Monthly Archives: May 2021

Down the custom path: Adaptive learning as a tool for instruction and assessment in science education

The spread of COVID-19 via the SARS-CoV-2 virus led colleges and universities around the world to close on-campus instruction for the safety of students, faculty and staff.  This left many instructors, specifically those in the sciences, struggling to find effective methods to present information to students in a manner that both encouraged learning and allowed for assessment of knowledge attainment.  Non-traditional colleges and universities, those that offer most or all of a degree to students in the online environment, were poised to transition easily; continuing to use the tools available in the virtual world to both guide students and assess learning.  As institutions wrestle with the decision to move courses back to the on-campus setting, this blog implores those in higher education, even science education, to consider adaptive learning as a vital component of curriculum.

Prior to my appointment as Lead Faculty at Colorado Technical University, I taught a variety of science courses in on-campus class and laboratory settings.  Both exams and laboratory practica could be cumbersome, both in prep and in grading.  While the questions could be mapped back to unit and/or course learning outcomes, this would require input of each student’s response to each question into a data sheet for analysis.  Even with online administration of exams, assessment methods were limited and instructors like myself were reliant on continuous creation of lectures, worksheets, activities, and online simulations to present course materials.  When it came time to transition to online, students would navigate through a learning management system and open a variety of files, videos, interactive activities, practice sheets, and practice quizzes for one unit in a course.  There had to be a better way to incorporate all the things we know drive student inquiry into one area while allowing assessment of their knowledge, right?  There was.

Enter adaptive learning technology.  Colorado Technical University relies upon Intellipath™ to deliver content to students in the asynchronous classroom in a variety of subjects, including natural sciences, math, engineering, nursing, and health studies.  I entered into teaching and managing faculty as a novice in this tool, and now I want to sing its praises to anyone who will listen. Adaptive learning does just as the title suggests.  It adapts based on the student’s knowledge, adding questions in areas where they need additional practice and allowing those already determined to have a certain understanding of topics to skip on to new materials.  Once these lesson nodes are designed, they can be used over and over again and questions can be delivered in a variety of ways to assess the same outcome. Gone is the need to continuously upload materials as they are all housed within the adaptive learning platform.  Instructors have the ability to see how a student is doing not just in terms of their progress through the unit but also their mastery of a specific topic.  Students have the ability to earn high marks when they demonstrate competency in the subject on their first attempt but are able to improve their score when they didn’t do as well as they had hoped.

The system rolls instruction, interaction, and formative and summative assessments all in together in one data rich place.  Instructors can tailor their outreach and additional instruction to specific students or overall trends within a specific cohort.  Those tasked with the assessment of effectiveness portion of curriculum can pull these data to discern what outcomes are being met.  In modern higher-ed, what students know is important but how we know they know what they know is also a priority.  We have to be able to paint a quantitative picture that our curriculum is effective.

Students are re-evaluating their choices for universities and it is wise of all of us to consider our options for content delivery and knowledge assessment.  I think many educators in colleges or universities have attended at least one meeting at this point to discuss the decline in the number of “traditional” college students and some of us may have even been tasked with figuring out what to do about it.  More and more students are faced with the dilemma of needing to manage being caregivers, members of the workforce, or other life challenges while also attaining a degree.  This is our time to be bold and innovative in the classroom and really personalize a student’s experience.  Will there always be “traditional” college classes?  Only time will tell.  I cannot predict where we will be as educators in a decade but I can say that it will be my goal to evolve to meet the demands of the profession.  Science leads us to advances and adaptations so shouldn’t we be advanced and adaptive in science education?

Dr. Tiffany Halfacre (she/her) earned undergraduate degrees from Berea College (Biology) and Saint Petersburg College (Funeral Services), an MSMS from Morsani College of Medicine at the University of South Florida, and a DHSc from A.T. Still University College of Graduate Health Studies.

She has a varied background as an educator spanning over 10 years.  She has taught courses in general biology, human biology, anatomy, physiology, pharmacology, and health sciences in addition to interdisciplinary work in medical humanities.  She has been involved in course development, programmatic and institutional accreditation, and institutional research and effectiveness.  Her research and service interests include exploring health and nutrition literacy as they relate to geographical and socioeconomic differences. Outside of the classroom, she has been involved in chapel series lectures including one on “Truth in Grief” and was awarded the Excellence in Academic Advising award during her tenure at Carson-Newman University for her work advising pre-health professions students.  Dr. Halfacre currently serves as a Lead Faculty and an Assistant Professor of Health Studies at Colorado Technical University where she not only focuses on faculty preparation and support but also initiatives to retain and encourage success in first year and first generation college students.

Her hobbies include anything outdoors, running, amateur photography, and enjoying various arts, specifically music.

Considering Student Evaluations of Your Teaching

After a long and trying academic year, student evaluations of your teaching will soon be in your inbox. A bit of courage is required to take a first glance at student comments about your course. Given the substantial increase in time and effort this academic year has required, critical comments may feel even more harsh.

When you do look over your student evaluations, take a few minutes to copy or write down some of the positive comments. Believe and appreciate these comments. Students value your knowledge, talents, and hard work. Then, put the evaluations away for a few days. Come back to them when you have time and energy for self-reflection.

The act of teaching is extremely personal, and it is difficult not to take critical comments as a personal attack. To compound these feelings, student evaluations are often central to the reappointment, promotion, and tenure processes. While some institutions have taken proactive measures to mitigate the effect of the pandemic on these processes, uncertainty about how review committees will consider student teaching evaluations from these terms can increase anxiety for educators.

There are other problematic issues with student evaluations. Current tools used to survey student opinions about their learning experiences are flawed. Meta-analysis indicates there is little to no relationship between what students learn and how they evaluate their teachers (1, 2). Common evaluation survey methods also have well-established biases against women and people of color (3). There are clear steps institutions can take to mitigate these issues, including educating students on the important aspects of teaching evaluations (4), adapting evaluation tools to decrease bias (5), and adopting multi-faceted evaluation methods (6).

Addressing these systemic issues around teaching evaluations is critical. However, what can you do now with your current teaching evaluations to help shape and improve your teaching? Here are a few things for you to consider:

 

  1. Are they venting? This has been a difficult time for all of us, including your students. Are they using this evaluation to release some of their frustrations? If so, attempt to disconnect the intensity of the complaint from constructive points.
  2. What are the common themes? What are your students saying? Do you see similar comments across your student evaluations? Are comments focused on specific lectures or activities? Course design? Grading? Communication? Take note of these themes.
  3. What are the institutional expectations for teaching? What aspects of your teaching are most important to your institution? Conversations with your department chair or other mentors may help you prioritize the actions you take in response to your evaluations. If it is possible to gain access to comparative evaluation data, this will provide further insight into your own evaluations.
  4. What is the context for this course? What are you trying to accomplish in this course? Are you implementing an evidence-based pedagogy which steers away from lecture? If so, students could be scoring you lower because, even though they are learning more, they don’t perceive this increased learning (7). Are you communicating your expectations for this type of learning, so they know what to expect?
  5. What incremental changes are you going to make next time you teach the course? Given the student evaluation themes, institutional expectations, the course context, and your strengths, what changes are you going to prioritize? Focus on incremental changes, as it gives you an opportunity to test and assess the impact of these small changes. For example, are you going to be more intentional about explaining to your students why you teach the way you do and what they should expect? Are you going to incorporate more structure or feedback in your assignments? Are you going to decrease content to focus on large concepts? This would also be a great time to bounce ideas around with colleagues and mentors – or check-out different options in the literature.

 

While reviewing your evaluations and considering your next steps, document the themes you decide to address. Pull a few representative comments from your teaching evaluations and write a paragraph or two about changes you are planning in response to the comments. This documentation will be helpful for the next time you teach the course. This reflection can also inform self-narratives required for the review process or–if you are looking for another job–crafting your teaching statement. This reflection is even more important as you consider what aspects of your teaching were particularly effective during this academic year of pandemic teaching. You may want to keep successful aspects of your course even if we transition back into a more traditional educational setting.

A huge thank you to educators who made it work this year! Your students and colleagues appreciate everything you have done. A special thank you to those who discussed your experiences with teaching evaluations with me, but wished to remain anonymous, in preparation for my symposium presentation at EB2021, hosted by the APS Career Opportunities in Physiology Committee, entitled “Using Teaching Evaluations to Enhance Your Career Trajectory” from which this post was based.

 

References

 

  1. Uttl B, White CA, Gonzalez DW. Meta-analysis of faculty’s teaching effectiveness: Student evaluation of teaching ratings and student learning are not related. Stud Educ Eval 54: 22–42, 2017. DOI: 10.1016/j.stueduc.2016.08.007.
  2. Boring A, Ottoboni K. Student Evaluations of Teaching (Mostly) Do Not Measure Teaching Effectiveness. ScienceOpen Research, 2016. DOI: 10.14293/S2199-1006.1.SOR-EDU.AETBZC.v1
  3. Chávez K, Mitchell KMW. Exploring Bias in Student Evaluations: Gender, Race, and Ethnicity. PS Polit Sci Polit 53: 270–274, 2020. DOI: 10.1017/S1049096519001744.
  4. Hopper M. Student Evaluation of Teaching – The Next 100 Years [Online]. PECOP Blog: 2019. https://blog.lifescitrc.org/pecop/2019/06/21/student-evaluation-of-teaching-the-next-100-years/ [2 May 2021].
  5. Peterson DAM, Biederman LA, Andersen D, Ditonto TM, Roe K. Mitigating gender bias in student evaluations of teaching. PLOS ONE 14: e0216241, 2019. DOI: 10.1371/journal.pone.0216241.
  6. National Academies of Sciences, Engineering, and Medicine. Recognizing and Evaluating Science Teaching in Higher Education: Proceedings of a Workshop–in Brief [Online]. The National Academies Press: 12, 2020. https://www.nap.edu/catalog/25685/recognizing-and-evaluating-science-teaching-in-higher-education-proceedings-of.
  7. Deslauriers L, McCarty LS, Miller K, Callaghan K, Kestin G. Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom. Proc Natl Acad Sci 116: 19251–19257, 2019. DOI: 10.1073/pnas.1821936116.
Katie Johnson, Ph.D., is an experienced practitioner and evaluator of inclusive teaching and mentoring practices. Dr. Johnson advises and serves on national STEM education initiatives and committees, working with a diverse network of collaborators. Her work has been recognized by the American Physiological Society Teaching Section, as she has been presented both the Research Recognition and the New Investigator Awards. As an independent consultant at Trail Build, LLC, Dr. Johnson assists institutions and professional organizations as they develop, implement, and assess innovative solutions to curricular and programmatic challenges. Prior to becoming an independent consultant, Dr. Johnson was Chair and Associate Professor of Biology at Beloit College. She earned her Ph.D. in the Department of Molecular Physiology and Biophysics at Vanderbilt University and her B.S. from Beloit College. Disclosure: Dr. Johnson serves as an external consultant for APS.