Making the most of being a new instructor: Learning that collaborative learning is my silver bullet

When starting my first semester as an associate instructor in graduate school, I felt nervous and anxious, but also excited and privileged. I went to graduate school with the intention of not only performing experiments and learning about physiology and behavior, but also with the strong desire to learn how to teach and mentor students at all stages of their undergraduate careers. Many of my colleagues had very similar reactions to the first few weeks of teaching. I spoke to a few of them about these feelings recently. Here is what they had to say:

“The first week always felt a bit awkward. Students are still getting comfortable with your presence and getting to know you.”

“I felt curious about a new system, nervous about giving the students what they needed out of the class, and excited to lead a class for the first time.”

“I remember not feeling prepared and incredibly nervous! I wish I had known what I know about teaching now, but the nerves haven’t gone away either…I think I’m now able to better apply “what works” as far as classroom techniques.”

In thinking about all of these ideas, what particularly resonated with me was the notion that the nerves haven’t quite gone away, but I too have learned that there are techniques I can now implement in my classroom, helping to hide some of those feelings. I began my graduate career helping to teach an Integrative Human Physiology course, where I was able to teach teams of students in a case-based classroom. In this course, students engaged in collaborative learning (team-based learning) in every class period (something I had not witnessed myself during my education thus far). Collaborative learning is a technique in which students engage in problem solving with their peers, using the different skills and expertise of the group, as well as resources and tools that are available to them [1,2].  Students in this course were put into teams, and members of each team were responsible for their own learning and for assisting in the learning of their teammates. In this kind of classroom environment, the team’s culture and how they interacted with each other were key elements of their success. While a graduate student instructor for this course, I met with the teams regularly to facilitate a discussion, of not only the course material, but also their strategies for working collectively and how to approach their assignments as a team.

What I feel to be the most important part of teaching physiology is that we have to be able to adapt to the changing environment and have the courage to try new techniques. Students learn at their own pace, and each student learns in a slightly different way, therefore it is important to have flexibility in how we teach [1]. What I hadn’t realized until spending time using collaborative learning in my own classroom is that it can be adapted for so many disparate situations. I’ve found that it will work for a diverse range of students, and that with careful thought and planning (though sometimes on the fly), it can work well in a host of teaching situations and for a number of different types of learning styles.

 

A few examples for an introductory course:

  1. Taboo

    1. This game is similar to the actual game, “Taboo,” in which the goal is for students to get their teammates to guess the word at the top of the card. He or she can say any word to try to make the teammates guess, except for the words written below it on the card. The game can be played by a small team of about 3-5 students. It is important to emphasize that teams should discuss the cards after playing them, so they can master the connections.
    2. You can make these cards beforehand, so students can immediately start playing, or you can have the teams make their own cards, which will also help them think of the connections between the words before starting.
  2. Affinity Map

    1. This game has to do with making connections between key words. In many introductory classes, students must master lots of vocabulary, but “mastering” should mean more than just memorizing. This activity gives students the opportunity to discuss how these important terms create an understanding of a concept.
    2. This can be used for many different concepts, but here is an example for the properties of water: Each student in a group receives 3 or 4 post-it notes. Ask each student to write down one property of water. They might draw the molecular symbol, write a fact about the universal solvent, discuss how much of our body is composed of water, hydrogen bonds, etc. It doesn’t really matter what they write, and some will write similar things, but that’s okay. After they have all finished, students will go up to the board and place their post-it notes on the board where everyone can read them. Then the group, together (and out loud), will organize their statements about water, putting them into groups (affinities). They should categorize the affinities, noting what is the same and what is missing and can label the affinities. Some may feel like adding additional post-its to make more connections, and that is okay too.

 And one for the more advanced course:

  1. Case Study

    1. This can be used throughout a semester to help students synthesize many physiological concepts in a single activity with their team. It helps to stimulate discussions about many different concepts rather than a focused discussion on just one concept they may have learned.
    2. Provide a case study to each team of students (they can be all the same or different). Allow the students to work in their teams to analyze and synthesize their case. You can have them write important aspects of the case either on paper or on a large white board (if available). Once students have completed their case study, have teams share their analysis with the whole classroom, providing the opportunity for questions and discussion. You can also have teams make their own case studies for other teams in the class. When students take the time to create their own case studies, they often learn even more!

Throughout all of these activities, I always walk around to make sure students are both on task and making connections.

 

Moving Forward

As I continue in my graduate career and beyond, what is most important is that I try to be flexible enough to see the possibilities that there are in every new classroom. Each classroom that I am in is a little different than the next, so understanding that collaborative learning can help students with a range of concepts, and having the courage to adapt collaborative learning in a way that will work for my classroom has been very helpful (and will continue to be useful). It is almost as if each classroom has its own personality that might change from day to day, so knowing that I have a set of key techniques that I can fine-tune for each classroom is helpful as I continue in my teaching career and can hopefully be helpful in yours!

 

References

[1]       J. Bransford, A. Brown, R. Cocking, How People Learn: Brain, Mind, Experience, and School, National Academy of Sciences, Washington, D.C., 2000.

[2]       D.B. Luckie, J.J. Maleszewski, S.D. Loznak, M. Krha, Infusion of collaborative inquiry throughout a biology curriculum increases student learning: a four-year study of “Teams and Streams”., Adv. Physiol. Educ. 28 (2004) 199–209. doi:10.1152/advan.00025.2004.

 

Kristyn Sylvia received her B.S. in Biology from Stonehill College, and is currently a PhD candidate in the Department of Biology at Indiana University (IU) and a NIH Common Themes in Reproductive Diversity fellow where she studies how the neuroendocrine system interacts with the reproductive and immune systems early in life in Siberian hamsters. She worked as a clinical research associate in Boston, MA, before coming to IU. She is also a graduate student instructor in Biology, where she has taught a number of courses, including Human Integrative Physiology, and she serves on the Animal Behavior Undergraduate Curriculum Committee, where she collects and analyzes data on the major and addresses potential changes to the curriculum as it grows. She also serves on the APS Teaching of Physiology Section Trainee Committee.

Leave a Reply