Monthly Archives: August 2017

Teaching Backwards

 

Generating new ideas and cool learning experiences has always been natural and fun for me. My moments of poignant clarity often came during a swim workout or a walk with my dog as I reflect on my classes. As I visualize this activity, my students are as enthusiastic as I am and are learning. Then, reality returns as I grade the next exam and see that less than half of the class answered the question related to that activity correctly. Accounting for the students who learn despite what I do, I quickly see that I only reached a quarter of my students with this great activity. Why did this happen? What can I do about this?

Well, my life as an instructor changed the day I walked into my first session of University Center for Innovation in Teaching and Education (UCITE) Learning Fellows at Case Western Reserve University.  This program is a semester long session on how learning works where the focus is on evidence-based learning practices and provides an opportunity to discuss successes and failures in teaching with peers.  It was here that I learned about “Backwards Design”1.

What is Backwards Design?

Essentially, it is designing your course with the end in mind. I think of it as “Teaching Backwards” – that is, I visualize my students 5-10 years from now in a conversation with a friend or colleague discussing what they learned from my class. I ask myself these questions:

  1. How do I want them to describe my class? Hansen refers to this as the “Big Idea” or broad objective. An example from one of my classes is provided in Table 1.
  2. What do I want them to be able to tell their friend or colleague that they learned from the class in 5 to 10 years? Hansen has termed this as “Enduring Understanding” (see Table 1).

The next phase is to write learning objectives for each of the enduring understandings (see Table 1). We continue the journey backwards into linking learning objectives to assessment methods and developing the details of each class session. During this process, we must always take into account the student’s prior knowledge (refer to How Learning Works2).

Table 1: Example of Backwards Design Concepts for “Exercise Physiology and Macronutrient Metabolism” class.

Class: Exercise Physiology and Macronutrient Metabolism
Big Idea Enduring Understanding Learning Objective
Exercise-Body Interaction Substrate utilization during exercise depends on type, intensity, and duration of exercise. Students will be able to describe substrate utilization during exercise.
Fatigue during exercise has been associated with low glycogen levels, but scientists are not in agreement as to the underlying cause of fatigue. Students will be able to debate the theories of fatigue.

What did backwards design do for me?

Backwards design provided me focus. It allowed me to step back and ask myself: What are the key take-aways? Does that cool, creative idea I have help to achieve my end game for the course? Is there a better way to do this? Overall, the framework has helped me develop a higher quality course. With that said, I still run into exam questions where I thought I did better at teaching the material than represented by the students’ responses.  So, while there is always room for improvement, this has definitely been a step in the right direction for better learning by my students.

References:

  1. Hansen EJ. Idea Based Learning: A Course Design Process to Promote Conceptual Understanding. Sterling VA: Stylus Publishing, LLC; 2011.
  2. Ambrose SA, Bridges MW, DiPietro M, Lovett M, Norman MK.How Learning Works: 7 Research Based Points for Teaching. San Francisco CA: Jossey-Bass, 2010.

 

Lynn Cialdella-Kam, PhD, MBA, MA, RDN, LD joined CWRU as an Assistant Professor in Nutrition in 2013. At CWRU, she is engaged in undergraduate and graduate teaching, advising, and research. Her research has focused on health complications associated with energy imbalances (i.e. obesity, disordered eating, and intense exercise training). Specifically, she is in interested in understanding how to alterations in dietary intake (i.e., amount, timing, and frequency of intake) and exercise training (i.e., intensity and duration) can attenuate the health consequences of energy imbalance such as inflammation, oxidative stress, insulin resistance, alterations in macronutrient metabolism, and menstrual dysfunction.  She received her PhD in Nutrition from Oregon State University, her Masters in Exercise Physiology from The University of Texas at Austin, and her Master in Business Administration from The University of Chicago Booth School of Business.  She completed her postdoctoral research in sports nutrition at Appalachian State University and is a licensed and registered dietitian nutritionist (RDN).
Thinking Critically About Critical Thinking

 

A few mornings ago, I was listening to a television commercial as I got ready for work.  “What is critical thinking worth?” said a very important announcer.  “A whole lot” I thought to myself.

But what exactly is critical thinking?  A Google search brings up a dictionary definition.  Critical thinking is “the objective analysis and evaluation of an issue to form a judgement.”  The example sentence accompanying this definition is “professors often find it difficult to encourage critical thinking among their students.” WOW, took the words right out of my mouth!

Have any of you had the following conversation? “Dr. A, I studied and studied for this exam and I still got a bad grade.  I know the material, I just can’t take your tests!”  The student in question has worked hard. He or she has read the course notes over and over, an activity that has perhaps been rewarded with success in the past.  Unfortunately re-reading notes and textbooks over and over is the most common and least successful strategy for studying (4).

In my opinion, as someone who has been teaching physiology for over 20 years, physiology is not a discipline that can be memorized.  Instead, it is a way of thinking and a discipline that has to be understood.

Over the years, my teaching colleague of many years, Sue Keirstead, and I found ourselves during office hours trying repeatedly to explain to students what we meant by thinking critically about physiology.  We asked the same probing questions and drew the same diagrams over and over.  We had the opportunity to formalize our approach in a workbook called Cells to Systems Physiology: Critical Thinking Exercises in Physiology (2).  We took the tough concepts students brought to office hours and crafted questions to help the students work their way through these concepts.

Students who perform well in our courses make use of the workbook and report in student evaluations that they find the exercises helpful. But we still have students who struggle with the critical thinking exercises and the course exams.  According to the comments from student evaluations, students who struggled with the exercises report they found the questions too open ended.  Furthermore, many of the answers cannot be pulled directly from their textbook, or at least not in the format they expect the answer to be in, and students report finding this frustrating.  For example, the text may discuss renal absorption and renal secretion in general and then the critical thinking exercises asks the student to synthesize all the processes occurring in the proximal tubule.  The information is the same but the organization is different.  Turns out, this is a difficult process for our students to work through.

We use our critical thinking exercise as a type of formative assessment, a low stakes assignment that evaluates the learning process as it is occurring.  We also use multiple choice exams as summative assessments, high stakes assessments that evaluate learning after it has occurred.  We use this format because our physiology course enrollment averages about 300 students and multiple choice exams are the most efficient way to assess the class.  We allow students to keep the exam questions and we provide a key a couple of days after the exam is given.

When a student comes to see me after having “blown” an exam, I typically ask him or her to go through the exam, question by question.  I encourage them to try to identify how they were thinking when they worked through the question.  This can be a very useful diagnostic.  Ambrose and colleagues have formalized this process as a handout called an exam wrapper (1).  Hopefully, by analyzing their exam performance, the student may discover a pattern of errors that they can address before the next exam.  Consider some of the following scenarios:

Zach discovers that he was so worried about running out of time that he did not read the questions carefully.  Some of the questions reminded him of questions from the online quizzes.  He did know the material but he wasn’t clear on what the question was asking.

This is a testing issue. Zach, of course, should slow down.  He should underline key words in the question stem or draw a diagram to make sure he is clear on what the question is asking.

Sarah discovers that she didn’t know the material as well as she thought she did, a problem that is called the illusion of knowing (3). Sarah needs to re-evaluate the way she is studying.  If Sarah is cramming right before the exam, she should spread out her studying along with her other subjects, a strategy called interleaving (3).  If she is repeatedly reading her notes, she should put her notes away, get out a blank piece of paper and write down what she remembers to get a gauge of her knowledge, a process called retrieval (3).  If she is using flash cards for vocabulary, she should write out learning objectives in her own words, a process called elaboration (3).

Terry looks over the exam and says, “I don’t know what I was thinking.  I saw something about troponin and I picked it.  This really frustrates me. I study and study and don’t get the grade I want.  I come to lecture and do all the exercises. I don’t know what else to do.” It is a challenge to help this student.  She is not engaging in any metacognition and I don’t claim to have any magic answers to help this student.  I still want to try to help her.

I feel very strongly that students need to reflect on what they are learning in class, on what they read in their texts, and on the activities performed in lab (3).  I have been working on a project in one of my physiology courses in which I have students take quizzes and exams as a group and discuss the answers collaboratively.  Then I have them write about what they were thinking as they approached the question individually and what they discussed in their group.  I am hoping to learn some things about how students develop critical thinking skills.  I hope I can share what I learn in a future blog posting.

  1. Ambrose SA, Bridges MW, DiPietro M, Lovett M, Norman MK. How Learning Works: 7 Research Based Points for Teaching. San Francisco CA: Jossey-Bass, 2010.
  2. Anderson LC, Keirstead SA. Cells to Systems: Critical Thinking Exercises in Physiology (3rd ed). Dubuque, IA: Kendall Hunt Press, 2011.
  3. Brown PC, Roediger HL, McDaniel MA. Make it Stick: The Science of Successful Learning. Cambridge MA: The Belknap Press of Harvard University Press, 2014
  4. Callender AA, McDaniel, MA. The limited benefits of rereading educational text, Contemporary Educational Psychology 34:30-41, 2009. Retrieved from http://ac.els-cdn.com/S0361476X08000477/1-s2.0-S0361476X08000477-main.pdf?_tid=22610e88-61b4-11e7-8e86-00000aacb35e&acdnat=1499281376_e000fa54fe77e7d1a1d24715be4bbf50 , June 22, 2016.

 

 Lisa Carney Anderson, PhD is an Assistant Professor in the Department of Integrative Biology and Physiology at the University of Minnesota. She completed training in muscle physiology at the University of Minnesota. She collaborates with colleagues in the School of Nursing on clinical research projects such as the perioperative care of patients with Parkinson’s disease and assessment of patients with spasticity. She directs a large undergraduate physiology course for pre-allied health students.  She also teaches nurse anesthesia students, dental students and medical students.  She is the 2012 recipient of the Didactic Instructor of the Year Award from the American Association of Nurse Anesthesia.  She is a co-author of a physiology workbook called Cells to Systems: Critical thinking exercises in Physiology, Kendall Hunt Press. Dr. Anderson’s teaching interests include teaching with technology, encouraging active learning and assessment of student reflection.
Report from the Inaugural Physiology Majors Interest Group Meeting

When I first heard about the Physiology Majors Interest Group at the APS Teaching Section Symposium entitled “What’s Your Major? The Rise of the Undergraduate Physiology Degree” by co-chairs Erica Wehrwein and John Halliwell at Experimental Biology in 2015, I was immediately excited.  I’m primarily an undergraduate educator and strongly identify as a ‘physiologist’ and hope some of my students do as well.  Yet, I wasn’t entirely sure.  As an assistant professor in a department of Health and Sport Science who primarily advises students in the Exercise Physiology major who want to be physician assistants and physical therapists, was I “enough” physiology?  After attending the first stand-alone conference for this group in East Lansing earlier this summer, I’m not only confident that I was right to be excited about this APS interest group but also that as Erica Wehrwein, organizer of the conference has previously reported, physiology really is alive and well at the undergraduate level.

 

What is a Physiology Major?

One of the overarching topics of discussion at the meeting, in formal sessions and during breaks revolved around this central question regarding physiology education at the undergraduate level.  From the first introductions onward, it was clear it wasn’t going to be a simple answer.  Of the 45 in attendance, a number of different departments and/or majors were represented: physiology, biology, health sciences, human biology, and kinesiology to name a few with 24 to 2274 students in these different majors.  When we talked about the students we teach, advise, and mentor, they are future physicians, nurses, physical therapists, researchers, physician assistants, and many other professions.  Still more diverse, when we compared curricula as reported in a pre-meeting survey, we saw ranges of required courses in basic sciences, anatomy, physiology, and associated laboratories.  Yet, among these differences, there were striking similarities as well.  Sessions sparked discussions of the core concepts (a topic discussed previously on this blog) of physiology we emphasize, required skills that we want our graduates to have and how we try to build these, and common employment trends when students leave our programs and the challenges this can pose for advising.  In regard to the original query of what is a physiology major, as can often be the case in our discipline, it was less about the answer itself, and more about the discussions we had along the way.

 

An integrative discipline, an integrated community

One of the most valuable aspects of the meeting was being able to spend two days with other passionate physiology professionals.  Just as I see integration of physiology and other scientific disciplines, similar to integrated body systems, I was making connections with others from large, research-intensive universities, to small, liberal arts colleges and still others that like myself, fit somewhere in the middle.  Everyone was extremely willing to share their thoughts and ideas on how to best push physiology forward and increase its value in the ever-competitive landscape of higher education.  Conversations ranged from curriculum design to specific teaching strategies and there was a free flow of information with both newer and more seasoned participants engaging in the learning process.  In a sense, the meeting modeled what we often strive to achieve in our programs and classrooms- critical thinking, grounded in evidence, with a creative application towards future improvements or development of new knowledge.

 

What does the future hold?

As the meeting ended, we went our separate ways, armed with new tools and ideas we can implement or consider in our own programs.  A sampling of the ideas I took home:

  • In teaching materials, identify the conceptual model or core principle that is being taught and ask students to do the same when completing assessments.
  • Include teaching about T-Shaped professionals in my Introduction to Health Professions course.
  • Use Khan academy YouTube videos to demonstrate to students how they can concept map while studying.
  • Help students identify transferable skills and knowledge from non-health related job (such as a cashier or server) through ONET.
  • Consider departmental membership in the American Kinesiology Association to further connect with similar programs.
  • Use and contribute to the resources I already knew about, such as Advances in Physiology Education, this LifeSciTRC, and other APS resources.

The interest group will continue, and future meetings are already being planned.  The next meeting will be held in June 2018 at the University of Arizona.  To stay in the loop, join the listserv by contacting Erica Wehrwein (wehrwei7@msu.edu).  To keep physiology education a priority, we will continue to meet, discuss, and inspire the next generation of those who identify with physiology, just as I have and will continue to.  I’m grateful to Erica and the work of the planning committee for putting together an event that focused on this important aspect of the work I do as a physiology educator.

Anne Crecelius is an Assistant Professor in the Department of Health and Sport Science at the University of Dayton.  She teaches Human Physiology and a Capstone Research course.  She returned to her undergraduate alma mater to join the faculty after completing her M.S. and Ph.D. studying Cardiovascular Physiology at Colorado State University.  Her research interest is in the integrative control of muscle blood flow.  She is a member of the American Physiological Society (APS), serving on the Teaching Section Steering Committee and the Communications Committee.