July 24th, 2017
Who’s Teaching Tomorrow’s Teachers?

Have you ever had a colleague say to you:

 “They want me to teach in this new integrated physiology course, but no one has ever taught me how to be an effective teacher!  I’ll be so nervous and probably make embarrassing mistakes, like saying the “love hormone”, oxytocin, is synthesized from cholesterol in the adrenal medulla.”

Being asked to teach first year medical students can certainly be intimidating, but that assignment is not actually akin to being thrown to the wolves. It is true that medical students are often over-achievers, but it’s been my experience over many years that these students are respectful and anxious to learn.

 

Maybe I can offer you a few tips that will help you avoid or prevent these first time  ‘teaching jitters’:

  • Know your subject and relevant scientific facts inside and out
  • Take advantage of teaching skills, workshops, and faculty development programs at your institution or through professional organizations
  • Ask your colleagues for constructive criticism of your first presentations
  • Remember that practice makes perfect, at least most of the time
  • Remember that a good sense of humor goes a long way, but bad jokes rarely help the situation
  • Don’t be afraid that you will make a couple of mistakes- we all make them but not all of us learn from them
  • Work to create effective visuals which may include human interest stories, physiology in the news, and even masterpieces by your favorite artist

Another more proactive approach is to offer programs that will encourage students to pursue their interests in teaching and help them develop the communication skills and understanding of different learning styles and pedagogies that are so essential to becoming an enthusiastic and dedicated educator. Many medical students want to ultimately incorporate teaching into their future careers as clinicians, either by formally teaching in an academic medical center or more informally through their communication with patients and with the community at large.

Here at the Carver College of Medicine at The University of Iowa we encourage our students to pursue one of our specific distinction tracks, which include research, teaching, global health, service, humanities and healthcare delivery science and management, while they are pursuing their medical degree. Although the whole concept of “teaching medical students to teach” is certainly not unique to my institution (ref 1), I do believe that our Teaching Distinction track is unique and has succeeded in terms of achieving the desired outcomes.  I’ve been very fortunate, not to mention honored, to serve as the faculty mentor for several of our previous and current students who have selected to pursue their MD with a Distinction in Teaching. It has been very exciting for me to have the opportunity to impact a student’s learning, not only in the classroom, but also in terms of their own experiences and development as educators. It has also been very gratifying when a former mentee tells me that they learned so much from me- not just endocrinology and cell biology, but also how to convey passion and enthusiasm as a teacher.  Certainly this has been a win-win experience because I’ve learned so much from these students!  Maybe Henry Adams was right when he concluded that “A teacher affects eternity; he/she can never tell where his/her influence stops.”

In order to graduate with a Distinction in Teaching our students must meet a number of requirements that include a minimum of 60 hours of relevant teaching experiences that may include: tutoring and didactic teaching; creating new educational materials; serving as a small-group facilitator; and participation on medical education committees (ref 2).  These students are also required to develop a teaching portfolio and to successfully complete a 4-week teaching elective with a capstone project (ref 2).  Since this distinction track was fully implemented in 2010, approximately 60 students, or 7-8% of all graduates, have graduated with a Distinction in Teaching.  We’ve also heard anecdotally that some students have decided to attend medical school here at the University of Iowa because they specifically wanted to pursue this track, and that having this distinction track on their resume gave them a competitive advantage during their interviews for residency positions.

Great teachers are not always born with that potential, but frequently discover their passion at some point in their careers.   I hope that through this Teaching Distinction track we’ve trained and inspired some excellent teachers who will have major impacts on all of their future students.

References

  1. Soriano RP, Blatt B, Coplit L, CichoskiKelly E, Kosowicz L, Newman L, Pasquale SJ, Pretorius R, Rosen JM, Saks NS and Greenberg L. Teaching medical students to teach: a national survey of students-as-teachers programs in U.S. medical schools. Acad Med. 2010;85:1725-31.
  2. Schmidt TJ, Ferguson KJ, Hansen HB and Pettit JE. Teaching distinction track for future medical educators. Med. Sci. Educ. 2015;25:303-06.
Thomas Schmidt is a Professor in the Department of Molecular Physiology and Biophysics at the Carver College of Medicine, The University of Iowa. He is a Fellow of the American Physiological Society and has served on the Education Committee and the Career Opportunities in Physiology Committee.  He has been the recipient of numerous teaching awards including: The President and Provost Award for Teaching Excellence (The University of Iowa); Master Teacher Award (International Association of Medical Science Educators); and most recently the Arthur C. Guyton Educator of the Year Award (American Physiological Society).  He has served as a mentor for a number of medical students who have graduated with a Teaching Distinction.
July 19th, 2017
Teaching Physiology in an Integrated Curriculum

Culmination of the 2016-17 academic year allows time for reflection and planning for the next year.   This past academic year, I was involved in the delivery of a new medical curriculum to an inaugural class of osteopathic medical students.   In keeping with current medical education trends, physiology and all other basic sciences were integrated throughout the year in individual systems based courses.  It is against this backdrop that I have decided to share a few observations and offer a few suggestions on delivering physiology content in a completely integrated teaching environment.

 

  • Delivery of an integrated curriculum is very time intensive for faculty. The idea of incorporating the teaching of anatomy, biochemistry, cell biology, physiology and microbiology/immunology of an organ system in a single course is conceptually attractive and to many medical practitioners the best way to educate the next generation of physicians.   Curricular challenges center on time limitations and the blurring of boundaries between the basic science disciplines.  Successful courses result when faculty are able to connect relevant information.   For example, my preparation for classroom discussions involved gaining an awareness of what was being taught in other disciplines and to incorporate appropriate synergies with the teaching materials developed by my colleagues in other disciplines.   The challenge was not to re-teach material.
  • Learning for the majority of students is not integrative. The development and delivery of an interdisciplinary integrated curriculum does not instantly result in students who are higher order problem solvers.   Learning is sequential, iterative, and cumulative.   Integration of concepts takes time and a firm foundation.   Guiding students along towards higher learning dimensions requires careful planning on behalf of the educator and can be accomplished through various pedagogical approaches.  Central to any approach should be basic questions for the educator to consider such as: 1) What is/are the basic fact(s) that the student should know? 2) Why does the student need to know this particular material?  and 3) How will the particular material be used in the problem solving process?   The answers to these and similar questions should then be used to introduce material in the classroom environment that keeps study groups discussing content after the session ends.
  • The true effectiveness of an integrated systems based curriculum should be measured by assessments that include questions designed specifically to high levels of integration. Data from both multidisciplinary and comprehensive formative as well as summative assessment instruments will provide a basis for future curricular decisions.

In the preceding discourse I have attempted to share a few views based on a year long teaching experience in a systems based medical curriculum.   My overall impression is that an integrated curriculum is a great way to teach physiology.   I also have learned that I am at the beginning of a new teaching journey that is sequential, iterative, and cumulative.   Sound familiar?  In preparation for next year, I know what I will be doing this summer to refine my previous year’s work in ways that facilitate student learning next year.    I am sure that I am not alone and wish you the best for a productive summer.

Joseph N. Benoit, PhD is Professor of Physiology and Director of Research & Sponsored Programs at the Burrell College of Osteopathic Medicine.   He has served in various higher education positions over the past 30 years including faculty, graduate school dean, college president and most recently founding faculty at a new medical school.   His current scholarly interests center on student learning, curriculum development, and regulatory compliance.  He lives and works in Las Cruces, NM.
June 5th, 2017
Diary of an Adventure Junkie – Part Deux:  The Path Diverges

As many scientists within our group look back over their training paths, they see a straight, hard-packed trail, with a few stumbling rocks, that led from graduate school, to a postdoc, to a bench-based, classroom-based or combination faculty position.  This relatively scripted path is one which many have traveled before us and many more will traverse in the future.  Without this path, science as we know it would cease to exist.  We require scientists in the laboratory and in the classroom, educating, influencing, inspiring and guiding the next generation; but what happens when some of those newly-minted scientists want to educate and train and motivate others in new ways?  Meet the proverbial fork in the road…

Over the past year, my road forked and I took the other path…twice.  So, what happens to a bench-trained educator who leaves the classroom for life in the society lane? Semi-adventure takes over and they drive on the shoulder and decide to direct a medical society while staying in the same comfortable location.  Being an executive director for a small society forces you to see education from a whole new perspective.  Questions arise, what are the hot topics, what is interesting, what is required…and who will teach it?  In this paradigm, the teacher becomes the student again, but also shifts into a motivational role, instilling an enthusiasm for teaching, fulfilling that ever-present need to educate.

But then…

The phone rings and it’s my dream job calling.  This job is perfect and halfway across the country, where housing and new schools must be found, in space-limited high-priced high-rises.  Cue the Indiana Jones theme music.  Giddy with the prospect of yet another fork, I swerve back onto the road; ducks in a row I apply, interview, accept the offer and then panic!  The onslaught of changes has thrown me into the ditch, wheels spinning without gaining traction.  Late sleepless nights looking for apartments, reading about schools and worrying about downsizing by half.  This is feeling less like an adventure and more like a nightmare.  And then it happened, my junior adventure junkie said, “I’m ready for this adventure, it’s going to be fun.”  That’s when I re-committed to my belief that adventures are scary, but without them we don’t challenge ourselves, we don’t grow and we don’t change.  So, I said yes we will move and downsize and take on this adventure.  The adventure starts this summer, but the prelude has been fantastic. So, what is the lesson here?  Challenge yourself, jump out of the airplane, take the unpaved path or the unnumbered exit and be confident that you will land in the best possible place.

Jessica C. Taylor is a physiologist, medical educator and adventure seeker.  Previously, a classroom educator, she spent a brief stint as the executive director of the Mississippi Osteopathic Medical Association and is now the Sr. Manager of Higher Education Programs for APS.

 

 

 

May 5th, 2017
Embracing Online Education: A Brief Personal Reflection

I would like to state upfront to all the loyal PECOP readers that I am not a blogger, nor am I an active participant in many social media venues and I do not Tweet! So when I was trying to decide what to write about I made a list of concerns that I face as a faculty member at a regional state university in the Midwest. My ideas included topics like life-work balance, burn-out, anti-science/academic sentiments, student retention, academic standards and institutional budget concerns. The list of possibilities was great, but this list seemed too negative for a career I truly do enjoy. I would like to instead speak briefly of a place that I have found refuge from many of the topics mentioned above. That refuge is the administration of an online Principles of Biology course.

I find it strange myself to consider how a person who may seemingly possess the characteristics of a social media Luddite, would want to get involved with and indeed embrace the world of online education. So I will list and briefly reflect on three areas that drew me to online education: love of learning; love of teaching; and accessibility.

Love of learning

I derive deep pleasure from learning new things and even reviewing those things that I already know.  After all, who would ever tire of learning and teaching about the structure and function of the mitotic spindle, the sarcomere, or how an action potential occurs or how a whole embryo forms from a single cell!  These cellular structures and their functions are so beautiful and amazing, that I really enjoy revisiting them again and again, each time adding a few new details to my lecture notes.  I also appreciate hearing others talk about subjects outside of biology, such as history and philosophy. One important venue I use for learning new things takes place in my car, during my daily commutes.  I listen to courses from The Great Courses series produced by the Teaching Company, lectures and talks from iBiology, hhmi/BioInteractive, various Ted talks, and individual posted lectures that can be found through a quick search on Google. Some of my favorites are bookmarked for easy retrieval or in the case of the Teaching Company courses, I actually own.  So what keeps me going as a faculty member through the periods of burn-out and meeting the daily requirements of academic life is the joy of learning and putting together a package of information and materials that students can use to learn about the subject as well or even just tweaking that material so students may learn it better.

Love of teaching

How can this love of learning get transferred from faculty to students in a way that also encourages students to become lifelong self-learners?  Can students really be taught to be lifelong self-learners? And, if so, what pedagogical methods are best suited to reach this goal? I have already discussed how I enjoy listening to educational lectures, but I would argue that the enjoyment of listening is not sufficient enough to learn the material.  In preparing for a lecture or to oversee meaningful active learning experiences, one is not simply able to listen to a great lecture and then be able to teach the material to students, expecting them to walk away and be able to apply that content in a meaningful way.

How then do faculty prepare to teach? Even if you are a fan of lecturing, most faculty members would agree that a fabulously well-delivered lecture, even a short one, is the result of hours of reading, reflection, writing, and repeating each of these!  I see this as the elephant in the room: that a great lecturer is really a great learner.  Thus, while it is quite enjoyable to hear a great lecture, it does not mean that the attending students are learning in a manner that creates lasting behavioral changes. This is in contrast to someone who has already engaged with the material. Even before I started teaching online, I had started assigning more readings, reflective writing assignments, and oral presentations from students in all my classes. When students now ask me every semester,” Do I really need to buy/rent the textbook?”  I say yes AND you must also read it and bring it with you to every class, as if your life …I mean your grade depends on it!

Accessibility

I have briefly reflected above on my love of learning and my love of teaching. And I try to model for my students, the skills I use to learn new material, such as reading the text, reflecting and writing on the material, as well as presenting the material to others during class through presentation and in accessing learning through quizzes and examinations. But do you have to be in the same classroom to teach this way? I have found the answer to be no. I have had the enlightening experience to see that I can assign the same readings, provide many of the same online resources for reflection and practice, and have regular meaningful interactions and quality controlled proctored assessments online through webcasting software such as Zoom with my online students as I have had with my face to face students. Online education at its best is more than simply posting content and assessments over a learning management system.  Depending on software and internet availability, I can be anywhere, the student can be anywhere, and we can still have a scheduled, meaningful face-to-face interaction. In fact, I am often finding the interactions with my online students to be more meaningful and memorable than the ones in my face to face classes. As I continue this adventure in online education, I hope to continue to be able to take my classroom on the road so to speak. Maybe the car in my daily commutes (especially with the advent of self-driving vehicles) will become “my classroom”, instead of where I merely arrive.

In summary, when the daily grind of academic duties and responsibilities gets me down and feeling negative, I have a place I can go and do what I enjoy most about academia, prepare and deliver material for students anytime and anyplace.

A short list of my favorite online lecture resources for the lifelong self-learner in us all

Melissa A. F. Daggett is an Associate Professor of Biology at Missouri Western State University, St. Joseph, MO. Melissa received her Ph.D. in Physiology and Cell Biology at The University of Kansas, Lawrence, KS and completed post-doctoral work in gene regulation and sex determination at The University of Kansas Medical Center, Kansas City, KS. Melissa currently teaches Principles of Biology (both face to face and online), plus two senior undergraduate/graduate level courses in Developmental Biology and Molecular Cell Biology. She has also taught courses in Animal Physiology, Microbiology and Environmental Science. She is currently interested in expanding opportunities for course based undergraduate research experiences in all her courses; especially those projects related to environmental toxicology and development.
April 5th, 2017
What makes a good teacher?

I was intrigued to read this PECOP blog post on what makes a good teacher from December 2016. The post recommends that we reflect on our teaching at the end of the semester, and begin the process of understanding our teaching perspectives through the Teaching Perspectives Inventory. What makes a good instructor is something that is extremely relevant to me, because teaching happens to be my job and my passion.

I was recently prompted to think about this very question as I made contact with my former secondary school in Liverpool, U.K about being featured as a former pupil of theirs (I feel more than slightly uneasy about being featured together with John Lennon however!). I was stimulated to think about my former teachers and what I had learned from their teaching. I left the school over 20 years ago but can to this day recall specific teachers, moments in class, and things I learned inside and outside the classroom. Certainly, that’s the kind of learning I’d like my students to have 20 years after I’ve taught them!

As I reflect on the teaching that I had, several aspects popped out to me.

A love of teaching: My best teachers clearly loved teaching students. They enjoyed interacting with students, creating a rapport with us, which made the subject matter come to life and facilitated our engagement with the material. I have come to the realization that perhaps the most important aspect of teaching is to enjoy connecting with your students in order to create an effective learning environment. The saying of “they won’t care what you know until they know that you care” is somewhat cliché but it has a lot of truth to it. As a soccer coach in my spare time, I frequently reflect on the fact that if you don’t like kids, you shouldn’t coach youth soccer. In the same way, our teaching is unlikely to be as effective as it could be if we don’t like interacting with our students and enjoy teaching them.

Meeting students at their level: My English literature teacher taught us Pride & Prejudice, a text that many in my class found somewhat boring. My teacher perceived the boredom, and attempted to understand why it could be perceived as boring to my classmates. He then adapted his teaching to this in order to emphasize why the text was important. He attempted to bring the text to his students and make it relevant to them, rather than merely expecting students to engage, understand and enjoy the text automatically.

Adaptable: The best lesson I ever had was a history lesson. My teacher was a few minutes late, and as we all sat inside the classroom waiting for him, a dispute arose amongst two students in the class. The teacher came into the classroom and upon encountering the dispute, proceeded to set up a court to judge the basis of the evidence of the ‘crime’, as an example of the history of trials and determining justice. I have no idea if that was his intended lesson, but I was in awe of how the teacher adapted his lesson so perfectly to something that had just happened in the class. It is a reminder to me to be observant and adapt to issues that our students may be experiencing.

Practical: One of the most salient things I learned came from a teacher who was supervising me as I visited potential colleges. We were looking for somewhere to eat dinner one evening, and as we walked past various eating establishments, he gave me the advice of “never eat in an empty restaurant”. This has stuck with me ever since and I apply it frequently when deciding where to eat. It was practical advice on something that I had never before considered, and the ‘light bulb’ lit up for me. Reflecting on this, I see our role as teachers to help our students see beyond the immediate – to analyze and think critically about what we see with our eyes, and to help them consider what things mean. Finally, what we teach them must also be practical and relevant.

From these reflections, I have come to the realization that a good teacher is someone who is able to adapt to where our students are in terms of the knowledge that they come with, and take them to higher levels of learning that they cannot get to on their own.

What is your definition of a good teacher?

 Hugh Clements-Jewery PhD is currently Visiting Research Associate Professor and M1 Course Director in Physiology at the University of Illinois College of Medicine in Rockford, IL, starting in November 2016. Prior to moving to the University of Illinois, he taught medical physiology at the West Virginia School of Osteopathic Medicine from 2007 to 2016. He is a certified trainer-consultant in Team-Based Learning.

March 31st, 2017
The Surprising Advantages Retrieval Practice

Retrieval practice,  retrieval __________,    _________ practice,  testing effect……wuh?!?!

Retrieval practice simply means to actively recall information following exposure (e.g., studying). Because tests are a particularly common and effective means by which to prompt the retrieval of specific pieces of information, the learning benefits of retrieval practice are also known as the testing effect. That is, effective tests can do more than simply assess learning; they can strengthen learning by prompting retrieval. It is important to clarify that the key to the testing effect is the retrieval and not the test per se. Therefore, the testing effect pertains to not only traditional assessments like tests and quizzes, but also to free recall. So, silently answering questions in your mind (e.g., self-testing) is an example of testing that promotes learning.

Landmark study by Roediger and Karpicke in 2006a

Figure 1. Repeated testing lead to better long-term recall when compared to repeated studying. Roediger and Karpicke, 2006a.

Although the testing effect has been described by studies that date back more than a century, researchers and articles often cite a 2006a study by Roediger and Karpicke as the source of renewed interest in the strategy and effect. In that study, the investigators asked three groups of undergraduates to read passages that were about 250 words long. One group of students learned the passages by studying (i.e., reading) them four times (SSSS group). A second group learned the passages by studying them three times and then completing a test in which they were prompted to retrieve information from the passages (SSST group). The last group studied the passages just one time and then performed the retrieval test three times (STTT group). All three groups were given a total of 20 minutes to learn each passage, following which their retention was assessed via free recall either 5 minutes or 1 week later. As you can see in Figure 1, there was a modest advantage with the SSSS strategy, as well as a modest disadvantage with the STTT strategy, immediately after learning the passages. However, the exact opposite pattern was observed one week later, as the STTT group’s recall scores were about 5% higher and 21% higher than those of the SSST and SSSS groups, respectively. The results of this study demonstrated that testing/retrieval practice can be a powerful means of improving long-term memory. These advantages to long-term recall have subsequently been confirmed by many different researchers and investigations (see Roediger and Butler 2011; Roediger and Karpicke, 2006b for review).

Retrieval practice and the ability to make inferences; it isn’t just about simple recall

Figure 2. Retrieval practice resulted in higher scores on verbatim and inferential questions. Derived from Karpicke and Blunt, 2011.

One might be concerned that retrieval practice is just a form of drill and practice that merely teaches people to produce a fixed response to a specific cue. Karpicke and Blunt (2011) addressed this concern by comparing the effects of retrieval practice and concept mapping on meaningful learning, which includes the ability to draw conclusions and create new ideas. The investigators chose concept mapping for this comparison because it known to promote elaborative (i.e., complex) learning. In one experiment, one group of students learned a science text by repeatedly reading (i.e., studying) it, another group studied the text and then used it create a concept map, and a third group studied and then recalled the text two times. The total amount of time the concept mapping and retrieval practice groups were given to learn the text was standardized. The students returned the following week and completed a short-answer test that included both questions that could be answered verbatim from the text and questions that required inferences. As is displayed in Figure 2, the retrieval practice strategy resulted in superior scores on not just the verbatim questions, but also on the inference questions. That is, the advantages of retrieval practice extended beyond simple recall and to meaningful learning. These findings are supported by numerous other investigations (see Karpicke and Aue, 2015 for review), including a subsequent study by the same authors (Blunt and Karpicke, 2014).

Okay, so retrieval practice has been shown to enhance recall and meaningful learning, but does it work with the types of information that are relevant to APS members?

Figure 3. The testing strategy resulted in superior performance on both sections of the six month assessment. Derived from Larsen, Butler and Roediger, 2009.

Yes………numerous studies support this claim. One notable example was a study by Larsen, Butler and Roediger (2009) in which two groups of medical residents first attended lectures on the treatments of both status epilepticus and myasthenia gravis. Immediately after the lectures, and then again about two and four weeks later, the residents studied (i.e., read) a review sheet pertaining to the treatment of one of those diseases and they completed a retrieval test that included feedback on the other treatment. Roughly six months after the lectures, the residents completed a final assessment that covered the treatment of both diseases. As you can see in Figure 3, the testing strategy resulted in scores that were about 11% and 17% higher than those associated with the studying strategy on the status epilepticus and myasthenia gravis sections, respectively. It is also worth noting that the overall effect size pertaining to those differences was large (Cohen’s d = 0.91). The same group of researchers went on publish similar findings with groups of first-year medical students (Larsen et al, 2013). In that follow-up study, a testing-based strategy produced superior recall and greater transfer of learning of four clinical neurology topics six months after the students first encountered them.

Our lab has also recently published numerous studies with relevant materials, and we observed several advantages with retrieval practice compared to more commonly-used reading and note-taking learning strategies. For example, we found that retrieval-based strategies resulted in superior recall of exercise physiology (Linderholm, Dobson and Yarbrough, 2016) and anatomy and physiology course information (Dobson and Linderholm, 2015a; Dobson and Linderholm, 2015b), including information that consisted of concepts and terminology that were previously unfamiliar to the students (Dobson, Linderholm and Yarbrough, 2015). We have also observed advantages to independent student learning that resulted in higher scores on course exams (Dobson and Linderholm, 2015a), as well as to the ability to synthesize themes from multiple sources (Linderholm, Dobson and Yarbrough, 2016), which is a skill that requires higher orders of cognition.

Just give me the take home messages.

  • Dozens of studies have demonstrated that retrieval practice can promote superior recall and meaningful learning when compared to more commonly-used strategies like reading. (Karpicke and Aue, 2015; Roediger and Butler, 2011; Roediger and Karpicke, 2006b).
  • Although some studies have provided evidence that essay and short answer (SA) questions can lead to a greater testing effect than multiple choice (MC) questions (Roediger and Karpicke, 2006b; Butler and Roediger, 2007), a recent study by Smith and Karpicke (2014) indicated that MC and SA questions are equally effective.
  • Multiple repetitions of retrieval practice promote more learning than a single retrieval event (Roediger and Butler, 2011; Roediger and Karpicke, 2006b)
  • The benefits of retrieval practice are enhanced if learners receive feedback after they retrieve (Roediger and Butler, 2011; Roediger and Karpicke, 2006b).

Great, but how do you apply retrieval practice in the classroom?

  • Summative assessments. Tests prompt retrieval, so one way to incorporate more retrieval practice into your classes is to have your students complete both more exams and more cumulative exams.
  • Formative assessments. There are numerous reasons to use low-stakes assessments like quizzes instead of tests. Quizzes may be just as effective at prompting retrieval, and they provide valuable feedback about performance to both instructors and students, but they typically elicit less anxiety and encourage less cheating. Suggested applications include starting class meetings with a short quiz that prompts students to retrieve information that will be developed during the lecture and/or end class meetings with a short quiz to get students to retrieve the important take home messages of the lecture.
  • In-class retrieval assignments. A great way to break up the monotony of lectures is to have students complete retrieval assignments during class meetings. For example, have individuals or groups of students retrieve information and then present it to the rest of the class.
  • Encourage students to use retrieval practice outside of class. One of the greatest benefits of retrieval practice is that it easy to use; all one needs to do is to recall information from memory. I encourage my students to use retrieval practice by first presenting to them some of the evidence of its effectiveness (described above), and then by suggesting some methods they may use to employ the strategy that (e.g., take turns quizzing or teaching fellow students, quiz one-self, or simply freely recall portions of the information). Again, it is important to emphasize that multiple retrieval events are more beneficial, and that each or most of those should include feedback. For example, have students study then retrieve then study again to receive feedback, etc.

 References

  1. Dobson JL, Linderholm T, Yarbrough MB. Self-testing produces superior recall of both familiar and unfamiliar muscle information. Advances in Physiology Education 39: 309-314, 2015
  2. Dobson JL and Linderholm T, The effect of selected “desirable difficulties” on the ability to recall anatomy information. Anatomical Sciences Education 8: 395-403, 2015.
  3. Dobson JL, Linderholm T. Self-testing promotes superior retention of anatomy and physiology information. Advances in Health Sciences Education 20: 149-161, 2015.
  4. Butler AC, Roediger HL. Testing improves long-term retention in a simulated classroom setting. European Journal of Cognitive Psychology 19: 514-527, 2007.
  5. Blunt JR, Karpicke JD. Learning with retrieval-based concept mapping. Journal of Educational Psychology 106: 849, 2014.
  6. Dobson JL, Perez J, Linderholm T. Distributed retrieval practice promotes superior recall of anatomy information. Anatomical Sciences Education DOI: 10.1002/ase.1668, 2016.
  7. Karpicke JD, Aue, WR. The testing effect is alive and well with complex materials. Educational Psychology Review 27: 317-326, 2015.
  8. Karpicke JD, Blunt JR. Retrieval practice produces more learning than elaborative studying with concept mapping. Science 331: 772-775, 2011.
  9. Larsen DP, Butler AC, Roediger HL. Repeated testing improves long-term retention relative to repeated study: A randomized controlled trial. Medical Education 43: 1174-1181, 2009.
  10. Larsen DP, Butler AC, Lawson AL, Roediger HL. The importance of seeing the patient: Test-enhanced learning with standardized patients and written tests improves clinical application of knowledge. Advances in Health Sciences Education 18: 409-25, 2013.
  11. Linderholm T, Dobson JL, Yarbrough MB. The benefit of self-testing and interleaving for synthesizing concepts across multiple physiology Advances in Physiology Education 40: 329-34, 2016.
  12. Roediger HL, Butler AC. The critical role of retrieval practice in long-term retention. Trends in Cognitive Sciences 15: 20-27, 2011.
  13. Roediger HL, Karpicke JD. Test-enhanced learning: Taking memory tests improves long-term retention. Psychological Science 17: 249-255, 2006.
  14. Roediger HL, Karpicke JD. The power of testing memory: Basic research and implications for educational practice. Perspectives in Psychological Science 1: 181-210, 2006.
  15. Smith MA, Karpicke JD. Retrieval practice with short-answer, multiple-choice, and hybrid tests. Memory 22: 784-802, 2014.
 John Dobson is an Associate Professor in the School of Health and Kinesiology at Georgia Southern University. John received his M.S. and Ph.D. in Exercise Physiology at Auburn University. Although most of his research has focused on the application of learning strategies that were developed by cognitive scientists, he has also recently published articles on peripheral neuropathy and concussion-induced cardiovascular dysfunction. He teaches undergraduate and graduate Anatomy and Physiology, Structural Kinesiology, Exercise Physiology, Cardiovascular Pathophysiology courses. He has been an active member of the American Physiological Society since 2009, and he received the Teaching Section’s New Investigator Award in 2010 and Research Recognition Award in 2011.
March 8th, 2017
Boredom, the Evil Destroyer of Motivation vs. Inquiry, the Motivation Maker

Students have an innate desire to learn and more learning takes place when doing rather than when listening. (4)  This begins in pre-school and kindergarten when children have fun while learning by playing with blocks, coloring, drawing, etc.  This is their first experience with active learning.  But then as education progresses through grade school, high school and college, something bad happens.  That is, fun learning activities are slowly replaced with often very boring listening activities filled with inane factoids, and consequently, students often become disinterested.  The disinterest is seen in the form of poor class attendance, and the lack of motivation is palpable through continual yawns, bobbing heads, and walking to the back of the classroom and looking at student laptops to see how many are streaming Netflix or shopping for shoes.  As educators that take part in this process, we actively destroy their innate desire to learn.  We do not do this intentionally, as all of us want our students to learn as much as possible.  However, with the ever increasing and endless mountain of information, we cannot teach them everything, and often feel that we should be actively teaching, rather than letting them actively learn. (3)  Thus, after hours, days and years of sitting in class “listening”, the traditional “sage on the stage” can slowly chip away at the inner desire to learn.  But, if this internal motivation can be decreased by boring activities, can it also be increased by fun or intriguing activities?

 

As educators, we hold an awesome power that has the potential to inspire and increase student motivation.  Student-centered learning activities that include but are not limited to collaborative group testing, inquiry-based learning, team-based learning and laboratory exercises (5) provide students with the opportunity to apply their minds, to have fruitful discussions with their peers (2) and to see and appreciate the complex beauty that science and medicine are.  If we can provide our students with learning activities that open their imaginations and make them feel excitement, we can actively increase their innate desire to learn, and improve their chances of success. (1)  In doing so, the awesome potential power that we hold can become fully realized in the form of life-long learners.

 

References

  1. Augustyniak RA, Ables AZ, Guilford P, Lujan HL, Cortright RN, and DiCarlo SE. Intrinsic motivation: an overlooked component for student success. Adv Physiol Educ 40: 465-466, 2016.
  2. Cortright RN, Collins HL, and DiCarlo SE. Peer instruction enhanced meaningful learning: ability to solve novel problems. Adv Physiol Educ 29: 107-111, 2005.
  3. DiCarlo SE. Too much content, not enough thinking, and too little fun! Adv Physiol Educ 33: 257-264, 2009.
  4. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, and Wenderoth MP. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci U S A 111: 8410-8415, 2014.
  5. Goodman BE. An evolution in student-centered teaching. Adv Physiol Educ 40: 278-282, 2016.

 

 

Robert A. Augustyniak is an Associate Professor and Physiology Discipline Chair at Edward Via college of Osteopathic Medicine- Carolinas Campus, Spartanburg, SC. Rob received his Ph.D. in Physiology at Wayne State University School of Medicine, Detroit, MI, and subsequently completed a post-doctoral fellowship at the University of Texas Southwestern Medical Center, Dallas, TX. A cardiovascular physiologist by training, his studies have focused on the blood pressure regulation during exercise and in heart failure and hypertensive states. In 2009, Rob became a founding faculty member at Oakland University William Beaumont School of Medicine where he began to focus on the scholarship of medical education. These research interests continued to grow when he moved to Spartanburg, SC in 2013. He is profoundly interested in how medical student motivation impacts learning and in finding best practices in teaching and assessment that can increase motivation. For the past several years, he has been and continues to be active within the leadership of the APS Teaching Section.

January 16th, 2017
Critical thinking or traditional teaching for Health Professions?

“Education is not the learning of facts but the training of the mind to think”- Albert Einstein”

A few years ago I moved from a research laboratory to the classroom. Until then, I had been accustomed to examine ideas and try to find solutions by experimenting and challenging the current knowledge in certain areas. However, in the classroom setting, the students seemed to only want to learn facts with no room for alternative explanations, or challenges. This is not the way a clinician should be trained- I thought, and I started looking in text books, teaching seminars and workshops for alternative teaching methods. I quickly learned that teaching critical thinking skills is the preferred method for higher education to develop highly-qualified professionals.

Why critical thinking? Critical thinking is one of the most important attributes we expect from students in postsecondary education, especially highly qualified professionals in Health Care, where critical thinking will provide the tools to solve unconventional problems that may result. I teach Pathophysiology in Optometry and as in other health professions, not all the clinical cases are identical, therefore the application and adaptation of the accumulated body of knowledge in different scenarios is crucial to develop clinical skills. Because critical thinking is considered essential for patient care, it is fostered in many health sciences educational programs and integrated in the Health Professions Standards for Accreditation.

But what is critical thinking? It is accepted that critical thinking is a process that encompasses conceptualization, application, analysis, synthesis, evaluation, and reflection. What we expect from a critical thinker is to:

  • Formulate clear and precise vital questions and problems;
  • Gather, assess, and interpret relevant information;
  • Reach relevant well-reasoned conclusions and solutions;
  • Think open-mindedly, recognizing their own assumptions;
  • Communicate effectively with others on solutions to complex problems.

However, some educators emphasize the reasoning process, while others focus on the outcomes of critical thinking. Thus, one of the biggest obstacles to proper teaching of critical thinking is the lack of a clear definition, as observed by Allen et al (1) when teaching clinical critical thinking skills. Faculty need to define first what they consider critical thinking to be before they attempt to teach it or evaluate student learning outcomes. But keep in mind that not all students will be good at critical thinking and not all teachers are able to teach students critical thinking skills.

The experts in the field have classically agreed that critical thinking includes not only cognitive skills but also an affective disposition (2). I consider that it mostly relies on the use of known facts in a way that enables analysis and reflection of conventional and unconventional cases for the future. I have recently experimented with reflection in pathophysiological concepts and I have come to realize that reflection is an integral part of the health professions.  We cannot convey just pieces of information based on accumulated experience, we have to reflect on it. Some studies have demonstrated that reflective thinking positively predicted achievement to a higher extent than habitual action. However, those may not be the key elements of critical thinking that you choose to focus on.

How do we achieve critical thinking in higher education and Health Professions? Once we have defined what critical thinking means to us, it must be present at all times when designing a course, from learning objectives to assignments. We cannot expect to contribute to development of critical thinking skills if the course is not designed to support it. According to the Delphi study conducted by the American Philosophical Association (3), the essential elements of lessons designed to promote critical thinking are the following:

  1. “Ill structured problems” are those that don’t have a single right answer they are based on reflective judgment and leave conclusions open to future information.
  2. “Criteria for assessment of thinking” include clarity, accuracy, precision, relevance, depth, breadth, logic, significance, and fairness (Paul & Elder, 2001).
  3. “Student meaningful and valid assessment of their own thinking”, as they are held accountable for it.
  4. “Improving the outcomes of thinking” such as in writing, speaking, reading, listening, and creating.

There are a variety of examples that serve as a model to know if the course contains critical thinking elements and to help design the learning objectives of a course. However, it can be summarized in the statement that “thinking is driven by questions”. We need to ask questions that generate further questions to develop the thinking process (4). By giving questions with thought-stopping answers we are not building a foundation for critical thinking. We can examine a subject by just asking students to generate a list of questions that they have regarding the subject provided, including questions generated by their first set of questions. Questions should be deep to foster dealing with complexity, to challenge assumptions, points of view and the sources of information. Those thought-stimulating types of questions should include questions of purpose, of information, of interpretation, of assumption, of implication, of point of view, of accuracy and precision, of consistency, of logic etc.

However, how many of you just get the question: “Is this going to be on the test?”. Students do not want to think. They want everything to be already thought-out for them and teachers may not be the best in generating thoughtful questions.

As an inexperienced research educator, trying to survive in this new environment, I fought against the urge of helping the students to be critical thinkers, and provided answers rather than promoting questions. I thought I just wanted to do traditional lectures. However, unconsciously I was including critical thinking during lectures by using clicker questions and asking about scenarios with more than one possible answer. Students were not very happy, but the fact that those questions were not graded but instead used as interactive tools minimized the resistance to these questions. The most competitive students would try to answer them right and generate additional questions, while the most traditional students would just answer, no questions asked. I implanted this method in all my courses, and I started to give critical thinking assignments. The students would have to address a topic and to promote critical thinking, a series of questions were included as a guide in the rubric. The answers were not easily found in textbooks and it generated plenty of additional questions. As always, it did not work for every student, and only a portion of the class probably benefited from them, but all students had exposure to it. Another critical thinking component was the presentation of a research article. Students had a limited time to present a portion of the article, thus requiring analysis, summary and reflection. This is still a work in progress and I keep inserting additional elements as I see the need.

How does critical thinking impact student performance? Assessment

Despite the push for critical thinking in Health Professions, there is no agreement on whether critical thinking positively impacts student performance. The curriculum design is focused on content rather than critical thinking, which makes it difficult to evaluate the learning outcomes (5). In addition, the type of assessment used for the evaluation of critical thinking may not reflect these outcomes.

There is a growing trend for measuring learning outcomes, and some tests are used to assess critical thinking, such as the Classroom Assessment Techniques (CAT), which evaluate information, creative thinking, learning and problem solving, and communication. However, the key elements in the assessment of student thinking are purpose, question at issue, assumptions, inferences, implications, points of view, concepts and evidence (6). Thus, without a clear understanding of this process and despite the available tests, the proper assessment becomes rather challenging.

Another issue that arises when evaluating students critical thinking performance is that they are very resistant to this unconventional model of learning and possibly the absence of clear positive results may be due to the short exposure to this learning approach in addition to the inappropriate assessment tools. Whether or not there is a long term beneficial effect of critical thinking on clinical reasoning skills remains to be elucidated.

I tried to implement critical thinking in alignment with my view of Physiology.  Since, I taught several courses to the same cohort of students within the curriculum, I decided to try different teaching techniques, assessments and approaches at different times during the curriculum.  This was ideal because I could do this without a large time commitment and without compromising large sections of the curriculum. However, after evaluating the benefits, proper implementation and assessment of critical thinking, I came to the conclusion that we sacrifice contact hours of traditional lecture content for a deeper analysis of a limited section of the subject matter. However, the board exams in health professions are mostly based on traditional teaching rather than critical thinking. Thus, I decided to only partly implement critical thinking in my courses to avoid a negative impact in board certification, but include it somehow as I still believe it is vital for their clinical skills.

 

References

  1. Allen GD, Rubenfeld MG, Scheffer BK. Reliability of assessment of critical thinking. J Prof Nurs. 2004 Jan-Feb;20(1):15-22.
  2. Facione PA. Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction: Research findings and recommendations [Internet]. Newark: American Philosophical Association; 1990[cited 2016 Dec 27]. Available from: https://eric.ed.gov/?id=ED315423
  3. Facione NC, Facione PA. Critical thinking assessment in nursing education programs: An aggregate data analysis. Millbrae: California Academic Press; 1997[cited 2016 Dec 27].
  4. Paul WH, Elder L. Critical thinking handbook: Basic theory and instructional structures. 2nd Dillon Beach: Foundation for Critical Thinking; 2000[cited 2016 Dec 27].
  5. Not sure which one
  6. Facione PA. Critical thinking what it is and why it counts. San Jose: California Academic Press; 2011 [cited 2016 Dec 27]. Available from: https://blogs.city.ac.uk/cturkoglu/files/2015/03/Critical-Thinking-Articles-w6xywo.pdf

 

 

 

 

 

Lourdes Alarcon Fortepiani is an Associate professor at Rosenberg School of Optometry (RSO) at the University of the Incarnate Word in San Antonio, Texas. Lourdes received her M.D. and Ph.D. in Physiology at the University of Murcia, Spain. She is a renal physiologist by training, who has worked on hypertension, sexual dimorphism and aging. Following her postdoctoral fellowship, she joined RSO and has been teaching Physiology, Immunology, and Pathology amongst other courses. Her main professional interest is medical science education. She has been active in outreach programs including PhUn week activities for APS, career day, and summer research activities, where she enjoys reaching K-12 ad unraveling different aspects of science. Her recent area of interest includes improving student critical thinking.

 

December 26th, 2016
Good Teaching: What’s Your Perspective?

Are you a good teacher? 

What qualities surround “good teachers? 

What do good teachers do to deliver a good class?

The end of the semester is a great time to critically reflect on your teaching.

For some, critical reflection on teaching is prompted by the results of student course evaluations. For others, reflection occurs as part of updating their teaching philosophy or portfolio.  Others use critical reflection on teaching out of a genuine interest to become a better teacher.  Critical reflection is important in the context of being a “good teacher.”

Critical reflection on teaching is an opportunity to be curious about your “good teaching.”  If you are curious about your approach to teaching I encourage you to ponder and critically reflect on one aspect of teaching – perspective.

Teaching perspectives, not to be confused with teaching approach or styles, is an important aspect on the beliefs you hold about teaching and learning.  Your teaching perspectives underlie the values and assumptions you hold in your approach to teaching.

How do I get started?

Start by taking the Teaching Perspectives Inventory (TPI).  The TPI is a free online assessment of the way you conceptualize teaching and look into your related actions, intentions, and beliefs about learning, teaching, and knowledge.  The TPI will help you examine your views about and within one of five perspectives:  Transmission, Apprenticeship, Developmental, Nurturing, and Social Reform.

What is your dominant perspective?

The TPI is not new.  It’s been around for over 15 years and is the work of Pratt and Collins from the University of British Columbia (Daniel D. Pratt and John B. Collins, 2001)(Daniel D. Pratt, 2001).  Though the TPI has been around for a while, it is worth bringing it up once more.   Whether you are a new or experienced teacher, the TPI is a useful instrument for critical reflection on teaching especially now during your semester break!  Don’t delay.  Take the free TPI to help you clarify your views on teaching and be curious.

 

Resources

Teaching Perspectives Inventory – http://www.teachingperspectives.com

How to interpret a teaching perspective profile – https://youtu.be/9GN7nN6YnXg

Daniel D. Pratt and John B. Collins. (2001). Teaching Perspectives Inventory. Retrieved December 01, 2016, from Take the TPI: www.teachingperspectives.com/tpi/

Daniel D. Pratt, J. B. (2001). Development and Use of The Teaching Perspectives Inventory (TPI). American Education Research Association.

 

 

 

Jessica M. Ibarra, is an Assistant Professor of Applied Biomedical Sciences in the School of Osteopathic Medicine at the University of the Incarnate Word. She is currently teaching in the Master of Biomedical Sciences Program and helping with curriculum development in preparation for the inaugural class of osteopathic medicine in July 2017. As a scientist, she studied inflammatory factors involved in chronic diseases such as heart failure, arthritis, and diabetes. When Dr. Ibarra is not conducting research or teaching, she is mentoring students, involved in community service, and science outreach. She is an active member of the American Physiological Society and helps promote physiology education and science outreach at the national level. She is currently a member of the Porter Physiology and Minority Affairs Committee; a past fellow of the Life Science Teaching Resource Community Vision & Change Scholars Program and Physiology Education Community of Practice; and Secretary of the History of Physiology Interest Group.

 

December 12th, 2016
The Real World – A Philosophical Analysis?

Silhouette of coming businessman in doorway with shadow

“The world is too much with us; late and soon,

Getting and spending, we lay waste our powers”—thus, Wordsworth over two centuries ago, bemoaned man’s disconnect from the natural world and meaningful lives. Universities these days are exhorted to prepare students for the “real world”. But what that “reality” is, puzzles me.

 

In one sense, there is a depressing soul-numbing banality to our daily lives. As the Fool told Jacques, “From hour to hour, we ripe and ripe/And then, from hour to hour, we rot and rot;/And thereby hangs a tale.” Surely we do not need Universities to teach students to cope with that tedium—picking out the best buys from a selection of toilet paper or tooth pastes, parking cars, changing diapers, filing tax forms and other drearies (to coin a word). The ‘real world” is one where many trudge through their working days longing for the weekends when they can begin to live. We always ask people how their weekends went, not their week. Do we need courses in coping with tedium or preparing for the weekend?

 

We could of course, prepare them for other realities. Beyond death and taxes, there are other certainties, the “resonant lies” that Auden warned us about in his Ode to Terminus. That our students will find themselves in a thicket of lies in the real world is more than certain. We can prepare them well by giving them the right tools. In the sciences, much is made of critical appraisal where students are taught to assess peer-reviewed articles and analyze publications. That is all well and good, but the more dangerous lies have rarely been subject to peer review. They lie buried elsewhere in the minutes of Committee meetings, confidential reports etc. I think it was David Halberstam in his brilliant analysis of the Kennedy administration, who noted the significance of selective “minuting” in skewing decisions. Perhaps an interdisciplinary or trans-disciplinary mandatory course in “Institutional Lying” can be very useful.

 

Philip Larkin found himself in a church where he mused on what would become of such sacred spaces, “In whose blent air all our compulsions meet/ Are recognized, and robed as destinies.”  To me, the University much like a church, is a sacred space, where one melds the richness of the past with the exuberance of the future. It is that richness of the real world that we can pass on to our students, not just its banalities.

 

I am a basic biologist and most, though not all, of my courses deal with biological mechanisms that underly the very marrow of our existence, the stuff we are made of, so to speak. The words and concepts, I use, (receptors, inverse agonists, G-proteins, allosteric modulators, constitutive activities etc.), may seem a trifle arch but these can, and have, made their way from bench to boardroom and beyond. In addition, our daily lives, loves, behaviors, misbehaviors stem from responses to such molecules.

 

None of what I teach may help my students deal directly with their quotidian vicissitudes; in a deeper sense though, they may realize that underlying all their actions, their fears, hopes, loves and despairs are molecular interactions whose mysteries have been probed and defined by their own species adding to the rich tapestry of human expression and creativity. We are, ourselves, part of that wonderful world that Wordsworth wanted us to be in touch with.  Truly the unknown psalmist got it right when he said “Oh Lord, How manifold are Thy works! In Wisdom has thou made them all: the earth is full of thy riches”

What better way for a university to fulfill its role than opening the windows to their students to that wonderful world, the REAL one?

 

pkr

 

 

P.K. Rangachari is currently Professor (Emeritus) of Medicine at McMaster University. Depending on the emphasis placed, that word emeritus could imply he has much merit, none whatsoever or only in cyberspace. He has a medical degree (M.B.B.S. 1966) from the All-India Institute of Medical Sciences, New Delhi, India and a Ph.D. (Pharmacology) from the U. of Alberta (1972). He drifted into medical school due to a bureaucratic blunder that derailed his efforts to become an organic chemist. However he was lucky. He had great teachers in the basic sciences and so after graduation, he left his stethoscope behind and began a peripatetic existence moving from lab to lab in several continents, finally landing up at McMaster University in Canada, some thirty plus years ago.
P.K. Rangachari’s experimental research focused on the effects of inflammatory mediators on ion transport in smooth muscles and epithelia. He has taught students in undergraduate science, liberal arts, nursing, medicine, physiotherapy and pharmacy. He has sought to bridge the two cultures (the sciences and the humanities) by designing interdisciplinary courses or encouraging students to express their learning through more creative outlets such as framing conversations, writing reviews and plays. He is blessed that he is blissfully ignorant so he can wake up each day convinced that there is so much more to learn. His students fortunately help him in that regard.