Teaching Backwards


Generating new ideas and cool learning experiences has always been natural and fun for me. My moments of poignant clarity often came during a swim workout or a walk with my dog as I reflect on my classes. As I visualize this activity, my students are as enthusiastic as I am and are learning. Then, reality returns as I grade the next exam and see that less than half of the class answered the question related to that activity correctly. Accounting for the students who learn despite what I do, I quickly see that I only reached a quarter of my students with this great activity. Why did this happen? What can I do about this?

Well, my life as an instructor changed the day I walked into my first session of University Center for Innovation in Teaching and Education (UCITE) Learning Fellows at Case Western Reserve University.  This program is a semester long session on how learning works where the focus is on evidence-based learning practices and provides an opportunity to discuss successes and failures in teaching with peers.  It was here that I learned about “Backwards Design”1.

What is Backwards Design?

Essentially, it is designing your course with the end in mind. I think of it as “Teaching Backwards” – that is, I visualize my students 5-10 years from now in a conversation with a friend or colleague discussing what they learned from my class. I ask myself these questions:

  1. How do I want them to describe my class? Hansen refers to this as the “Big Idea” or broad objective. An example from one of my classes is provided in Table 1.
  2. What do I want them to be able to tell their friend or colleague that they learned from the class in 5 to 10 years? Hansen has termed this as “Enduring Understanding” (see Table 1).

The next phase is to write learning objectives for each of the enduring understandings (see Table 1). We continue the journey backwards into linking learning objectives to assessment methods and developing the details of each class session. During this process, we must always take into account the student’s prior knowledge (refer to How Learning Works2).

Table 1: Example of Backwards Design Concepts for “Exercise Physiology and Macronutrient Metabolism” class.

Class: Exercise Physiology and Macronutrient Metabolism
Big Idea Enduring Understanding Learning Objective
Exercise-Body Interaction Substrate utilization during exercise depends on type, intensity, and duration of exercise. Students will be able to describe substrate utilization during exercise.
Fatigue during exercise has been associated with low glycogen levels, but scientists are not in agreement as to the underlying cause of fatigue. Students will be able to debate the theories of fatigue.

What did backwards design do for me?

Backwards design provided me focus. It allowed me to step back and ask myself: What are the key take-aways? Does that cool, creative idea I have help to achieve my end game for the course? Is there a better way to do this? Overall, the framework has helped me develop a higher quality course. With that said, I still run into exam questions where I thought I did better at teaching the material than represented by the students’ responses.  So, while there is always room for improvement, this has definitely been a step in the right direction for better learning by my students.


  1. Hansen EJ. Idea Based Learning: A Course Design Process to Promote Conceptual Understanding. Sterling VA: Stylus Publishing, LLC; 2011.
  2. Ambrose SA, Bridges MW, DiPietro M, Lovett M, Norman MK.How Learning Works: 7 Research Based Points for Teaching. San Francisco CA: Jossey-Bass, 2010.


Lynn Cialdella-Kam, PhD, MBA, MA, RDN, LD joined CWRU as an Assistant Professor in Nutrition in 2013. At CWRU, she is engaged in undergraduate and graduate teaching, advising, and research. Her research has focused on health complications associated with energy imbalances (i.e. obesity, disordered eating, and intense exercise training). Specifically, she is in interested in understanding how to alterations in dietary intake (i.e., amount, timing, and frequency of intake) and exercise training (i.e., intensity and duration) can attenuate the health consequences of energy imbalance such as inflammation, oxidative stress, insulin resistance, alterations in macronutrient metabolism, and menstrual dysfunction.  She received her PhD in Nutrition from Oregon State University, her Masters in Exercise Physiology from The University of Texas at Austin, and her Master in Business Administration from The University of Chicago Booth School of Business.  She completed her postdoctoral research in sports nutrition at Appalachian State University and is a licensed and registered dietitian nutritionist (RDN).

Leave a Reply