As adults of ever increasing age, I am sure almost every one of you has had a conversation lamenting your loss of physical abilities over the years. “I used to be able to do that.” “I used to be good at that.” As a parent to two young, energetic, fearless boys I hear (and think) these sentiments almost daily. While watching children play on a playground, sprinting for hours, hanging upside down, contorting their bodies into nearly impossible positions, jumping (and falling), twisting and turning, and literally bouncing off walls, parent conversations almost always include incredulous statements about children’s’ physical capacity followed immediately by a statement of the parents’ lack thereof. More than once I’ve heard a parent say, “If I did that, I’d be in the hospital.”
But have you ever actually thought, “Why can’t I do that anymore?” The answer isn’t just “I’m too old”. Obviously the physiologic changes of age are undeniable, but it’s a more complicated reason. At some point in your life, you stopped playing like children play. You stopped running and jumping and twisting and turning. You move in straight lines. You sit for hours. You don’t try that new move. It looks too hard. You might hurt yourself. As physiologists, we all know about homeostasis and adaptations, and it’s no surprise that our lifestyles have contributed to our physical inability in adulthood. Of course you would hurt yourself if you tried ‘that’, but only because you haven’t tried anything like that in years. Start trying ‘that’ though, and over time you’ll find yourself much more physically capable despite the aging process.
This childhood to adulthood performance decrement is not exclusive to physical capacity though. We are doing much the same to our mental capacity with age. A child will take physical risks on the playground, much as they also take mental “risks” in the classroom. Ask a group of 3rd graders a question, any question, almost all of them raise their hand hoping to answer…even if they don’t know the answer. And the student who got it wrong, will raise his hand again after the next question. Give them a challenge or a mystery to solve and they will dive right in. Let them touch and feel and manipulate. They don’t hesitate. They are on their mental playground. This is how they learn. As adults though, we aren’t going to the mental playground, because that’s not what adults do. We sit in chairs. We watch lectures. We make notecards. We read papers. We study the learning objectives and the PowerPoints.
Just as adults could physically benefit from some time on the playground every day, adults (and I’m including college students in this category) can also benefit from time on a mental playground. Even as educators of other adults, we need to remember this. We often forget the multitude of ways that we can put our students on the mental playground. We don’t do an activity, because the students might think it’s ridiculous. It might waste too much time, and there is too much material to cover today. I have found in my classrooms though, that activities that would work with kindergarteners can work equally well for college students.
To give examples of ways to put college students on the mental playground, I would like to share two activities that I have done in a physiologic assessment of health course that have been very effective. The course consists of juniors and seniors who have already taken several biology, chemistry, and physiology courses beyond anatomy and physiology. The first assignment that I give them is to work with a partner to draw a picture of a person with as many health risk factors as they can think of. I have found that most students who take this class (instructor included) are horrible artists, but this adds to the fun of the assignment. The students love it and come up with thousands of creative ways to represent health risk factors. We have a discussion over which drawings have incorporated the most “official” risk factors (as designated by national organizations like ACSM, AHA, etc.) and why some of the others are certainly not healthy (setting off fireworks indoors), but not listed as official risk factors. Something about taking the time to draw silly pictures on a specific topic really aids in student understanding (anecdotally in my class, but evidence exists that this is effective (Ainsworth S, Prain V, Tytler R. Drawing to Learn in Science. Science. 333 (6046),1096-1097, 2011.).
Another assignment I’ve had good results with to get students onto the mental playground is half mystery for the students to solve and half drawing pictures. I tell the class that we are going to learn about how the heart works and talk about the electrocardiogram. The first thing I ask them to do is to get out of a sheet of paper and to draw a picture of the house they grew up in as if they were looking at it from the road. Normally confusion ensues and the students want to know if it’s for a grade (yes), and why they’re doing it (trust me, it’ll make sense later). After giving the students time to sketch their house, I ask permission to show each to the class, and then ask the question to the class. “Whose house is bigger?” Ultimately the students come to the conclusion that it is nearly impossible to tell without knowing the perspective and distance from the artist and the other views of the house (the front view is only one of multiple views that would be needed to construct the 3-dimensional size of the house). Then, still without talking about the heart, I ask them to draw a picture of a baseball (just
the baseball) being thrown. Once again I show the drawings to the class. All usually agree that everyone probably knows the approximate size of a baseball, but then I highlight how different people drew different sizes on the paper. Once again I discuss perspective and how large a baseball looks when it’s about to hit you in the face, because it takes up your entire field of vision, but if it were thrown at you, it would look smaller relative to your field of vision at the start. If you’re watching people playing catch equidistant from both, the ball might move back and forth without appearing to change size relative to the visual field. But all the baseballs are still the same size!
Finally, after the house and baseball drawings I ask, “what did all of that have to do with the heart and electrocardiograms?” After a few minutes, most students understand the theory behind the electrocardiogram without ever having analyzed one. I’ve even had a strong student who was finishing her clinical exercise testing degree that semester say that even though she had taken several courses on ECG analysis and knew how to read them to get good grades on ECG tests, this was the first time she truly “got it.”
Thousands of other ways to engage students on the mental playground are out there as well. Discussing muscle physiology? Hand out rubber bands before class starts and ask them to think about how muscles and rubber bands are remarkably similar yet not the same at all. Teaching about bones? Pass out a few models to let them hold and manipulate. Then ask the students to pretend they’re cavemen and they need to build all of their tools out of bones, which bones would make a good hammer? A good bowl? Spoon? Fork? Weapon? Teaching about brain physiology? Have the students invoke thoughts, memories, feelings or movements and then tell them which part of the brain is responsible. Be creative and remember that just like our bodies, our minds work best when they’re stretched and twisted and used in different ways on a regular basis.
I do not know enough about educational psychology to understand the underlying mechanisms by which these types of activities work (my PhD is in Kinesiology after all – a content expert told to teach well!). And admittedly most of my evidence that they work is anecdotal or comes by way of gradually improved student scores on final exam and practical questions related to my course objectives over several semesters in which I certainly adjusted more than one variable. However, I do know that in learning, students attend to touch and feel, emotion, and mystery. The same thing you’ll witness at an elementary school playground. Incorporating these into your lessons, even in the simplest of ways can be beneficial for all different types of learners. I’m asking you to turn your classrooms into intellectual playgrounds. Encourage risk taking. Validate atypical approaches. Make it fun. Make it engaging. All the memorized note cards might be forgotten by next semester if it’s not.