less than a year to prepare for my Physiology and Pathophysiology course, and with the acknowledgment that I was not trained in the martial art of Physiology instruction, I looked for inspiration.  The Peter Parker Principle from Spider-Man came to mind – “With great power comes great responsibility” (8).  Unfortunately, I realized that there was no corollary that said “With great responsibility comes great power”.  Self-doubt, anxious thoughts, and frank fear of failure abounded.

Psychology and Purpose

Call it coincidence, grace, or anything in between; at the time when I started preparing to teach Physiology and Pathophysiology, I had been working with a psychological counselor who was helping me process my grief following my father’s passing a couple of months before COVID-19 was declared a pandemic.  In addition to processing my grief, through counseling, I had also started learning more about myself and how to process anxious thoughts, such as the fear of failing in my new superhero role of teaching Physiology and Pathophysiology to Physical Therapy students.  Learning how to effectively use my “wise mind” (an optimal intersection of the “emotional mind” and “reasonable mind”), writing out the possible “worst outcomes” and “likely outcomes”, practicing “self-compassion”, increasing distress tolerance, working on emotional regulation, and most importantly embracing “radical acceptance” of the things I cannot change, helped me work through the anxiety induced by my new teaching responsibility.  This does not mean that my anxiety vanished, it just means that I was more aware of it, acknowledged it, and worked my way through it to get to what I was supposed to do.  I also learned through counseling that purpose drives motivation.  I realized that my anxiety over teaching Physiology was related to the value I placed on the teaching and learning of Physiology in Physical Therapy and other health professions.  Being a Physical Therapist and Physiologist who is committed to promoting movement-centered healthcare, I found motivation in the prospect of training Physical Therapists to serve as health educators with the ultimate goal of improving human movement.  Therefore, the idea of developing a course that would give my students a solid foundation in the Physiology and Pathophysiology of Human Movement began to excite me more than intimidate me.  The aspects of my personality that inspired me to publish a paper on the possible pathophysiological mechanisms underlying COVID-19 complications (5), stirred in me the passion to train the next generation of Physical Therapists, who through their sound knowledge of Physiology would likely go on to transform healthcare and promote healthier societies through movement (9).

The point about purpose being a positive driver of motivation, mentioned above, has been known to educational psychologists for a while.  When students see that the purpose of learning something is bigger than themselves, they are more motivated to learn (10).  So, rather than setting up my course as a generic medical physiology course, I decided to set it up as a Physiology and Pathophysiology of Human Movement course that is customized for human movement experts in training – i.e. Student Physical Therapists.  I set my course up in four modules – Moving the Body (focused on muscle and nerve), Moving Materials Around the Body (focused on the cardiovascular and pulmonary systems), Fueling Movement (focused on cellular respiration and the ATP story), and Decoding the Genetics of Human Movement (focused on how genetic information is transcribed and translated into proteins that make movement possible).

Professor Fink

For those of you who have not heard of Professor Steven Fink, you should look him up (11).  A Ph.D.-trained Physiologist and former member of the American Physiological Society (APS), Professor Fink has posted over 200 original educational videos on YouTube, covering Anatomy, Physiology, Pharmacology, and other subjects.  I had found his YouTube videos several years ago, while looking for good resources for my Pharmacology course, and never stopped watching them ever since then.  I would watch his videos while exercising, and listen to them during my commute (and sometimes even during my ablutions!).  There were two topics in Physiology that scared me the most – cellular respiration and genetics.  I had learned these topics just well enough to get me through high school, four years of Physical Therapy School, one year of Post-Professional Physical Therapy training, six years of Ph.D. training in a Physiology laboratory, six years as a Postdoctoral Fellow (also in a Physiology laboratory), and several years as an Assistant Professor in Physical Therapy.  However, despite the “few years” I had spent in academia and my 10+ years being a member of the APS, I never felt that I had gained mastery over the basic physiology of cellular respiration and genetics.  So, when I started preparing to teach Physiology, I decided to up my number of views on Professor Fink’s videos on cellular respiration and genetics.  Furthermore, I reached out to Professor Fink and asked him if he would serve as a teaching mentor for my new course and he very kindly agreed.  I am fortunate to be a teacher-scholar in a department and university, which places a high priority on teaching, and supports training in pedagogy and the scholarship of teaching and learning through consultation with experts within and outside the university.  As part of our mentoring relationship, Professor Fink gave feedback on my syllabus, course content, testing materials and pedagogical strategies.  He also introduced me to “Principles of Anatomy and Physiology, 16th Edition, by Gerard J. Tortora, Bryan H. Derrickson, which proved to be a useful resource (ISBN: 978-1-119-66268-6).  Through all these interactions, Professor Fink demonstrated that a person can be a “celebrity professor” and still be a kind and gentle human being.  Having him as my teaching mentor played a significant role in building my confidence as a physiology teacher.  Research shows that academic mentoring is related to favorable outcomes in various domains, which include behavior, attitudes, health, interpersonal relations, motivation, and career (12).

Practical Exams

As the COVID-19 pandemic rolled on through the Winter, Spring/Summer, and Fall semesters of 2020, it became certain that I would have to teach my Physiology and Pathophysiology course in a virtual environment come January 2021.  I had to figure out a way to make sure that the learning objectives of my course would be met despite the challenges posed by teaching and testing in a virtual environment.  Therefore, I came up with the idea of virtual practical exams for each of the four modules in my course.  These practical exams would be set up as a mock discussion between a Physical Therapist and a referring health professional regarding a patient who had been referred for Physical Therapy.  Students would take the exam individually.  On entering the virtual exam room, the student would introduce themselves as a Student Physical Therapist and then request me (the referring healthcare professional) to provide relevant details regarding the patient, in order to customize assessment, goal setting and treatment for the patient.  With the patient’s condition as the backdrop, I would ask the student questions from the course content that was relevant to the patient’s condition.  A clear and precise rubric for the exam would be provided to the students in keeping with the principles of transparency in learning and teaching (13).

Proficiency

As we went through the course, the virtual practical exams proved to be an opportunity to provide individualized attention and both summative and formative feedback to students (14).  As a teacher, it was rewarding to see my Physical Therapy students talk about cellular respiration and gene expression with more confidence and clarity than I could do during my prior 12+ years as a Ph.D.-trained Physiologist.  It was clear to me that my students had found a sense of purpose in the course content that was bigger than themselves – they believed that what they were learning would translate to better care for their patients and would ultimately help create healthier societies through movement.

In the qualitative feedback received through a formal student evaluation of teaching (SET) survey, one student wrote “Absolutely exceptional professor.  Please continue to do what you are doing for future cohorts.  You must keep the verbal practical examinations for this class.  Testing one’s ability to verbally explain how the body functions and how it is dysfunctional is the perfect way to assess if true learning has occurred.”  Sharing similar sentiments, another student wrote “I really enjoyed the format of this class. The virtual exams in this class forced us to really understand the content in a way that we can talk about it, rather than learning to answer a MC question. I hope future students are able to learn as much as I did from this class.”

Closing Remarks

When I meet students for the first time during a course, I tell them that even though I am their teacher, I am first a student.  I let them know that in order to teach, I first need to learn the content well myself.  Pandemic pedagogy in the time of COVID-19-related emergency remote education has reinforced my belief that, the best way to learn something is to teach it.  Thanks to my Physiology and Pathophysiology of Human Movement course, I learned more about myself, about teaching and learning, and of course about cellular respiration and genetics.  Do I now consider myself a master of Physiology instruction?  No!  Am I a more confident physiology teacher?  Yes!  Has writing this article made me reflect more on what worked well and what needs to be fine-tuned for the next iteration of my Physiology and Pathophysiology course?  Yes!

REFERENCES:

  1. Williamson B, Eynon R, Potter J. Pandemic politics, pedagogies and practices: digital technologies and distance education during the coronavirus emergency. Learning, Media and Technology. 2020;45(2):107-14.
  2. Bozkurt A, Jung I, Xiao J, Vladimirschi V, Schuwer R, Egorov G, et al. A global outlook to the interruption of education due to COVID-19 pandemic: Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education. 2020;15(1):1-126.
  3. Hodges C, Moore S, Lockee B, Trust T, Bond A. The difference between emergency remote teaching and online learning. Educause review. 2020;27:1-12.
  4. Begam M, Roche R, Hass JJ, Basel CA, Blackmer JM, Konja JT, et al. The effects of concentric and eccentric training in murine models of dysferlin-associated muscular dystrophy. Muscle Nerve. 2020.
  5. Roche JA, Roche R. A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. FASEB J. 2020;34(6):7265-9.
  6. Joseph R, Renuka R. AN OPEN LETTER TO THE SCIENTIFIC COMMUNITY ON THE POSSIBLE ROLE OF DYSREGULATED BRADYKININ SIGNALING IN COVID-19 RESPIRATORY COMPLICATIONS2020.
  7. Wikipedia contributors. Shaolin Kung Fu – Wikipedia, The Free Encyclopedia 2021 [Available from: https://en.wikipedia.org/w/index.php?title=Shaolin_Kung_Fu&oldid=1026594946.
  8. Wikipedia contributors. With great power comes great responsibility – Wikipedia, The Free Encyclopedia 2021 [Available from: https://en.wikipedia.org/w/index.php?title=With_great_power_comes_great_responsibility&oldid=1028753868.
  9. American Physical Therapy Association (APTA). Transforming Society – American Physical Therapy Association [Available from: https://www.apta.org/transforming-society.
  10. Yeager DS, Henderson MD, Paunesku D, Walton GM, D’Mello S, Spitzer BJ, et al. Boring but important: a self-transcendent purpose for learning fosters academic self-regulation. Journal of personality and social psychology. 2014;107(4):559.
  11. Fink S. ProfessorFink.com [Available from: https://professorfink.com/.
  12. Eby LT, Allen TD, Evans SC, Ng T, Dubois D. Does Mentoring Matter? A Multidisciplinary Meta-Analysis Comparing Mentored and Non-Mentored Individuals. J Vocat Behav. 2008;72(2):254-67.
  13. Winkelmes M. Transparency in Learning and Teaching: Faculty and students benefit directly from a shared focus on learning and teaching processes. NEA Higher Education Advocate. 2013;30(1):6-9.
  14. Alt D. Teachers’ practices in science learning environments and their use of formative and summative assessment tasks. Learning Environments Research. 2018;21(3):387-406.
Joseph A. Roche, BPT, PhD.  Associate Professor.  Physical Therapy Program.  Eugene Applebaum College of Pharmacy and Health Sciences.  

I am an Associate Professor in the Physical Therapy Program at Wayne State University, located in the heart of “Motor City”, Detroit, Michigan.  My research program is focused on developing regenerative and rehabilitative interventions for muscle loss arising from neuromuscular diseases, trauma and aging.  I have a clinical background in Physical Therapy and have received intensive doctoral and postdoctoral research training in muscle physiology/biology.

https://www.researchgate.net/profile/Joseph-Roche-2

https://scholar.google.com/citations?user=-RCFS6oAAAAJ&hl=en


June 1st, 2021
Things about self-care during the pandemic that you already know but should hear again anyway.

As the pandemic begins to show signs of weakening its grasp on the world, the stress and pressures of the past 15 months continue to wear on educators everywhere. This blog covers some aspects of self-care that may provide helpful reminders to us all for managing the ongoing situation, and a call for us to be honest with ourselves about how we’re doing, to give permission to ourselves to ask for support, and when we need it, to ensure that we get the help that we need.

I don’t actually know how long it feels like it has been since I first learned we went virtual last March. It simultaneously feels like it’s been forever and just a few weeks. I do know that by the time I got to 18 December, the last day of the fall semester, I had nothing left in reserve. I woke up on Saturday morning and I have no idea how long I sat there on the edge of the bed staring at the wall before I realized it. The fatigue and the burnout had been mounting for months and I knew that my self-care had been slipping. It took about 2 weeks of intense rest and recovery before I was able to resume any sort of work and I still find myself fatiguing mentally more quickly than ever before.

I’d outlined this article talking about self-care months ago, and in the spirit of this article, will admit that it was originally due on 18 September. Between asking how I was qualified to talk about this topic as I felt that I was barely holding things together myself, and challenge that there was always one more thing on my to-do list that needed doing, that date came and went on the calendar. So here we are, at the end of another semester, but the topic is as relevant as ever. I’ll focus on 3 key areas here, and share what I can about my successes and challenges in meeting my own self-care needs.

Meet your basic needs

As physiologists, we KNOW that bodies need rest, exercise, and sustenance. But how often do we make sure that we’re getting everything that we need?

The initial work-from-home situation meant that one of my first realizations of the new pandemic reality was that I needed to make myself go outside the house or else I would spend days in a row trudging between the bed, the refrigerator, and my at-home work area. I have added a daily, recurring to-do item on my task manager, “Get outside and move!” Most days this works. I have better success if I do it early in the day, as sometimes I find that I don’t have the energy or motivation after a long day on Zoom. Looking ahead to the fall and returning to campus, my challenge will be to preserve this time for walking, running, and other outdoor activities when my daily commute resumes.

The American College of Sports Medicine (ACSM) recommends that we get at least 30 minutes of moderate intensity exercise 5 times per week, or vigorous activity for at least 20 minutes 3 times per week. Everyone should also engage in muscle-strengthening activities at least 2 times per week.1 That looks like different things to each of us, but the trick is to find something that you enjoy doing. Or at least, that you don’t hate doing.

The average adult needs between 7 and 9 hours of sleep per night. This amount slowly decreases as we age. This hasn’t ever been an area that I’ve struggled with. I actively use the sleep management features on my phone, with wind-down times, do not disturb hours, and reduced brightness and color hue settings. During the pandemic, however, sleep has been an important marker of my stress and fatigue. As the fall semester progressed, I found my nightly sleep creeping up, at one point getting 10-11 hours of sleep per night and still feeling tired. Make sure to get an appropriate amount of sleep to meet your rest needs, and use any changes in your sleep pattern to help identify changes in your stress and overall mental health.

And finally, I know that I am preaching to the choir telling you that a well-balanced diet is key to both maintaining energy levels throughout the day, supporting your immune system, and keeping up with other aspects of your general health. On this note, I would also bring up that occasionally indulging in a favorite meal or treat can often be mentally restorative, but that moderation is key here. I’m now on my second 50-lb bag of flour of the pandemic and while most of my baking has been breads, pastas, and other staple foods, the occasional cake or batch of cookies can be very powerful in keeping me feeling like my normal self.

Tracking priorities

Someone once explained priority management to me as juggling. Some of the balls in your hands are made of glass, some of them are made of plastic. A few of those balls may be the size of softballs or even a bowling ball, most of them are going to be smaller and more manageable. The trick is to know which of your priorities are the glass balls, the ones that have to be managed and kept up in the air until they are completed. The plastic balls can occasionally be set down, or when things get away from us, sometimes even dropped. I felt bad every time I looked at my task manager and postponed working on this piece for the PECOP blog, but I also knew that it wasn’t one of the balls that were mission-critical for me to keep in the air, so it got set down or shuffled around.

To keep track of which of my to-do items are made of glass and which are plastic, I set them to different priorities in my task manager. There are lots of to-do list and task manager apps. My personal favorite is Todoist, but there are some other fantastic ones out there, including Habitica, Things 3, and others. Find one that works for your organizational style and keeps you motivated to get things done. I’ll admit that I was hesitant to move away from using stickie notes for my to-do lists, but I find that I’m far more organized now then I was with my old system, and it allows me to stay on top of my responsibilities much more accurately. Even if I do postpone some of those tasks a few (or more) times when I know that they have flexibility to them.

Take a break

I think this one is the hardest, especially during the pandemic. Work-from-home has made it easier than ever to get a few more things done since we didn’t have to commute to the office anymore. Add in the pressure of social media posts telling us how others have had time to learn new musical instruments, pick up hobbies, and engage in elaborate projects, it’s easy to feel like we are underachieving in our own personal lives. For me personally, I’ve spent more time in office hours with students and the email flow has at least doubled compared to pre-pandemic levels when the semester is in session. That feeling of always having something to do and never being done makes it hard for me to disengage at the end of the day. Not only does this lead to prolonging our working hours, but it may have negative health consequences. A new report from the World Health Organization gives new evidence that work weeks longer than 55 hours may lead to increased risk of ischemic heart attacks, strokes, and other adverse events.2

I’ve talked about using a task manager with my list of things I need to be working on; I use that tool in concert with my calendar app to tell me where I need to be and when I need to be there. As much as possible, I will only add things to one or the other, but not both. The two exceptions that I make to this is scheduling my exercise on busy days when I’m likely to put it off or get side tracked into other tasks and blocking out periods of time where my explicit task is to walk away from work and relax for a little bit. Another useful tool is using the in-office hour settings on my calendar app and do-not-disturb features on my mobile devices to help enforce no-work hours when I am done for the day.

The difficult thing about our current situation is that I don’t think I’ve said anything that we don’t already know, that we haven’t been told numerous times by others, and that we probably often repeat to our colleagues when we provide words of comradery and support to one another. As educators, we often find ourselves in the role of care givers, so it’s far easier for us to tell others to take care of their basic needs, manage our priorities, and take breaks then it is for us to follow our own advice. On that note, the one thing that I will add to this article is this:

It’s okay to not be okay. The stress and pressure are real and we are each dealing with the current situation in ways that may or may not be keeping us together. Just because someone has their stuff together on the outside doesn’t show us what they need on the inside. I love that we’re asking each other how we’re doing more often, but I fear that we’re giving the easy answers and not taking full advantage of our wonderful community for the support that it can provide. Give yourself permission to take those breaks, to leave those emails unanswered for an extra day, and to make sure that you’re getting the self-care that you need. And for those times when everything is too much? Reach out and utilize your support networks and health care options to make sure that you are getting what you need. Finally, as a community of educators, we see you, we feel you, and together, we’ll get through this together.

1 ACSM. Physical Activity Guidelines. https://www.acsm.org/read-research/trending-topics-resource-pages/physical-activity-guidelines. Last accessed 15 May 2021.

2 Pega F, et al. (2021). Global, regional, and national burdens of ischemic heart disease and stroke attributable to exposure to long working hours for 194 countries, 2000–2016: A systematic analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environmental International. In press, corrected proof. https://doi.org/10.1016/j.envint.2021.106595

Ryan Downey is an Assistant Professor in the Department of Pharmacology & Physiology at Georgetown University. As part of those duties, he is the Co-Director for the Master of Science in Physiology and a Team Leader for the Special Master’s Program in Physiology. He received his Ph.D. in Integrative Biology from UT Southwestern Medical Center. His research interests are in improving science pedagogy and in the sympathetic control of cardiovascular function during exercise. When he’s not working, he spends time as a certified scuba instructor, baking bread, and playing board games.

Ryan Downey, Ph.D., M.A.
Assistant Professor
Co-Director, Graduate Physiology Program
Team Leader, Special Master’s Program in Physiology

Department Pharmacology and Physiology
Georgetown University Medical Center
Washington, D.C.

 

May 18th, 2021
Down the custom path: Adaptive learning as a tool for instruction and assessment in science education

The spread of COVID-19 via the SARS-CoV-2 virus led colleges and universities around the world to close on-campus instruction for the safety of students, faculty and staff.  This left many instructors, specifically those in the sciences, struggling to find effective methods to present information to students in a manner that both encouraged learning and allowed for assessment of knowledge attainment.  Non-traditional colleges and universities, those that offer most or all of a degree to students in the online environment, were poised to transition easily; continuing to use the tools available in the virtual world to both guide students and assess learning.  As institutions wrestle with the decision to move courses back to the on-campus setting, this blog implores those in higher education, even science education, to consider adaptive learning as a vital component of curriculum.

Prior to my appointment as Lead Faculty at Colorado Technical University, I taught a variety of science courses in on-campus class and laboratory settings.  Both exams and laboratory practica could be cumbersome, both in prep and in grading.  While the questions could be mapped back to unit and/or course learning outcomes, this would require input of each student’s response to each question into a data sheet for analysis.  Even with online administration of exams, assessment methods were limited and instructors like myself were reliant on continuous creation of lectures, worksheets, activities, and online simulations to present course materials.  When it came time to transition to online, students would navigate through a learning management system and open a variety of files, videos, interactive activities, practice sheets, and practice quizzes for one unit in a course.  There had to be a better way to incorporate all the things we know drive student inquiry into one area while allowing assessment of their knowledge, right?  There was.

Enter adaptive learning technology.  Colorado Technical University relies upon Intellipath™ to deliver content to students in the asynchronous classroom in a variety of subjects, including natural sciences, math, engineering, nursing, and health studies.  I entered into teaching and managing faculty as a novice in this tool, and now I want to sing its praises to anyone who will listen. Adaptive learning does just as the title suggests.  It adapts based on the student’s knowledge, adding questions in areas where they need additional practice and allowing those already determined to have a certain understanding of topics to skip on to new materials.  Once these lesson nodes are designed, they can be used over and over again and questions can be delivered in a variety of ways to assess the same outcome. Gone is the need to continuously upload materials as they are all housed within the adaptive learning platform.  Instructors have the ability to see how a student is doing not just in terms of their progress through the unit but also their mastery of a specific topic.  Students have the ability to earn high marks when they demonstrate competency in the subject on their first attempt but are able to improve their score when they didn’t do as well as they had hoped.

The system rolls instruction, interaction, and formative and summative assessments all in together in one data rich place.  Instructors can tailor their outreach and additional instruction to specific students or overall trends within a specific cohort.  Those tasked with the assessment of effectiveness portion of curriculum can pull these data to discern what outcomes are being met.  In modern higher-ed, what students know is important but how we know they know what they know is also a priority.  We have to be able to paint a quantitative picture that our curriculum is effective.

Students are re-evaluating their choices for universities and it is wise of all of us to consider our options for content delivery and knowledge assessment.  I think many educators in colleges or universities have attended at least one meeting at this point to discuss the decline in the number of “traditional” college students and some of us may have even been tasked with figuring out what to do about it.  More and more students are faced with the dilemma of needing to manage being caregivers, members of the workforce, or other life challenges while also attaining a degree.  This is our time to be bold and innovative in the classroom and really personalize a student’s experience.  Will there always be “traditional” college classes?  Only time will tell.  I cannot predict where we will be as educators in a decade but I can say that it will be my goal to evolve to meet the demands of the profession.  Science leads us to advances and adaptations so shouldn’t we be advanced and adaptive in science education?

Dr. Tiffany Halfacre (she/her) earned undergraduate degrees from Berea College (Biology) and Saint Petersburg College (Funeral Services), an MSMS from Morsani College of Medicine at the University of South Florida, and a DHSc from A.T. Still University College of Graduate Health Studies.

She has a varied background as an educator spanning over 10 years.  She has taught courses in general biology, human biology, anatomy, physiology, pharmacology, and health sciences in addition to interdisciplinary work in medical humanities.  She has been involved in course development, programmatic and institutional accreditation, and institutional research and effectiveness.  Her research and service interests include exploring health and nutrition literacy as they relate to geographical and socioeconomic differences. Outside of the classroom, she has been involved in chapel series lectures including one on “Truth in Grief” and was awarded the Excellence in Academic Advising award during her tenure at Carson-Newman University for her work advising pre-health professions students.  Dr. Halfacre currently serves as a Lead Faculty and an Assistant Professor of Health Studies at Colorado Technical University where she not only focuses on faculty preparation and support but also initiatives to retain and encourage success in first year and first generation college students.

Her hobbies include anything outdoors, running, amateur photography, and enjoying various arts, specifically music.

May 4th, 2021
Considering Student Evaluations of Your Teaching

After a long and trying academic year, student evaluations of your teaching will soon be in your inbox. A bit of courage is required to take a first glance at student comments about your course. Given the substantial increase in time and effort this academic year has required, critical comments may feel even more harsh.

When you do look over your student evaluations, take a few minutes to copy or write down some of the positive comments. Believe and appreciate these comments. Students value your knowledge, talents, and hard work. Then, put the evaluations away for a few days. Come back to them when you have time and energy for self-reflection.

The act of teaching is extremely personal, and it is difficult not to take critical comments as a personal attack. To compound these feelings, student evaluations are often central to the reappointment, promotion, and tenure processes. While some institutions have taken proactive measures to mitigate the effect of the pandemic on these processes, uncertainty about how review committees will consider student teaching evaluations from these terms can increase anxiety for educators.

There are other problematic issues with student evaluations. Current tools used to survey student opinions about their learning experiences are flawed. Meta-analysis indicates there is little to no relationship between what students learn and how they evaluate their teachers (1, 2). Common evaluation survey methods also have well-established biases against women and people of color (3). There are clear steps institutions can take to mitigate these issues, including educating students on the important aspects of teaching evaluations (4), adapting evaluation tools to decrease bias (5), and adopting multi-faceted evaluation methods (6).

Addressing these systemic issues around teaching evaluations is critical. However, what can you do now with your current teaching evaluations to help shape and improve your teaching? Here are a few things for you to consider:

 

  1. Are they venting? This has been a difficult time for all of us, including your students. Are they using this evaluation to release some of their frustrations? If so, attempt to disconnect the intensity of the complaint from constructive points.
  2. What are the common themes? What are your students saying? Do you see similar comments across your student evaluations? Are comments focused on specific lectures or activities? Course design? Grading? Communication? Take note of these themes.
  3. What are the institutional expectations for teaching? What aspects of your teaching are most important to your institution? Conversations with your department chair or other mentors may help you prioritize the actions you take in response to your evaluations. If it is possible to gain access to comparative evaluation data, this will provide further insight into your own evaluations.
  4. What is the context for this course? What are you trying to accomplish in this course? Are you implementing an evidence-based pedagogy which steers away from lecture? If so, students could be scoring you lower because, even though they are learning more, they don’t perceive this increased learning (7). Are you communicating your expectations for this type of learning, so they know what to expect?
  5. What incremental changes are you going to make next time you teach the course? Given the student evaluation themes, institutional expectations, the course context, and your strengths, what changes are you going to prioritize? Focus on incremental changes, as it gives you an opportunity to test and assess the impact of these small changes. For example, are you going to be more intentional about explaining to your students why you teach the way you do and what they should expect? Are you going to incorporate more structure or feedback in your assignments? Are you going to decrease content to focus on large concepts? This would also be a great time to bounce ideas around with colleagues and mentors – or check-out different options in the literature.

 

While reviewing your evaluations and considering your next steps, document the themes you decide to address. Pull a few representative comments from your teaching evaluations and write a paragraph or two about changes you are planning in response to the comments. This documentation will be helpful for the next time you teach the course. This reflection can also inform self-narratives required for the review process or–if you are looking for another job–crafting your teaching statement. This reflection is even more important as you consider what aspects of your teaching were particularly effective during this academic year of pandemic teaching. You may want to keep successful aspects of your course even if we transition back into a more traditional educational setting.

A huge thank you to educators who made it work this year! Your students and colleagues appreciate everything you have done. A special thank you to those who discussed your experiences with teaching evaluations with me, but wished to remain anonymous, in preparation for my symposium presentation at EB2021, hosted by the APS Career Opportunities in Physiology Committee, entitled “Using Teaching Evaluations to Enhance Your Career Trajectory” from which this post was based.

 

References

 

  1. Uttl B, White CA, Gonzalez DW. Meta-analysis of faculty’s teaching effectiveness: Student evaluation of teaching ratings and student learning are not related. Stud Educ Eval 54: 22–42, 2017. DOI: 10.1016/j.stueduc.2016.08.007.
  2. Boring A, Ottoboni K. Student Evaluations of Teaching (Mostly) Do Not Measure Teaching Effectiveness. ScienceOpen Research, 2016. DOI: 10.14293/S2199-1006.1.SOR-EDU.AETBZC.v1
  3. Chávez K, Mitchell KMW. Exploring Bias in Student Evaluations: Gender, Race, and Ethnicity. PS Polit Sci Polit 53: 270–274, 2020. DOI: 10.1017/S1049096519001744.
  4. Hopper M. Student Evaluation of Teaching – The Next 100 Years [Online]. PECOP Blog: 2019. https://blog.lifescitrc.org/pecop/2019/06/21/student-evaluation-of-teaching-the-next-100-years/ [2 May 2021].
  5. Peterson DAM, Biederman LA, Andersen D, Ditonto TM, Roe K. Mitigating gender bias in student evaluations of teaching. PLOS ONE 14: e0216241, 2019. DOI: 10.1371/journal.pone.0216241.
  6. National Academies of Sciences, Engineering, and Medicine. Recognizing and Evaluating Science Teaching in Higher Education: Proceedings of a Workshop–in Brief [Online]. The National Academies Press: 12, 2020. https://www.nap.edu/catalog/25685/recognizing-and-evaluating-science-teaching-in-higher-education-proceedings-of.
  7. Deslauriers L, McCarty LS, Miller K, Callaghan K, Kestin G. Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom. Proc Natl Acad Sci 116: 19251–19257, 2019. DOI: 10.1073/pnas.1821936116.
Katie Johnson, Ph.D., is an experienced practitioner and evaluator of inclusive teaching and mentoring practices. Dr. Johnson advises and serves on national STEM education initiatives and committees, working with a diverse network of collaborators. Her work has been recognized by the American Physiological Society Teaching Section, as she has been presented both the Research Recognition and the New Investigator Awards. As an independent consultant at Trail Build, LLC, Dr. Johnson assists institutions and professional organizations as they develop, implement, and assess innovative solutions to curricular and programmatic challenges. Prior to becoming an independent consultant, Dr. Johnson was Chair and Associate Professor of Biology at Beloit College. She earned her Ph.D. in the Department of Molecular Physiology and Biophysics at Vanderbilt University and her B.S. from Beloit College. Disclosure: Dr. Johnson serves as an external consultant for APS.
April 20th, 2021
Less is more – focusing on the core concepts

When it comes to teaching a subject in depth and breadth, an instructor may face the challenges of limited time versus unlimited contents. To this end, the instructor may focus on covering as much as possible material in a lecture, or on the key concepts that help prioritize contents and overarch a myriad of information. The former strategy is highly content-centered and can be overwhelming to both the instructor and students, and in fact, studies have shown that instruction time is not necessarily proportional to learning outcome [1]. By contrast, the latter strategy makes time for the instructor and student to interact, discuss, and apply the key concepts to problem solving activities, which fosters an active and interactive learning environment. In line with the evidence showing that students benefit more from an active and interactive learning experience [2], educators have called for less coverage and more inquiry aiming high beyond just the facts so that student’s learning can be enhanced by talking, writing, and collaborating [3-4].

How can one effectively prioritize contents by focusing on the key concepts pertaining to the latter strategy? One of the possible ways is to use learning objectives or anticipated learning outcomes to navigate content prioritization. It is overwhelming to start with materials for teaching planning due to fast growing research and knowledge explosion. However, using a backward design may change the game. Backward design of a course starts with developing clear learning objectives, which aligns selection of lecture contents with anticipated learning outcomes [5-6]. For instance, to accomplish the objective of building students’ critical thinking skills, an instructor will strategically plan time for not only covering materials but also information processing and application. Other than concentrating student learning on facts only, the class will be fueled by problem-based collaborative learning. To this end, it is critical for the instructor to elaborate the key principles or concepts, the very guides students need to address complex problems that demand more than simple factual answers. The collection of facts relevant to the class can be provided as supplemental information or resources for students to look up for problem solving, while it can limit student learning as a major commitment of memorization.

Mastery of basic principles plus being detail-oriented is required for success in experimentation and authentic research in a lab course [7]. To this end, students are expected to pay attention to experimental details in addition to core concepts, raising the question as to how course contents can be prioritized. First, the strategy of backward design still applies. Secondly, the learning objectives or anticipated learning outcomes can be defined such that they focus on core principles and transferrable or interchangeable skills. For instance, the course Laboratory Techniques in Molecular Nutrition covers several sets of lab techniques, one of which is immunoassays. Immunoassays represent a set of methods based on antigen-antibody binding reactions, including Western blotting (WB), immunoprecipitation (IP), co-immunoprecipitation (co-IP), chromatin immunoprecipitation (ChIP), ChIP sequencing (ChIPsec), immunohistochemistry (IHC), immunocytochemistry (ICC), and enzyme-linked immunosorbent assay (ELISA). Each method may take 1-2 weeks (5 hours/week) to cover the principles and operational procedures, and the set of immunoassays alone may occupy a semester. Obviously, it is very challenging to elaborate on each of the immunoassays within a semester given the limited time and resources, plus the needs to cover non-immunoassay techniques. However, it is practical for students to learn about the techniques within 4-5 weeks (5 hours/week) with a prioritized focus by elaborating on the core concepts shared by the eight immunoassays and contrasting the major differences among them. The core principles are shared by all the immunoassays regarding immobilization, blocking, immunobinding, washing, and detection processes. Yet, they are different in assay microenvironments including the solid phases, blocking solutions, antibodies, targets of interest, washing solutions, and detection reagents and instruments. Priority can be given to elaborating the core concepts and major differences (1-2 weeks) and to practicing the most used and accessible immunoassays such as WB, IP, and ELISA (3 weeks).

Practically, use of flipped classrooms can further enhance students’ mastery of key concepts and their ability to apply the concepts to solving problems. In a flipped classroom, the instructor lectures less in class but the course materials and recorded lectures are uploaded to the course management site (e.g., Canvas) for students to study in advance. Students tend to learn more through problem-solving activities with the instructor and peers in class that build critical thinking skills. As such, the learning outcomes can be increased and go beyond the contents by enhancing students’ critical thinking skills, which will benefit their lifelong learning after college.

Taken together, focusing on facts less in class but targeting core concepts and knowledge application more may serve as an effective strategy to build students’ critical thinking skills. The “less” by no means refers to an easy class. Instead, both the instructor and students spend more time outside the class preparing and studying course materials. This is to prepare everyone for more higher-order-thinking activities (e.g., analysis, evaluation, and application) in class. The “less” for “more” pedagogy may benefit student’s lifelong learning experience.

 

References and further reading

[1] Andersen SC, Humlum MK, Nandrup AB. Increasing instruction time in school does increase learning.

Proc Natl Acad Sci USA. 2016 Jul 5;113(27):7481-4.

[2] Dolan EL, Collins JP. We must teach more effectively: here are four ways to get started. Mol Biol Cell. 2015 Jun 15;26(12):2151-5.

[3] Luckie DB, Aubry JR, Marengo BJ, Rivkin AM, Foos LA, Maleszewski JJ. Less teaching, more learning: 10-yr study supports increasing student learning through less coverage and more inquiry. Adv Physiol Educ. 2012 Dec;36(4):325-35.

[4] DiCarlo SE. Too much content, not enough thinking, and too little fun! Adv Physiol Educ. 2009 Dec;33(4):257-64.

[5] Allen D, Tanner K. Putting the horse back in front of the cart: using visions and decisions about high-quality learning experiences to drive course design. CBE Life Sci Educ. 2007, 6(2): 85–89

[6] Hills M, Harcombe K, Bernstein N. Using anticipated learning outcomes for backward design of a molecular cell biology Course-based Undergraduate Research Experience. Biochem Mol Biol Educ. 2020 Jul;48(4):311-319.

[7] DiCarlo SE. Cell biology should be taught as science is practiced. Nat Rev Mol Cell Biol. 2006 Apr;7(4):290-6.

Dr. Zhiyong Cheng received his PhD in Analytical Biochemistry from Peking University, after which he conducted postdoctoral research at the University of Michigan (Ann Arbor) and Harvard Medical School. Dr. Cheng is now an Assistant Professor of Nutritional Science at the University of Florida. He has taught several undergraduate- and graduate-level courses (lectures and lab) in human nutrition and metabolism (including metabolic physiology). As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively developing and implementing new pedagogical approaches to build students’ critical thinking and problem-solving skills.
April 8th, 2021
Synchronous and asynchronous experiences in Advanced Exercise Physiology Courses: what teaching tools work best for my students?

Covid-19 caught all of us off guard, but educators were hit particularly hard and uniquely. I already have flipped classroom teaching and active learning, so the transition was not too difficult for me. However, I found myself incorporating many technological innovations. Was I doing too much? Which features were helping my students, and which ones were overwhelming? In this blog, I want to share some of the strategies I used with undergraduate students taking Advanced Exercise Physiology synchronously and asynchronously.

 

Additionally, within this blog, I am sharing the student’s perceptions of these technological innovations. In total, fifty-two students enrolled in different sections of “Advanced Exercise Physiology” culminating undergraduate experience (CUE) were invited to participate in a short survey regarding their learning experiences during this current Spring 2021 semester. A total of thirty-nine (n=39) students completed the confidential survey about whether different technological innovations helped them understand the material and study.

Who completed the survey?

Figure 1: Fifty-two students enrolled either in synchronous or asynchronous undergraduate advanced exercise physiology sections were invited to participate, and thirty-nine (n=39) responses were obtained. Seventy-two percent of the responders were enrolled in the asynchronous section, and 27.78% were enrolled in the synchronous section.

 

 

Video assignment for glucose metabolism

 During pre-COVID-19 times, I would teach using active-learning team-based instruction. For the first team-based assignment, student teams were asked to discuss and explain in easy terms one of the most difficult topics for my students: glucose metabolism. For this activity, I would bring Legos, markers of different colors, magnets, and other toys; and students were asked to use the materials and make a video of the complete oxidation of a glucose molecule. This in-class, graded assignment seem to help students to understand the metabolic pathways.  I modified the project due to distance learning, so each student has to create a video using any material desired to explain in simple words (without chemical formulas). This assignment is based on the constructivism theory of learning. It makes it innovative because the students learned that glucose is a six-carbon molecule that has to be fully “broken down” (oxidated) through different stages. Once they understand the steps, they could “name” each step and each enzyme. Some students used coins, Legos, or wrote down the step while explaining the process verbally. Some examples of the submissions can be seen in the links below:

Example submission glycolysis  one and example complete glucose oxidation.

 Students perception on making a video assignment for glucose metabolism

Figure 2: Students’ responses to the question “Having to make the video of metabolism in assignment two helped me understand glucose metabolism.” 71.43% responded true (it was helpful), and 28.57% responded false (it was not helpful)

 

 

 

Incorporation of Virtual Lab Experiences using Visible Body and Lt Kuracloud platforms.

One of the main concerns for me was to maintain and increase engagement while teaching virtually or remotely. I incorporated the Lt Kuracloud, a platform for interactive assignments, immediate feedback, videos, and physiology laboratory experiences in all my courses. I took advantage of the free trial, and I used it for some assignments. I received unsolicited emails from students expressing how helpful they found these assignments.  I also used Visible Body Anatomy and Physiology, which I used for lectures. I recommended it to students as supplemental material and for self-graded quizzes. Visible Body Anatomy and Physiology is available at no cost to students as our Institution’s library obtained the subscription for all the students.

Students’ perceptions: “How helpful do you find the following features? “

Figure 3: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for assignments in Lt Kuracloud was 79.08/100 (sd= 21), and for Visible Body was 74.74/100 (sd= 24)

 

Old Reliable Discussion Board

I recently completed my training on Quality Matters (QM) certification (1), and so my courses follow the rubrics of QM Higher Education General Standards. Specifically, QM Module 1 suggests using an introductory welcoming video encouraging the students to introduce themselves to the class using a video, a meme, a photo, or text. The best, and probably the only feature on Blackboard to do this is the “Discussion Board.” The discussion board is a great feature that allows students to increase participation. After all, students are the biggest consumers of social media, videos, and memes. The Discussion Board should be the closest FERPA approved version of TikTok or Facebook, right? WRONG! It worked fine for the first thread entitled “welcome,” most of the students responded by typing to answer the questions. Nobody made a voice thread, a meme, or a video. Afterward, I encouraged participation on the discussion board by posting questions and suggesting posting questions on the discussion board. After a few “virtual crickets” on Discussion Board, I quit posting questions there and developed interactive lectures with pop-up quizzes. As expected, Discussion Board was not very popular among my students.

Students’ perceptions: “How helpful do you find the discussion board on Blackboard? “

 Figure 4: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for the discussion board was 43.08/100 (sd= 25).

 Interactive pre-recorded lectures

Pre-recorded lectures are integral components of my synchronous and asynchronous course sections. These are developed using the interactive feature in Camtasia, in which I developed animated lectures. Thus, students are asked to watch the lessons and complete short quizzes that provide immediate feedback. If the concept is mastered, the student continues watching. If not, they are redirected to the lecture or part of the lecture where the concept is explained.

 Students’ perceptions: “How helpful do you find the interactive pre-recorded lectures? “

Figure 5: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for interactive pre-recorded lectures was 79.27/100 (sd= 16.8), and for Visible Body was 81.74/100 (sd= 17.8)

 

Quizlet and Quizlet live game

Like many educators worldwide, I teach my students and support their learning throughout our virtual synchronous meetings. Indeed, this is not easy. One day, as I was finishing my class, I heard screams and laughs! My ten-year-old was having so much fun in his most favorite subject. What is going on? I asked, “it was a close one,” my son said, “I got second place.”  It turned out that he was playing a “Quizlet Game.” Quizlet and Quizlet live have been used by teachers and students to reinforce learned material. I decided to try it, and I created a teacher profile to play games during the remote lectures. Every class, I started a Quizlet game; students use their phones or computers to play a race (team and individual). They play a “race” at the beginning of the class and again at the end of the class. This low-risk activity provides me with important information about misconceptions or concepts that are not mastered yet. Students play again towards the end of the class. This simple activity takes 10 minutes of instruction (5 minutes each “race”). However, it has been proven to be both helpful and fun for the students. Quizlet live was used only in my synchronous classes, but the Quizlet study sets were available to both synchronous and asynchronous sections.

I used this with graduate students enrolled in Human Physiology in the previous semester, and it was a hit! Students loved it, and class after class, this became very competitive. Not only were my students very well prepared for class, but also the competition made it so much fun!

Similar to Quizlet are such programs as Kahoot, Brainscape,  and others that are available for free or very affordable options.

Students’ perceptions: “How helpful do you find Quizlet study sets and Quizlet live? “

Figure 6: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for Quizlet sets was 76.86/100 (sd= 24), and for Quizlet live was 68.31/100 (sd= 28). One limitation is that most responders were students in the asynchronous section who did not participate in Quizlet live games.

 

MS Teams meetings and/or virtual office hours

 I chose Microsoft Teams (MS) for my virtual meetings simply because it is widely adopted at my Institution, and I prefer to keep it simple for students. For my synchronous section, I used a flipped virtual model, in which we meet once per week, and the other day they work on their own on assignments. I did this to avoid screen burnout students in the synchronous section. However, I have been happily surprised with students attending remote classes and the various office hours I provide. Yes, I do provide different office hours; very much this semester, I made every space available on my calendar as extra office hours. I realize that for many, meeting online for “virtual office hours” is more accessible to them (and perhaps less intimidating) than attending office hours in my office, as we did pre-pandemic.

Why did I offer so many office hours? First of all, because I could. Since I can’t conduct research studies with humans during the pandemic, it freed some time I had set aside for data collection to teaching.

Additionally, not driving to and from campus saved me an average of 75 minutes per day, which allowed me to have another office hour option. In reality, I did not use all these hours in meetings with students. Many times nobody needed to meet. However, there were a couple of times in which I’d meet with a student who was struggling. Not with the class or the content. But struggling with life, some students had somebody close to them sick or dying; some lost their job or financial aid, some were working exceptionally long hours as essential workers. For some, isolation was too much. One student, in particular, told me recently, “I do not have any questions today; I just needed some social interaction.” Flexible and various virtual office hours seemed beneficial for students, particularly for those in asynchronous e-learning experiences.

Students’ perceptions: “How helpful do you find the MS Teams meetings and virtual office hours? “

 

Figure 7: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for MS Teams and Virtual Office Hours was 75.86/100 (sd= 21).

 

 

 Conclusions

 Like most higher education instructors, I had to adapt quickly and shift to e-learning due to the pandemic. Fortunately, I had already taught online several times before and introduced several components to my flipped courses. However, I still struggled to find more interactive ways to keep my students engaged. Not only educators have to deal with the mental exhaustion of finding pedagogical tools that work in this new scenario when we have not had the time to produce evidence-based successful approaches to teaching remotely. But also, we are teaching distraught students. From the scarce but rapidly growing literature, we know that “our college students are currently struggling to stay hopeful and positive in the wake of the COVID-19 pandemic” (2). When asked about their feelings during the transition to virtual classes, students reported that they felt “uncertain” (59.5%), “anxious” (50.7%), “nervous” (41.2%), and “sad” (37.2%). (3) We have to teach students that are dealing with a lot of negative emotions and stress. We, educators, are also living with many of those emotions. My goal with this blog was to share some of my experiences teaching virtually and provide some ideas for any physiology educator that may need them.

References

Standards from the Quality Matters Higher Education Rubric, Sixth Edition. Quality Matters. Retrieved from Specific Review Standards from the QM Higher Education Rubric, Sixth Edition

  • Munsell, S. E., O’Malley, L. & Mackey, C. (2020). Coping with COVID. Educational Research: Theory and Practice, 31(3), 101-109.
  • Murphy, L., Eduljee, N. B., Croteau, K. College Student Transition to Synchronous Virtual Classes during the COVID-19 Pandemic in Northeastern United States. Pedagogical Research,5(4), em0078. https://doi.org/10.29333/pr/8485
Dr. Terson de Paleville teaches Advanced Exercise Physiology, Neuromuscular Exercise Physiology, and Human Physiology courses. Her research interests include motor control and exercise-induced neuroplasticity. In particular, Dr. Terson de Paleville has investigated the effects of activity-based therapy on respiratory muscles and trunk motor control after spinal cord injury. Additional research project involves the assessment of the effects of exercise training in elementary and middle school students on balance, visual efficiency, motor proficiency, motor control and behavior in the classroom and at home. Dr. Terson de Paleville is interested in elucidating any links between physical activity and academic skills and performance.

 

March 29th, 2021
A Teaching Carol: The past, present and future of my teaching
The pandemic has been a time of introspection for some. The lack of places to go, people to see, and things to do has been coupled with a forced reevaluation of how we go about almost every aspect of our lives. There is also a measure of concern about what the world will look like once we exit this pandemic. Many of us who are in regular staff and faculty positions are fortunate enough to be safe and secure in our own little bubbles, and thinking about emerging from that brings with it some anxiety.

In talking through ideas for this post, my wife suggested A Christmas Carol and the idea of taking stock of my career and feelings about teaching. Where am I? Where do I want to be? Questions that we all struggle with, and questions that may have been brought to the forefront during the pandemic. Please forgive me publicly doing a little self career counseling, as well as a little license with the A Christmas Carol concept…

The Ghost of Teaching Past (Pre-pandemic):

The Ghost of Teaching Past takes the form of my 4-year Review Committee, which just submitted my letter a couple of days ago. Preparing my materials for my 4-year review, I had to sit down and reflect on both my recent work and on my long-term accomplishments since coming to University of Delaware. Before the pandemic, if I had been asked to briefly describe my teaching I’d have said it was a “work in progress”.

I was fortunate the Department of Physiology at University of Kentucky valued teaching, and that I had the mentorship of Dr. Dexter Speck (among others) to get me started on the right track as an educator. Actually getting started as a full-time college instructor in 2011 made me realize that although I was aware of what I should be doing, that didn’t really mean I knew how to actually put in practice while actually doing that job. I was thrown in the deep end, and had to do a lot of on the job learning (sorry NJIT students!). As time progressed, I figured out that I preferred to have students focus on really learning a few fundamental concepts, as opposed to conducting a whirlwind tour through everything. I began using more case studies and data in my courses, but grand plans for massive course overhauls were subsumed by the day-to-day. I still lectured a bit too much, and although I talked a lot about testing higher order concepts in my classes, we probably ended up in the border country between lower and higher more often than not. I was neither universally loved by my students nor universally despised. Somewhere in the middle of things, I suppose. But always at least vaguely improving as I learned and became more experienced.

Starting off, there was nothing in my career but the teaching. I wasn’t as involved in APS as I am currently. I had no scholarship or research of any sort. No expectations of university or professional service. Plenty of time to focus on my teaching and on my students. But then that changed. I began to get “career aspirations”. I started pursuing opportunities to be more involved in things I was interested in, beyond just the teaching, and forgot how to say no when asked to be involved in things I was maybe a little less interested in.

Maybe a bit like Scrooge, I wandered away a bit from my initial focus, in pursuit of that career. But, that is what you are supposed to do right? Get involved. Publish. Get promoted. Become well known in your field. Move into administration someday.

The Ghost of Teaching Present (Pandemic):

The Ghost of my Teaching Present takes the form of our newest puppy, Ladybird, who arrived in the opening days of quarantine. Early after we got her, she would sit on the desk and fall asleep while I taught, providing the perfect commentary on my work. Later, she would come bouncing downstairs to check-in on what was happening when she remembered that there were other people in the house, and pee on the rug at my feet if I didn’t get up and take her outside.

All summer my institution debated their fall plans, alternating between the optimism of a fully in-person semester, various versions of hybrid curricula, and being fully online. We ultimately settled on almost exclusively online, with only a handful of small and specialized courses meeting in person. The constantly changing plan made it difficult to actually move forward with preparing, both because you didn’t actually know what you were preparing for and also because just the idea of preparing for all of the potential possibilities was mentally exhausting. This led into a very difficult and dispiriting semester. I was burnt out.

Spring then proceeded in largely the same fashion, just (thankfully) without the same back and forth on in-person vs. remote course delivery plans. If this was the montage segment of the movie, you’d see the fast-forwarding of the days going by, with me sitting in slightly different places around the house, wearing slightly different college hoodies, dogs coming and going from wherever I was to see what I was doing and bark at me for not taking them for walks, and any of those days could really be any other.

This is a common story though. For many educators around the country, and around the world, it has not been a matter of IF someone will experience burn out during the last 12+ months, but WHEN. And, of course, a large portion of our ranks were already teetering on the brink of burn-out before the pandemic ever began (1,2). There are many reasons for faculty burn-out in 2020, and that has been written about extensively (3,4) – for example, did you know there is a burn-out scale? (5). For me, it was the constant time in front of the computer and the blurring of the line between work and personal time even further than it was before the pandemic. Back when things were “normal” I had a fairly long commute, but that allowed me to mentally and emotionally shift from work mode to home mode and vice versa. During the pandemic my commute has been about 15ft. We also can’t forget the overriding stress that was 2020 regardless of what you do for a living and where in the world that you are.

It was also that teaching just didn’t feel as fulfilling. I actually hated teaching towards the end of the fall 2020 semester. I didn’t look forward to classes. There was a feeling of isolation. Teaching to a computer screen full of black boxes with names, but mostly no faces. No feedback. Conversations via the chat box. Turning down letter of recommendation requests because even though I know the name, I can’t attach a face to that name, or a single interaction that I had with them. We’d gotten away from what made me like teaching in the first place.

As we catch back up, it is the middle of the spring 2021 semester. I have actually come to realize that I was starting to make better connections with students than I typically would have most semesters. Yes, I wasn’t chatting with the handful of people who sat in the front row every day anymore, but I was learning more about more of the students than I had before. And, they were learning more about me. Having the glimpse into my life through the lens of my webcam, seeing my pets and kids, all of my stuff and my wife’s stuff on the bookshelves and walls. This leads to conversations that might not have happened otherwise. For example, during an office hours appointment, one of my dogs came downstairs to bark at me, and this made the student’s dog start barking, and that led to a 20min conversation about dog adoption and training. Surprisingly, no one has said a word about the life-size Slimer from Ghostbusters that sits over my shoulder…

In class, though much of what I hear from my students is via the chat box and direct messages, I am hearing from what feels like a wider cross-section of the class. Even when teaching online there are the students who always volunteer to answer questions, but now for some questions I’ll get numerous responses all at once. I think this also helps me avoid some of my implicit biases, because I am not calling on people, but fielding what comes in. Despite being terrified to look at my course evaluations from spring and fall as part of my review process, I actually found them to be much more positive and supportive than I could have possibly imagined.

The pandemic forced me to reorganize all of my course materials so that students could largely navigate through them on their own. Since it was miserable to talk at a computer screen, I finally ditched all my lecturing and made over class time to be solely focused on working on and talking through problems, and then just-in-time teaching built off of group quizzes and surveys asking students what they needed more time/explanation. I try to be more intentional with my communication to the class, but I am still working on the whole “sending a weekly email announcement” to my classes routine.

Do I enjoy teaching again? No, not yet. But, it is better. My courses are better organized though, and I think I have gotten back on track with fully flipping my courses and being more student centered. As difficult as it was, 2020 did positively impact my teaching for the long-run. I encourage everyone to look for those positives amidst all of the negative feelings, and think about how they can carry forward to the future.

The Ghost of Teaching Yet to Come:

The Ghost of my Teaching Yet to Come doesn’t seem to have arrived yet. I don’t think it will come in quite as bleak a form as the one seen by Scrooge in A Christmas Carol though, and that in and of itself is a progress from a few months ago.

At the moment, it looks like in the upcoming fall semester we will still be online for the large class that I teach and others of that size, but moving back to in person for most (if not all) smaller classes. This means sort of a transition semester back to “normal” – but how does that transition work, and do I even want to make it?

Do I want to go back to campus? Honestly, I am not sure. But, I am definitely not as excited about it as many of my colleagues and my students. I don’t miss my office on campus, I prefer my home office. I definitely don’t miss the lecture halls that I am stuck teaching in. Of course, the feeling of a campus full of students will probably help me warm to the idea once we get back to “normal”. In the short term, I do know that I am not looking forward to teaching in person in the fall. Many of you have conquered this already, but I am not looking forward to trying to teach through a mask, or figure out how to run my new human physiology lab course with the students socially distancing.

For my big physiology course, I actually feel like I might be a better teacher online, at least when compared to being forced to teach in old, out-of-date, stadium seating lecture halls. It is easier to field responses from all of my students via chat in zoom. It is easier (at least it seems so) to have students work in small groups than it is in that cramped lecture hall, with no space for laptops, or the ability to actually turn and face each other. And, I feel less pressure to lecture since I am not spending class standing behind a lectern in an auditorium.

The pandemic has initiated a change in approach for educators – a widespread, forced adoption of technology and new teaching practices (6,7). How will the increased comfort with technology, on the part of the both teachers and students change education going forward? Now that more teachers and students have had experience with online education, will preferences shift? (8) As a parent and teacher, I’ve joked with others that there will be no more snow days because we have set up these systems to allow remote learning.

Will students want and expect more of an on demand, 24-7 approach to their courses? Will students (and parents) feel that the “college experience” is worth the extra costs associated with coming to campus, or will they flock to institutions where they can learn online wherever/whenever they want?

Or, will the future look like what I think my fall semester will look like? Big “lecture” courses online; small classes and labs in person. Many of us already taught a combination of in person and online courses before the pandemic, but will that become the norm? How much will we as educators even have a say in it?

Those are the details, but what about the big picture? As for what directions my career takes, I have even less answers. Despite the nice, neat boxes quantifying our time devoted to particular tasks on a distribution of effort report, I don’t think any of us have really figured out the proper balance between our teaching, our scholarship, our service and the rest of our lives.

May we all gain the insight of the next steps to take and emerge from this pandemic sure of our directions!

Dr. Chris Trimby earned his Bachelor’s degree in Biological Sciences from Northern Illinois University, and a Doctorate in Physiology from the University of Kentucky. In graduate school he realized that bench research wasn’t the career direction that he wanted to pursue, and so he started teaching more and more. Instead of doing a post-doc after graduate school he instead took a lecturer position at New Jersey Institute of Technology, where he had the opportunity to design and teach a wide range of biology courses. Dr. Trimby was able to parlay that experience into a position at the Wisconsin Institute for Science Education and Community Engagement (WISCIENCE) directing the Teaching Fellows program. Wanting to get back into the classroom himself, instead of just mentoring instructors, Dr. Trimby moved to the University of Delaware to teach in the Integrated Biology & Chemistry Program (iBC) and Department of Biological Sciences. Not wanting to completely leave the world of helping the next generation of science educators, Dr. Trimby helped to develop APS’s Teaching Experiences for BioScience Educators (TEBioED) program, which enrolled its first cohort in 2020 as an extension of the virtual APS Institute on Teaching & Learning (APS ITL).

Citations:

  1. Alves, P.C., Oliveira, A.d.F., Paro, H.B.M.d.S. (2019). Quality of life and burnout among faculty members: How much does the field of knowledge matter? PLoS ONE, 14(3), 1–12. https://doi. org/10.1371/journal.pone.0214217
  2. Khan, F., Khan, Q., Kanwal, A., & Bukhair, N. (2018). Impact of job stress and social support with job burnout among universities faculty members. Paradigms: A Research Journal of Commerce, Economics, and Social Sciences, 12(2), 201–205. https://doi.org/10.24312/paradigms120214.
  3. Petit E. Faculty Members Are Suffering Burnout. These Strategies Could Help. [Online]. CHE 2021.https://www.chronicle.com/article/faculty-members-are-suffering-burnout-so-some-colleges-have-used-these-strategies-to-help [22 Mar. 2021]
  4. Gewin V. Pandemic burnout is rampant in academia. Nature 591: 489-491, 2021.
  5. Maslach, C., & Jackson, S. E. (1986). The Maslach Burnout Inventory: Manual (2nd ed.). Palo Alto, CA: Consulting Psychologists Press.
  6. Burnett J, Burke K, Stephens N, Bose I, Bonaccorsi C, Wade A, Awino J. How the COVID-19 Pandemic Changed Chemistry Instruction at a Large Public University in the Midwest: Challenges Met, (Some) Obstacles Overcome, and Lessons Learned. Journal of Chemical Education 97: 2793-2799, 2020.
  7. Lashley M, Acevedo M, Cotner S, Lortie C. How the ecology and evolution of the COVID‐19 pandemic changed learning. Ecology and Evolution 10: 12412-12417, 2020.
  8. Diep F. The Pandemic May Have Permanently Altered Campuses. Here’s How. [Online]. CHE 2021.https://www.chronicle.com/article/the-pandemic-may-have-permanently-altered-campuses-heres-how?utm_source=Iterable&utm_medium=email&utm_campaign=campaign_2126204_nl_Academe-Today_date_20210322&cid=at&source=&sourceId= [22 Mar. 2021].
March 22nd, 2021
Repurposing the notecard to create a concept map for blood pressure regulation

One amazing aspect of physiology is the coordinated, almost choreographed function of millions of moving parts.  The body has mastered multitasking, maintaining hundreds of parameters within narrow and optimal ranges at the same time.  This very aspect of physiology fuels our passion and enthusiasm for teaching physiology and piques the interests of students.  The networks of numerous overt and subtle interdependent mechanisms and signaling pathways between multiple organs and tissues that regulate plasma calcium or energy intake, for example, also represent major challenges to understanding and learning physiology for students.  We ask our students to combine the wisdom of two old sayings: “You can’t see the forest for the trees’, and “The devil is in the details.”  They need to understand both the bigger picture of the whole animal and the nuanced interlinking of mechanisms, and even molecules, that seamlessly and dynamically maintain different parameters within narrow ranges.  It can be frustrating and discouraging for students.  Furthermore, passing with high marks in systems physiology or anatomy-physiology II is a criterion for eligibility to apply to various health profession programs.  As educators we must acknowledge the complexity of physiology and find ways to help our students literally see and master smaller sections of the larger regulatory network so they can recreate and master the larger network.

For even the best prepared student, as well as the student who cannot take all recommended prerequisite courses for A&P-II or basic physiology, the collection of numerous parts, mechanisms, equations and connections, principles, and laws can represent an obstacle to learning.  Student comments such as, “There is so much to know.”, “It’s so complicated.”, and “Physiology is hard.” are accurate and fair, but also warrant validation.  A little bit of validation and communicating the challenges we encountered as students goes a long way in helping our students’ willingness to endure and continue to strive.  Physiology courses are not impossible, but they are difficult and might well be the most difficult courses a student takes.  I will not pretend or lie to my students.  If I were to dismiss physiology as a whole or a given concept as easy and simple, I risk my student thinking they should be learning principles effortlessly or instinctively and begin to doubt themselves and give up.  It helps to confess apprehensions you yourself felt when first learning various physiological concepts or phenomena.  As a novice physiology student, I had many moments at which I wanted to tap out.  ne major example was my introduction to the beautiful, albeit daunting display of all the electrical and mechanical events that occur in only the heart during a single cardiac cycle in just 0.8 seconds, i.e., the Wiggers diagram.  Every time I project this diagram on the screen, I give students a moment to take it in and listen for the gasps or moans.  I admit to my students that upon seeing that diagram for the first time I looked for the nearest exit and thought to myself, ‘Are you kiddin’ me?”  Students laugh nervously.  They sigh in relief when I tell them that my professor broke down the diagram one panel at a time before putting all together; his approached worked, and that is what I will do for them.  Dr. Carl Wiggers was committed to teaching physiology and developed the diagram over 100 years ago as a teaching tool for medical students (1).  The diagram is instrumental in teaching normal cardiac physiology, as well as pathophysiology of congenital valve abnormalities and septal defects.  Nevertheless, students still need help to understand the diagram.  Again, here an example of the function of just one organ, the heart, being a central element to a larger network that regulates a major parameter – blood pressure.  Learning regulation of blood pressure can be an uphill battle for many students.

Cardiovascular physiology is typically a single unit in an undergraduate physiology course, and it is often the most challenging and difficult exam of the semester.  Several years ago, when preparing to teach this section in an AP-II course I felt compelled to find ways to help students break-down and reconstruct pieces of complex regulation of blood pressure.  I considered the many high-tech digital learning resources and online videos available to our students but wondered whether those resources help or hinder students.  I was also looking for tools that would facilitate multisensory learning, which is shown to yield better memory and recall (2).  Despite all these high-tech resources, I noticed students were still avid users of notecards and were convinced they held the secret to success in AP-I and thus, must also be the key to success in AP-II or systems physiology.  I found this quite amusing, because we used notecards back when I was in college in the 80s – when there were no digital learning platforms and highlighters only came in yellow.  Students tote around stacks of hand-written, color coded notecards that grow taller as the semester progresses, but often their comprehension and ability to connect one concept or mechanism to the next does not increase with the height of the stack.  Students often memorize terms on note cards but cannot readily connect the mechanism listed on one card to that on the next card or explain the consequence of that mechanism failing.  Around this time a non-science colleague was talking to me about her successful use of concept maps with her students.  To me, concept maps look a lot like biochemical pathways or physiological network diagrams.  It dawned on me.  I did not need to reinvent the wheel or make a newer better teaching tool.  I simply needed to help my students connect The Notecards and practice arranging them to better pattern regulatory networks.  Students were already writing a term on one side of the card and a definition and other notes on the back.  Why not build on that activity and more deliberately guide students to use cards to build a concept map of the network for regulation of blood pressure which is central to cardiovascular physiology?

 

Blood pressure is a physiological endpoint regulated by a nexus of autoregulatory, neural and hormonal mechanisms and multiple organs and tissues.  Blood pressure is directly dependent on cardiac output, vascular peripheral resistance, and blood volume, but can be altered by a tiered network of numerous neural, hormonal and cellular mechanisms that directly or indirectly modulate any one of the three primary determinants.  The expansive network, e.g., numerous organs and tissues, and multiple and intersecting effects of different mechanisms within the network, e.g., the renin-angiotensin-aldosterone system modulates both vascular resistance and blood volume) make it difficult to see the network in its entirety.  Nevertheless, students must understand and master the entire network, the individual mechanisms, and the nuances.  Thus, in preparing for the cardiovascular section and planning how to implement the concept map, I made a list of all components that comprised the regulatory network for blood pressure with the first terms being blood pressure, cardiac output, vascular peripheral resistance, and blood volume.  At this point in the semester, the students had learned the basics of cellular respiration and metabolism.  I began the very first cardiovascular lecture with an illustration of the human circulatory system projected on the screen as I worked at the white board.  In the center of the board, I drew a cell with a single mitochondrion and three simple arrows to indicate the use of glucose and oxygen to convert ADP to ATP.  Guided through a series of questions and answers, students collectively explained that the heart must pump blood through arteries and veins to deliver oxygen and glucose and fat needed to generate ATP, as well as to remove carbon dioxide and other wastes.  Using the illustration of the human circulatory system, I then carefully explained the human circulatory system is a closed system comprised of the blood (the medium carrying oxygen, nutrients, CO2 and other wastes), the heart (the pump), and the arterial and venous vessels (the conduits in which blood flows from the heart to the tissues where oxygen and nutrients are delivered and CO2 and other wastes are removed).  If adequate pressure is sustained, blood continues to flow through veins back through the heart and to the lungs to unload CO2 and reoxygenate blood and then back to the heart to make another round.  I further explained blood pressure must be regulated to ensure blood flow to tissues optimally matches both metabolic need for oxygen and nutrients and production of CO2.  On the board, I then wrote “Blood Pressure (BP)” and stated that because this is a closed circulatory system, blood pressure changes in direct response and proportion to cardiac output or volume of blood pumped out of heart into systemic vessels in one minute, the total volume of blood in the system, and the vascular resistance that opposes flow and will be predominantly dependent vasoconstriction and vasodilation.  I wrote the terms “Cardiac Output (CO), Blood Volume (BV), and Vascular or Total Peripheral Resistance (VPR) one at a time underneath BP, each with an arrow pointing directly to BP.  I stated that any factor that changes cardiac output, blood volume, or vascular resistance can indirectly alter blood pressure.  For example, a change in heart rate can change cardiac output and thus, alter blood pressure.  I then distributed the series of hand drawn diagrams shown below.  As I pass out the sheets and display on slides, I tell them they will be learning about all these various factors and mechanisms and will be able to recreate the network and use it as a study aid.

To get students started, I handed out the list of cardiovascular terms, hormones, equations, etc. and several small pieces of paper, e.g., 2”x2” plain paper squares, to each student.  [I found free clean scratch paper in various colors in the computer lab and copy room recycling bins.]  Students can also take their trusty 3”x5” cards and cut each in half or even quarters or use standard-size Post-It® notes.  I explained that as I introduce a term or mechanism they will write the term or conventional abbreviation on one side of the paper and the definition and pertinent information on the other in pencil for easier editing.  [I emphasized the importance of using conventional abbreviations.]  For example, Blood Pressure would be written on one side of the paper and ‘pressure exerted against vessel wall’ on other, along with ‘mm Hg’, and later the equation for mean arterial pressure (MAP) can be added.  I had my own set of terms written on Post-It® notes and arranged BP, CO, BV, VPR and other terms on a white board so they could see the mapping of functional relationships take shape.  As new concepts were taught and learned, e.g., CO = Stroke Volume (SV) x Heart Rate (HR), the respective terms were added to the concept map to reflect the physiological relationships between and among the new mechanism to the existing mechanisms or phenomena already in the concept map.  In that case, on the back of the CO paper or card one might write “volume of blood ejected from ventricle in one minute into aorta”, “CO = HR x SV“, “If HR is too fast, CO will decrease!”, “Right CO must equal Left CO!”  I explained students can lay out their terms on a table, floor, their bed, etc.  I reminded students how important it was to say the terms out loud as they wrote the terms in their best penmanship.  This helps students slow down and deliberately think about what they are writing and refer to their lecture notes or textbook (be it an actual book or e-book).  I had given students copies of the complete concept map of all terms but did not dictate exactly what they should write on the back of the cards.  The small size of the paper or card, almost forces students to annotate explanations; this helped them better encapsulate their ideas.  I was open to checking their annotation and reflecting back to students the apparent meaning of their word choice.  While studying alone or with study partners, students were encouraged to audibly define terms and relationships among mechanisms as they arranged their maps in the correct configuration.  They were encouraged to ‘shuffle the deck’ and recreate subsections of the network to understand mechanistic connections at different points in the network.  Because I had given them the diagrams or concept maps for cardiac output, blood volume, and vascular resistance, students were able to check their work and conduct formative assessments alone or in groups in an accurate and supportive manner.

Students expressed that manually arranging components allowed them to literally see functional and consequential relationships among different mechanisms.  The activity complemented and re-enforced quizzes and formative assessments already in use.  It’s not a perfect tool and certainly has room for improvement.  There are quite a few pieces of paper, but students found ways to keep the pieces together, e.g., binder clips, Zip-lock bags, rubber bands.  Nonetheless, it is simple, portable, and expandable concept map students can use to learn cardiovascular physiology and represents a tool that can be applied to teach and learn other regulatory networks, such as those of the digestion-reabsorption-secretion in the GI tract and calcium homeostasis.

  1. Wiggers C. Circulation in Health and Disease. Philadelphia, PA: Lea & Febiger, 1915.
  2. http://learnthroughexperience.org/blog/power-of-context-learning-through-senses/
Alice Villalobos, Ph.D., is an assistant professor in the Department of Medical Education at the Texas Tech Health Sciences Center in Lubbock, Texas.  She received her B.S.in biology from Loyola Marymount University and her Ph.D. in comparative physiology from the University of Arizona-College of Medicine.  Her research interests are the comparative aspects of the physiology and stress biology of organic solute transport by choroid plexus.  She has taught undergraduate and graduate courses in integrative systems physiology, nutrition and toxicology.  However, her most enjoyable teaching experience has been teaching first-graders about the heart and lungs!  Her educational interests focus on tools to enhance learning of challenging concepts in physiology for students at all levels.  She has been actively involved in social and educational programs to recruit and retain first-generation college students and underrepresented minorities in STEM.