Monthly Archives: October 2019

Emerged Idea Led to a Unique Experience in Elephant’s City
Suzan A. Kamel-ElSayed, VMD, MVSc, PhD
Associate Professor, Department of Foundational Medical Studies
Oakland University

In May 2019, the physiology faculty at the Oakland University William Beaumont School of Medicine Department of Foundational Medical Studies received an email from Dr. Rajeshwari, a faculty member in JSS in a Medical College in India.

While Dr. Rajeshwari was visiting her daughter in Michigan, she requested a departmental visit to meet with the physiology faculty. Responding to her inquiry, I set up a meeting with her and my colleagues where Dr. Rajeshwari expressed her willingness to invite the three of us to present in the 6th Annual National Conference of the Association of Physiologists of India that was held from Sept. 11-14, 2019, in Mysuru, Karnataka, India.

The conference theme was: “Fathoming Physiology: An Insight.” My colleague then suggested a symposium titled “Physiology of Virtue,” where I could present the physiology of fasting since I fast every year during the month of Ramadan for my religion of Islam. To be honest, I was surprised and scared at my colleague’s suggestion. Although I fast every year due to the Quranic decree upon all believers, I was not very knowledgeable of what fasting does to one’s body. In addition, I faced the challenge of what I would present since I did not have any of my own research or data related to the field of fasting. Another concern was the cultural aspect in talking about Ramadan in India and how it would be received by the audience. However, willing to face these challenges, I agreed and admired my colleague’s suggestion and went forward in planning for the conference.

After Dr. Rajeshwari sent the formal invitation with the request for us to provide an abstract for the presentation, I started reading literature related to fasting in general. Reading several research articles and reviews, I was lost in where to begin and what to include. I began to ponder many questions: How will I present fasting as a virtue? Should I bring in religious connections? Will I be able to express spiritual aspects from a Muslim’s perspective? I decided that the aim of my presentation would be to describe how a healthy human body adapts to fasting, and the outcomes that practicing fasting has on an individual level and on the society as a whole. In addition, I found that focusing on the month of Ramadan and etiquettes of fasting required from Muslims had many physiological benefits and allowed me to have a real-world example in which fasting is present in the world.

Visiting India and engaging with physiologists from all over India was a really rich experience. The hospitality, generosity and accommodation that were provided was wonderful and much appreciated. The conference’s opening ceremony included a speech from the University Chancellor who is a religious Hindu Monk, along with Vice Chancellors, the organizing chair, and the secretary. In addition, a keynote speech on the physiological and clinical perspectives of stem cell research was presented by an Indian researcher in New Zealand. I was also able to attend the pre-conference workshops “Behavioral and Cognitive Assessment in Rodents” and “Exercise Physiology Testing in the Lab and Field” free of charge.

For my presentation, I included the definition, origin and types of fasting. In addition, I focused on the spiritual and physical changes that occur during Ramadan Intermittent Fasting (RIF). Under two different subtitles, I was able to summarize my findings. In the first subtitle, “Body Changes During RIF,” I listed all the changes that can happen when fasting during Ramadan. These changes include: activation of stress induced pathways, autophagy, metabolic and hormonal changes, energy consumption and body weight, changes in adipose tissue, changes in the fluid homeostasis and changes in cognitive function and circadian rhythm. In the second subtitle, “Spiritual Changes During RIF,” I presented some examples of spiritual changes and what a worshipper can do. These include development of character, compassion, adaptability, clarity of mind, healthy lifestyle and self-reflection. To conclude my presentation, I spoke of the impacts RIF has on the individual, society, and the global community.

In conclusion, not only was this the first time I visited India, but it was also the first time for me to present a talk about a topic that I did not do personal research on. Presenting in Mysuru not only gave me a chance to share my knowledge, but it allowed me to gain personal insight on historical aspects of the city. It was a unique and rich experience that allows me to not hesitate to accept similar opportunities. I encourage that we, as physiology educators, should approach presenting unfamiliar topics to broaden our horizons and enhance our critical thinking while updating ourselves on research topics in the field of physiology and its real-world application.  Physiology education is really valued globally!

Suzan Kamel-ElSayed, VMD, MVSc, PhD, received her bachelor of Veterinary Medicine and Masters of Veterinary Medical Sciences from Assiut University, Egypt. She earned her PhD from Biomedical Sciences Department at School of Medicine in Creighton University, USA. She considers herself a classroom veteran who has taught physiology for more than two decades. She has taught physiology to dental, dental hygiene, medical, nursing, pharmacy and veterinary students in multiple countries including Egypt, Libya and USA. Suzan’s research interests are in bone biology and medical education. She has published several peer reviewed manuscripts and online physiology chapters. Currently, she is an Associate Professor in Department of Foundational Medical Studies in Oakland University William Beaumont School of Medicine (OUWB) where she teaches physiology to medical students in organ system courses. Suzan is a co-director of the Cardiovascular Organ System for first year medical students. Suzan also is a volunteer physiology teacher in the summer programs, Future Physicians Summer Enrichment Program (FPSP) and Detroit Area Pre-College Engineering Program (DAPCEP) Medical Explorers that are offered for middle and high school students. She has completed a Medical Education Certificate (MEC) and Essential Skills in Medical Education (ESME) program through the Association for Medical Education in Europe (AMEE) and Team-Based Learning Collaborative (TBLC) Trainer- Consultant Certification. She is also a member in the OUWB Team-Based Learning (TBL) oversight team. Suzan is an active member in several professional organizations including the American Physiological Society (APS); Michigan Physiological Society (MPS); International Association of Medical Science Educators (IAMSE); Association of American Medical Colleges (AAMC); Team Based Learning Collaborative (TBLC); Egyptian Society of Physiological Sciences and its Application; Egyptian Society of Physiology and American Association of Bone and Mineral Research (ASBMR).

Using Quests to Engage and Elevate Laboratory Learning
Sarah Knight Marvar, PhD
American University

My students, like me, enjoy a challenge. Occasionally this challenge comes in the form of staying on track, using our lab time efficiently to achieve the learning outcomes and staying engaged with the material. There are specific topics that we cover in our undergraduate human anatomy and physiology course, such as the skeletal system, that had become a little dry over time. Classes occasionally included students sitting at desks looking disinterestedly at disarticulated bones glancing at their lab manual and then checking their phones. I felt that the students were not getting enough out of our laboratory time and weren’t nearly as excited as I was to be there!

With other faculty members I recently devised some new laboratory activities that include a series of quests that closely resemble a mental obstacle course, to try to encourage engagement with the material and make our learning more playful and memorable. There may also be some healthy competition along the way.

I teach an undergraduate two semester combined anatomy and physiology course, in which I lead both the lecture and laboratory portions. Students who are enrolled in this course are majoring in Biology, Neuroscience, Public Health and Health Promotions. Many of the enrolled students are destined for graduate school programs such as Medicine, Nursing, Physical Therapy, Physicians Assistant and PhD Programs. An example of the quest format we used recently in a bone laboratory is described here.

The Quests

The laboratory is set up with multiple quest stations that each represent a multi-step task on areas within the overarching laboratory topic. All of the tasks are designed to enable students to achieve the learning outcomes of the laboratory in an engaging way. The quest stations are designed to encourage the students to physically move around the laboratory in order to interact with other students, touch the exhibits, explore case studies, complete illustrations and build models. Each student begins with a quest guide which provides instructions and upon which they take notes, answer questions and complete drawings. Students move at their own pace and work in self-selected pairs or groups of three. They are able to ask for assistance at any stage of a quest from either of two faculty members present.   

Clinical case studies

Because of the students’ interest in patient care, we use clinical case studies as a major component of the obstacle course. X-ray images of a variety of pathological conditions as well as healthy individuals challenged students’ ability to identify anomalies in bone structure and surgery outcomes. The images that we used included a skull of a newborn showing clearly the fontanelles, an example of osteoporosis and joint replacement surgery. Students are required to identify anatomical location of the image as well as any anomalies, pathology or points of interest. Because of the student demographic of this class, many of them are destined to enter healthcare professions, they are particularly interested in this quest and are invested in solving the mystery diagnoses.

The Creative Part

Illustrations

An example of a student’s histological drawing.

The coloring pencils and electric pencil sharpener have come into their own in the laboratory and like Grey’s Anatomy illustrator Henry Vandyke Carter created before them, amazing anatomically accurate drawings are appearing on the page. Histology has been a particularly challenging aspect of our course for students with little previous exposure to sectioned specimens. In an attempt to allow students to really process what they are looking at and reflect on the tissue function I have asked students to draw detailed images of the histological specimens, label cell types and reflect on specific cell functions. This exercise aims to elevate the student’s ability to look closely at histological specimens and gain a better understanding of what they are observing and contemplate specific cell function.

Another quest involves categorizing bones and making illustrations of them, making note of unique identifying features and their functions.

3-D Modeling

Student synovial joint models with notes on function

Reminiscent of scenes from my three year old’s birthday party, I brought out the modeling clay and tried to stifle the reflex instruction to “don’t mix the colors”! Students were tasked with creating a 3-dimensional model of structures such as synovial joints. This is a particularly successful exercise in which students work with colored modeling clay to construct models of joints and label parts of the joint and describe the function of each part. This allows students to consider the relationship between the structure and function and move beyond looking at two-dimensional images from their textbooks and lecture slides. Students submit images of their completed models to the faculty for successful completion of the quest.

Other quest stations that were part of this particular laboratory session included Vertebrae Organizing, Mystery Bone Identification and Bone Growth Mechanisms.

One of the primary things that I learned from this exercise was that designing game-like scenarios in the classroom is far more enjoyable and entertaining for me as well as for the students, a win-win scenario. Overall from the perspective of the teaching faculty, the level of engagement was significantly increased compared with previous iterations of the class. The quality of the work submitted was high and in addition, this quest-based laboratory design is suitable for a wide range of topics and activities. I am currently designing a muscle physiology laboratory in a similar format that will include an electromyogram strength and cheering station as well as a sliding filament muscle contraction student demonstration station. In reflection I feel that my personal quest to find a novel and interesting way for the students to learn about bones was successful. Now onto the next quest……

Sarah Knight Marvar received her BSc in Medical Science and PhD in Renal Physiology from the University of Birmingham, UK. Sarah is currently a Senior Professorial Lecturer and Assistant Laboratory Director in the Biology Department at American University in Washington DC. Sarah teaches undergraduate Anatomy and Physiology, general biology classes as well as a Complex Problems class on genetic modification to non-majors as part of the AU Core program. Sarah’s research interests include using primary research literature as a teaching tool in the classroom, open educational resources and outreach activities.

Physiology Bumper Stickers for Teaching and Learning
Alice R. Villalobos, BS, PhD
Texas Tech University

As teachers we hope students remember and apply all the physiology they learned in our class.  However, many undergraduate students hope simply to get through this semester of physiology and their other courses.  They dread the amount of material and that ‘so many things go on in the body at one time.’  I asked myself what could be integrated into lecture or lab to help students better learn material in class, study more effectively on their own and ideally, improve recall when taking exams.  Around this time, I attended a teaching workshop focused on short activities and simple tools that could be incorporated into lectures to facilitate learning and recall.  One tool was the ‘bumper sticker’. 

Similar to an actual bumper sticker, the teaching bumper sticker is a short memorable phrase or slogan that encapsulates a thought, principle, or concept.  In this case, a bumper sticker helps students learn and remember a concept or principle.  In all areas of life, we use short sayings or one-liners often of unknown derivation that convey a profound or funny, classic or clever, instructional or encouraging thought.  ‘Righty tighty, lefty loosey.’ means turn the screw to right to tighten and left to loosen.  “I before E except after C.” with the addendum, “… and in words, such as protein or weight.”  Could bumper stickers work in a physiology course?  I already borrowed “Water follows sodium; sodium doesn’t follow water.” from my undergraduate professor.  We all develop short phrases while working on lectures, reading physiology papers and books, or on the fly during lecture.  

Recently, I began using bumper stickers in a more organized manner.  I took a sheet of lined paper, wrote ‘Bumper Stickers for A&P-II’ on the top, and made plenty of copies.  On the first day of class I discussed tips to improve learning and study habits.  I explained the bumper sticker was a teaching/learning tool and gave each student a sheet.  I admitted it was an experiment, but my intention was to give them short phrases to refer to and contemplate when studying on their own or spark a memory on an exam.  That very day we started glycolysis.  The first bumper sticker was “You must spend an ATP to make ATP.”  I explained the first step in glycolysis is phosphorylation, using a phosphate from ATP.  Despite some initial skepticism, bumper stickers caught on and helped many students. 

Rather than repeating your explanation verbatim, students must accurately explain concepts to themselves and others in their own words.  When students study with a partner or in groups, they can refer back to the bumper sticker along with lecture notes, diagrams and textbook to explain the respective concept to each other in their own words and peer-correct.  When students are teaching each other, they are truly ‘getting it’.  Granted, it is essential that students use more exact and scientific vocabulary to describe a mechanism or concept, as is true for any discipline.  For most students this won’t happen the very first time they explain the concept.  Learning physiology or any subject is a process; developing the vocabulary is part of that process.  A memorable bumper sticker is a prompt for stimulating discussion – verbal communication in the context of learning a given physiological mechanism and developing the vocabulary of physiology. 

There is no established technique for the initial delivery of a bumper sticker phrase.  However, its two-fold purpose as a teaching/learning tool is to help students understand and remember a concept; thus, the phrase and initial proclamation must be memorable.  Based on my hits and misses, here are several tips.  First, keep it short, ideally 10 words or less.  Second, timing is key.  Similar to a joke, timing is important but varies with topic and teaching style.  Some use the phrase as a teaser to introduce a topic; others use it to summarize key points.  Third, be as direct as possible and capture students’ full attention.  Some write the phrase on the board or slide and make an announcement, “Listen up.  Write this down.”  Fourth, look directly at your students and state the phrase clearly with meaning, effective voice inflection, dramatic tone, appropriate pause, facial expression, hand gesturing, and/or a little physical comedy.  Fifth, use accurate and scientific terms to explain the meaning of the phrase as it applies to the physiological concept.  This is absolutely critical.  Left to interpretation, students might misunderstand the actual physiological concept.

Bumper stickers for better study and testing strategies

*Use common sense at all times, especially on test day.* At times, students forget obvious and intuitive things.  For example, when applying Boyle’s Law to respiration, don’t forget to breathe.  I remind students that lung volume and intrapulmonary pressure will change such that when we inhale air flows in, and when we exhale air flows out.  Physical laws applied to physiological mechanisms explain relationships among different components of a mechanism, e.g., the pressure of a quantity of gas to its volume.  I assure them, they can and will learn the fundamental physics on which Boyle’s law is based, but keep it simple and remember – when you inhale air flows in, when you exhale air flows out. 

            *Understand the question, before you answer it.* My PhD advisor shared this pearl of wisdom before my qualifying exam.  I encourage students to calmly, slowly and deliberately read the entire question.  On any multiple choice or essay exam, they must be certain of what is being asked, before answering a question.  Do not stop reading the question until you come to a period, question mark or exclamation point.  Students are concerned about wasting precious time.  Slowing down just a bit to answer correctly is worth the time and decreases the odds of second guessing or having to go back to the question.  I make another pitch for reading the text book.  It is a way to practice reading calmly and deliberately and catching differences in font or formatting, e.g., print style, italics, bold, underline, that may indicate key terms for an exam question. 

Bumper stickers for general principles in physiology

*Enough, but not too much.* Many students think every physiological end point is maintained at a constant value.  I explain that various parameters are regulated such that they gently fluctuate within a narrow range.  Plasma sodium must be ‘enough’; if it drops too low osmolarity decreases.  If sodium is ‘too much’, osmolarity increases; plasma volume increases; blood pressure increases.  If an endpoint falls below range, regulatory mechanisms bring it back up into range; should it increase above normal range, regulatory mechanisms bring it back down into range.  

*It’s not a mathematical equation; it’s a relationship.* Many students confess they are ‘really bad at math’ or ‘hate math’.  CO, MAP, renal clearance, alveolar ventilation rate – all math.  Understanding and passing physiology requires math.  I tell students math describes physiological relationships between different factors that regulate or dictate a given endpoint, similar to interactions and relationships among friends or a team.  Actual equations represent precise relationships, e.g., CO = HR x SV.  In that case, cardiac output will increase and decrease in direct proportion to heart rate and stroke volume.  Then there is Poiseuille’s Equation.  Students are not required to memorize that equation, but they must learn and apply the principles of the equation: F α DP, F α 1/R and F α r4.  I clarify the α symbol means ‘in proportion to’, not equals.  I repeat, ‘It’s not a mathematical equation; it’s a relationship.”  I suggest they view a as a hug, and embrace the dependence of blood flow on the pressure gradient, vascular resistance, and the luminal radius.  The 4 means when radius changes even just a little, flow changes a lot!  I provide a more technical explanation of how blood flow can decrease significantly with gentle vasoconstriction and increase with gentle vasodilation; this showcases the essential regulatory role of vascular smooth muscle.  This particular bumper sticker serves to remind them math is critical to our understanding of physiology and hopefully, ease their anxiety.  More math awaits in respiratory physiology, and they revisit and apply F α DP, F α 1/R and F α r4 to air flow.

*Know what abbreviations mean, and don’t make up abbreviations.* I explain the names of hormones, especially, are rich in information.  These names indicate source, stimulus for release, and mechanism of action.  For example, atrial natriuretic peptide, ANP, is a peptide hormone secreted from atrial tissue when plasma volume increases that increases urine output (-uretic) and sodium (natri-) excretion.  Not too creative, but self-explanatory.  Couple it with “Water follows sodium …”; problem solved.  

Bumper stickers for chronological order or sequence

For many cellular and organ mechanisms, there is a strict chronological order of events.  During the cardiac cycle, there is a distinct chronological order for each of several different phenomena that occur simultaneously and interdependently.  I use bumper stickers to teach a basic concept of cardiac physiology that help students learn the cardiac cycle – the electrical~mechanical relationship.  First, I show the entire Wiggers diagram and explain it tracks the series of interrelated electrical and mechanical events as they occur in the same timeline of one heartbeat.  I assure them we will take one panel at a time and pull it altogether at the end.  I start with the relationship of the ECG to the 4 ventricular phases, using a set of bumper sticker phrases that I write on the board.  We review the electrical events of P (atrial depolarization), QRS (ventricular depolarization) and T (ventricular repolarization) deflections.  Then, I say, “Pay attention.  Write down each phrase.”

*Electrical then mechanical.* I explain emphatically that first an electrical signal is transmitted and received, then the atrial or ventricular muscle responds.  In the cardiac cycle, electrical events P, QRS, and T each precede atrial or ventricular responses.  

*Depolarizeàcontract.  Repolarizeàrelax.* I explain depolarization triggers contraction; repolarization leads to relaxation.  P wave signals atrial contraction; QRS complex signals ventricular contraction; T wave signals ventricular relaxation.

*Depolarizeàcontractàincrease pressure.  Repolarizeàrelaxàdecrease pressure.*  I remind them changes in pressure gradients across the atrioventricular and semilunar valves determine whether valves open or close and consequently, whether blood flows into or out of the ventricle.  Depolarization leads to ventricular contraction and in turn, an increase in pressure; repolarization leads to ventricular relaxation and in turn, a decrease in pressure. 

*The AV valve is the fill valve; the semilunar valve is the ejection valve.*  A student thought of this phrase!  She explained, “When the AV valve – tricuspid or mitral – is open during diastole, the ventricle fills with blood from the atrium.  When the semilunar valve – pulmonary or aortic – is open during systole, blood is ejected.”  In that moment I thought my work as a teacher was done; my student is teaching herself and others.  I give her full credit, but use her bumper sticker.  I further explain when the ventricle relaxes and pressure drops below the atrial pressure, the AV valve will open, and blood enters the ventricle; when it contracts ventricular pressure exceeds atrial pressure and the AV valve closes; as it continues to contract, eventually ventricular pressure exceeds aortic pressure, the aortic valves opens, and blood is ejected into the aorta. 

Bumper stickers might not be the right tool for every teacher, student, or topic, or be appropriate for undergraduate versus graduate course.  If you decide to implement this tool, you might not have a bumper sticker for every basic or general physiology concept or mechanism or a set of bumper stickers for every organ system.  You might only use a bumper sticker phrase once or twice in a whole semester.  When used appropriately, they truly can make a difference.  On the other hand – if how you teach is working just fine and your students are getting it – then all I have to say is, “If it ain’t broke, don’t fix it!”

Alice Villalobos received her Bachelors of Science in biology from Loyola Marymount University and her PhD in comparative physiology from the University of Arizona-College of Medicine.  For the past several years, she has taught Anatomy & Physiology-II and Introduction to Human Nutrition in the Department of Biology at Blinn College and guest lectured at Texas A&M University on the topics of brain barrier physiology and heavy metal toxicology.  She recently relocated to Texas Tech University to join the Department of Kinesiology & Sport Management where she teaches Physiological Nutrition for Exercise.