When it comes to teaching a subject in depth and breadth, an instructor may face the challenges of limited time versus unlimited contents. To this end, the instructor may focus on covering as much as possible material in a lecture, or on the key concepts that help prioritize contents and overarch a myriad of information. The former strategy is highly content-centered and can be overwhelming to both the instructor and students, and in fact, studies have shown that instruction time is not necessarily proportional to learning outcome [1]. By contrast, the latter strategy makes time for the instructor and student to interact, discuss, and apply the key concepts to problem solving activities, which fosters an active and interactive learning environment. In line with the evidence showing that students benefit more from an active and interactive learning experience [2], educators have called for less coverage and more inquiry aiming high beyond just the facts so that student’s learning can be enhanced by talking, writing, and collaborating [3-4].
How can one effectively prioritize contents by focusing on the key concepts pertaining to the latter strategy? One of the possible ways is to use learning objectives or anticipated learning outcomes to navigate content prioritization. It is overwhelming to start with materials for teaching planning due to fast growing research and knowledge explosion. However, using a backward design may change the game. Backward design of a course starts with developing clear learning objectives, which aligns selection of lecture contents with anticipated learning outcomes [5-6]. For instance, to accomplish the objective of building students’ critical thinking skills, an instructor will strategically plan time for not only covering materials but also information processing and application. Other than concentrating student learning on facts only, the class will be fueled by problem-based collaborative learning. To this end, it is critical for the instructor to elaborate the key principles or concepts, the very guides students need to address complex problems that demand more than simple factual answers. The collection of facts relevant to the class can be provided as supplemental information or resources for students to look up for problem solving, while it can limit student learning as a major commitment of memorization.
Mastery of basic principles plus being detail-oriented is required for success in experimentation and authentic research in a lab course [7]. To this end, students are expected to pay attention to experimental details in addition to core concepts, raising the question as to how course contents can be prioritized. First, the strategy of backward design still applies. Secondly, the learning objectives or anticipated learning outcomes can be defined such that they focus on core principles and transferrable or interchangeable skills. For instance, the course Laboratory Techniques in Molecular Nutrition covers several sets of lab techniques, one of which is immunoassays. Immunoassays represent a set of methods based on antigen-antibody binding reactions, including Western blotting (WB), immunoprecipitation (IP), co-immunoprecipitation (co-IP), chromatin immunoprecipitation (ChIP), ChIP sequencing (ChIPsec), immunohistochemistry (IHC), immunocytochemistry (ICC), and enzyme-linked immunosorbent assay (ELISA). Each method may take 1-2 weeks (5 hours/week) to cover the principles and operational procedures, and the set of immunoassays alone may occupy a semester. Obviously, it is very challenging to elaborate on each of the immunoassays within a semester given the limited time and resources, plus the needs to cover non-immunoassay techniques. However, it is practical for students to learn about the techniques within 4-5 weeks (5 hours/week) with a prioritized focus by elaborating on the core concepts shared by the eight immunoassays and contrasting the major differences among them. The core principles are shared by all the immunoassays regarding immobilization, blocking, immunobinding, washing, and detection processes. Yet, they are different in assay microenvironments including the solid phases, blocking solutions, antibodies, targets of interest, washing solutions, and detection reagents and instruments. Priority can be given to elaborating the core concepts and major differences (1-2 weeks) and to practicing the most used and accessible immunoassays such as WB, IP, and ELISA (3 weeks).
Practically, use of flipped classrooms can further enhance students’ mastery of key concepts and their ability to apply the concepts to solving problems. In a flipped classroom, the instructor lectures less in class but the course materials and recorded lectures are uploaded to the course management site (e.g., Canvas) for students to study in advance. Students tend to learn more through problem-solving activities with the instructor and peers in class that build critical thinking skills. As such, the learning outcomes can be increased and go beyond the contents by enhancing students’ critical thinking skills, which will benefit their lifelong learning after college.
Taken together, focusing on facts less in class but targeting core concepts and knowledge application more may serve as an effective strategy to build students’ critical thinking skills. The “less” by no means refers to an easy class. Instead, both the instructor and students spend more time outside the class preparing and studying course materials. This is to prepare everyone for more higher-order-thinking activities (e.g., analysis, evaluation, and application) in class. The “less” for “more” pedagogy may benefit student’s lifelong learning experience.
References and further reading
[1] Andersen SC, Humlum MK, Nandrup AB. Increasing instruction time in school does increase learning.
Proc Natl Acad Sci USA. 2016 Jul 5;113(27):7481-4.
[2] Dolan EL, Collins JP. We must teach more effectively: here are four ways to get started. Mol Biol Cell. 2015 Jun 15;26(12):2151-5.
[3] Luckie DB, Aubry JR, Marengo BJ, Rivkin AM, Foos LA, Maleszewski JJ. Less teaching, more learning: 10-yr study supports increasing student learning through less coverage and more inquiry. Adv Physiol Educ. 2012 Dec;36(4):325-35.
[4] DiCarlo SE. Too much content, not enough thinking, and too little fun! Adv Physiol Educ. 2009 Dec;33(4):257-64.
[5] Allen D, Tanner K. Putting the horse back in front of the cart: using visions and decisions about high-quality learning experiences to drive course design. CBE Life Sci Educ. 2007, 6(2): 85–89
[6] Hills M, Harcombe K, Bernstein N. Using anticipated learning outcomes for backward design of a molecular cell biology Course-based Undergraduate Research Experience. Biochem Mol Biol Educ. 2020 Jul;48(4):311-319.
[7] DiCarlo SE. Cell biology should be taught as science is practiced. Nat Rev Mol Cell Biol. 2006 Apr;7(4):290-6.