Monthly Archives: August 2021

The Capstone Experience: Implementing lessons learned from a pandemic educational environment to create inspirational real-world educational experiences
Historically, physiology undergraduate students across the world have undertaken a laboratory-based, fieldwork or critical review research project, their educational purpose for students to gain research experience. However, decreasing numbers of physiology graduates are going onto careers in research, many are leaving science altogether. It is therefore imperative that we, as educators, better prepare the majority of our students, through their projects, for the diverse range of careers they go onto.

Pre-pandemic opportunities

Over the last twenty years, physiology and the broader global bioscience educator community, recognizing this diversity of graduate career destinations, have been expanding the range of projects available to their students, introducing for example, public engagement, educational development or enterprise projects.  However, the focus and purpose of these projects remained for students to gain research experience. They were traditional research projects but outside of the laboratory. The literature and Accrediting Bodies project criterion still talked about students undertaking “hypothesis-driven research” and “project/research-based assignments”.

Whilst these traditional research projects may have been relevant fifty years ago, they do not enable the majority of current Bioscience graduates to be “work-place ready”. The world is currently going through its fourth industrial revolution (4IR), a world and workplace governed by robotics, artificial intelligence, digitization and automation. Graduate recruiters require graduates with different skillsets, the so-called 4th Industrial Revolution (4IR) skills1.

I recognized that radical change was required, not only in my School of Biomedical Sciences, but across bioscience Higher Education globally. Collectively, bioscience educators needed to rethink the purpose, practices and outcomes of undergraduate research projects in order to better prepare our students for an increasingly challenging 21st Century global workplace.

My solution was to introduce project-based capstone experiences into my program. their purpose to provide students with opportunities for personal and professional development, and to gain real life work experience.

A highly experienced science communicator, I facilitated ethical debates in High Schools.  I realized that this would make an ideal opportunity for my undergraduates – something different as their research project. Starting small, I collaborated with one of my project mentees to co-create and co-deliver an ethics-focused workshop for High School students at the 2005 Leeds Festival of Science2. The capstone experience, as an alternative to traditional research projects, was born.

Over the last sixteen years, I have progressively expanded the range of capstone opportunities in my course. Colleagues within my School of Biomedical Sciences at the University of Leeds (UK), recognizing the benefits of capstones to students, joined me. In partnership with our students, we have created a sector-leading portfolio of traditional research projects offered alongside science or industry-focused capstones, and those with a civic or societal focus in the same course (Figure 1)3. Students select the project that best addresses their individual developmental needs and/or future career intentions. By offering this broad portfolio of sixteen opportunities, it is inclusive, there is something for each and every student to realize their full academic potential and personal goals.

 

Figure 1: Research and capstone project opportunities available to students

My students have wholeheartedly grasped this opportunity, excelling academically.  Their course marks are significantly higher than students undertaking traditional research projects (2020: mean ± SD = 71.4±4.4% vs 68.4±5.8%, p<0.05).  In 2020-21, 27% selected capstones as their first choice of project, a massive cultural shift given we are a research-intensive (R1) Institution where laboratory projects have traditionally been viewed by both students and Faculty as the “gold-standard”.

Our work as a team has resulted in the award of a prestigious national (UK) higher education prize, an Advance HE Collaborative Award for Teaching Excellence.

My work came to the attention of other Bioscience educators. I was invited to run workshops at Institutions across the UK seeking to introduce capstones into their program. I re-wrote one of the two UK Bioscience Accrediting Bodies project accreditation criteria, incorporating my capstone ideas.

And then Covid struck!

With restricted or no access to research facilities, Bioscience educators globally struggled to provide alternatives to traditional research projects.  To support colleagues across the world, in partnership with Sue Jones (York St John University, UK) and Michelle Payne (University of Sunderland, UK), I ran virtual workshops, sharing my capstone ideas and resources.  I created and shared globally, guides for students4 and educators5, and resource repositories6,7. The workshops were attended by over 1000 educators from as far afield as Australia, Africa and America. The resources viewed 12,000 times from over 50 countries.

A year on, we surveyed both students and Faculty globally. All responding institutions had introduced capstone projects into their programs in 2020-21. More importantly, they are here to stay. Recognizing the benefits to their future employability and careers, a massive 94% of students wanted capstones to be provided alongside traditional research projects. Faculty thought the same. All are not only keeping capstones, but more importantly, are broadening their portfolios going forward. Each new format developing different skill sets and attributes, and therefore preparing students for additional career destinations. We have inspired sector-wide curriculum change!

Going forward, we cannot return to our old ways!

As the world opens up and returns to a new “normal”, we cannot go back to our old ways of just offering traditional research projects. We would be massively letting our students and wider Society down. We need to take the best from what we have learnt and achieved, both before and during the pandemic, and continue to develop and evolve our collective capstone provision going forward.

We are at the start of an exciting Global journey.  Capstones across the world are predominantly conservative in nature, for example taught courses, senior seminar series or extended essays. Educators globally have yet to fully realize the transformative (massive uplift in skills and attributes) and translational (preparation for the workplace) potential of capstones.

We need to create capstones that are more representative of the work place for example, multi-disciplinary teams and sub-teams working on the same capstone, and capstones that run over multiple years, with current students taking the previous year’s project outputs and outcomes to the next stage.  The events of the past two years have made Universities realize they need to better address their local and global civic and societal responsibilities and missions, so capstones that facilitate societal engagement. We need to move away from traditional dissertations or reports to more authentic real-world assessments.

Within my School of Biomedical Sciences and the broader University of Leeds, we have started down this journey. Ninety percent of the capstones in my course are now team-based. Students choose their primary assessment method (e.g. academic paper, commercial report, e-portfolio) – the one most suited to their particular capstone format and which best showcases their knowledge, skills and attributes. I have introduced Grand Challenges capstones where students work as to teams to create evidence-driven solutions to global Grand Challenges or UN Sustainable Development Goals (SDG). The intention to develop these into trans-national educational opportunities, where students from the Global North and South work collaboratively on the same SDG or Grand Challenge capstone. We have an Institutional requirement that all undergraduate students, regardless of discipline, must undertake a major research-based assignment in their final year of study. I have been awarded a Leeds Institute of Teaching Excellence to work with Faculty across the University to introduce capstones into their programs and to create pan-university multi-disciplinary capstone opportunities for our students.

I do not do things by halves. My vision is not just limited to Leeds, the UK or the Biosciences, but Global!

I have created a global Community of Practice for stakeholders across the world to work collaboratively together, sharing ideas, expertise and resources, to co-create and introduce inspirational multi-disciplinary, multi-national team-based capstone projects that address globally relevant issues into undergraduate and taught postgraduate degree programs across the world.  I want to make it a truly global and inclusive community, to include all stakeholders- students, alumni, educators, employers, NGOs, social enterprise, Global North or South, all disciplines or sectors….The list is endless.

If you would like to join this Community of Practice and be part of this exciting journey, please email me (d.i.lewis@leeds.ac.uk). Please share this opportunity amongst your colleagues, networks and across your Institution. The broader the membership, the greater the collective benefits for all.

If we pull this off, the benefits for students, other stakeholders and Society will be phenomenal. Our graduates would be truly global graduates, equipped with the skills and attributes to become leaders in whatever field they enter. As Faculty, we would be providing an exceptional educational experience for our students, properly preparing them for the workplace. Universities, through student capstones, would be better able to address their civic and societal responsibilities and missions. Employers would have graduates able to take their businesses forward and to thrive in an increasingly competitive global marketplace. We would be creating solutions to some of the complex problems facing mankind.

Figure 1: Research and capstone project opportunities available to students

1.    Gray, A. (2016). The 10 skills you need to thrive in the Fourth Industrial Revolution. World Economic Forum. https://www.weforum.org/agenda/2016/01/the-10-skills-you-need-to-thrive-in-the-fourth-industrial-revolution/

2.    Lewis DI (2011) Enhancing student employability through ethics-based outreach activities and OERs. Bioscience Education 18, 7SE https://www.tandfonline.com/doi/full/10.3108/beej.18.7SE

3.    Lewis DI (2020a). Final year or Honours projects: Time for a total re-think? Physiology News 119: 10-11.

4.    Lewis DI (2020b). Choosing the right final year research, honours or capstone project for you. Skills career pathways & what’s involved. https://bit.ly/ChoosingBioCapstone

5.    Lewis DI (2020c). Final year research, honours or capstone projects in the Biosciences. How to Do it Guides. https://bit.ly/BiosciCapstones

6.    Lewis DI (2020d) E-Biopracticals (Collection of simulations & e-learning resources for use in Bioscience practical education. Available at: https://bit.ly/e-BioPracticals

7.    Lewis DI (2020e) Open access data repositories (Collection of large datasets, data analysis & visualization tools).  Available at: https://bit.ly/OADataRep.

 

Dr. Dave Lewis is currently a Senior Lecturer (Associate Prof) in Pharmacology and Bioethics in the School of Biomedical Sciences, University of Leeds, UK. A student education focused colleague, he creates inspirational educational and professional educational interventions designed to promote learner personal and professional development, and prepare them for the workplace.  He is the architect of the introduction of capstone projects into Bioscience programs across the UK and beyond.  He also Chairs the International Union of Basic & Clinical Pharmacology’s Integrative & Organ Systems Pharmacology Initiative, working with Professional and Regulatory Bodies, and NGOs in India, China and across Africa to co-create and co-deliver professional education in research animal sciences and ethics.

In recognition of his exceptional contribution to Bioscience Higher Education globally, he has received multiple prestigious education awards including a UK Advance HE National Teaching Fellowship and its Collaborative Teaching Excellence Award, the (UK) Biochemical Society’s Teaching Excellence Award, the (UK) Physiological Society’s Otto Hutter Teaching Prize, and Fellowship of the British Pharmacological Society & its Zaimis Prize.

The Olympics, sex, and gender in the physiology classroom
The recent Tokyo Olympic Games present an opportunity for a number of intriguing discussions in a physiology classroom.  Typical discussion topics around the Olympic Games involve muscle strength, muscle power, aerobic fitness, bioenergetics, and a number of other physiological factors that determine athletic performance.  Coronavirus, immunity, disease transmission, and similar topics may be unique areas of discussion related to the Tokyo Olympic Games.  Another topic that has been prevalent in the news for the Tokyo Olympic Games is the role of sex and gender in athletic competition.

Before and during the Tokyo Olympic Games several athletes were featured in news headlines due to either gender identity or differences of sexual development (DSD, also sometimes called disorders of sexual development).  Male-to-female transgender athletes competing in women’s sports in the Tokyo Olympic Games include weightlifter Laurel Hubbard, archer Stephanie Barrett, cyclist Chelsea Wolfe, soccer player Quinn, and volleyball player Tifanny Abreu, (1, 2).  There have also been news stories about Caster Semenya, Christine Mboma, and Beatrice Masilingi being ineligible to participate in the Olympics due to their DSD causing their serum testosterone concentrations to be above the allowed limits for female athletes (3, 4).  In addition to physiology sex and gender are interwoven with culture, religion, and politics, so how to discuss sex and gender in the physiology classroom needs to be carefully considered by each instructor depending on the campus climate, policies, and individual comfort level with walking into these potential minefields.  However, sex and gender in sports are very appropriate topics to discuss from a physiological perspective.

Although sex and gender have been used interchangeably in common conversation and in the scientific literature, the American Psychological Association defines sex as “physical and biological traits that distinguish between males and females” (5) whereas gender “implies the psychological, behavioral, social, and cultural aspects of being male or female (i.e., masculinity or femininity)” (6).  Using these definitions can be helpful to draw a clear distinction between gender (and/or gender identity) as a social construct and sex as a biological variable, which can help focus the discussion on physiology.

As reviewed by Mazure and Jones (7) since 1993 the NIH puts a priority on funding research that includes women as well as men in clinical studies and includes an analysis of the results by sex or gender.  Mazure and Jones (7) also summarized a comprehensive 2001 Institute of Medicine sponsored evaluation that concluded that every cell has a sex.  A 2021 Endocrine Society scientific statement provides considerable information on the biological basis of human sexual dimorphism, disorders of sexual development, and lack of a known biological underpinning for gender identity (8).  On August 12, 2021 a PubMed search using the term “Sex Matters” (in quotation marks) returned 179 results, with many of the linked papers demonstrating the importance of sex for health, disease, and overall biological function (without quotation marks there were 10,979 results).  Given that there have been various discussions in the news media and across social media blurring the distinction between sex and gender, it is very important that students in physiology understand that sex in humans is an important biologically dimorphic trait of male or female.

Relevant to a discussion of the Olympic Games, the differences in performance between male and female running has been analyzed for world’s best and world’s 100th best (9), annual world’s best performance (10), world record performance (11-13), Olympic and elite performance (13-16), High School performance in CA, FL, MN, NY, and WA (17), and 100 all-time best Norwegian youth performance (18).  Hilton and Lundberg (19) also provided an excellent review of the large differences in athletic performance between men and women in numerous sports.  Overall, by mid-puberty males outperform comparably aged and trained females by 10-60%, depending on the sport (see figure 1 of Hilton and Lundberg, reproduced here with no changes under the Creative Commons license https://creativecommons.org/licenses/by/4.0/).

 

Hilton and Lundberg (19) also reviewed the present state of research regarding the effects of male-to-female hormone treatment on muscle strength and body composition and concluded that men typically have 45% more muscle mass than women, and male-to-female hormone treatment reduces muscle mass by ~5%.  These authors also concluded that men typically have 30-60% higher muscle strength than women, and male-to-female hormone treatment reduces muscle strength by 0-9%.  Overall, Hilton and Lundberg (19) conclude that transwomen retain considerable advantages over cisgender women even after 1-3 years of male-to-female hormone treatment.  Harper at al. (20) also reviewed the research regarding the effects of male-to-female hormone treatment on muscle strength and body composition and came to the same conclusions as Hilton and Lundberg.  Harper et al. (20) further concluded that male-to-female hormone treatment eliminates the difference in hemoglobin concentrations between cisgender men and women.  In a single research project, Roberts et al. (21) observed that before transition male-to-female members in the US Air Force completed a 1.5 mile running fitness test 21% faster than comparably aged cisgender women.  After 2.5 years of male-to-female hormone treatment the transwomen completed the 1.5 mile running fitness test 12% faster than comparably aged cisgender women. (Figure 1 Hilton and Lundberg)

All of the previously mentioned information is important to consider when asking if transwomen can be fairly and safely included in women’s sports.  It is also important to note that the effects of male-to-female hormone treatment on important determinants of athletic performance remain largely unknown.  Measurements of VO2max in transwomen using direct or indirect calorimetry are not available.  Measurements of muscle strength in standard lifts (e.g. bench press, leg press, squat, deadlift, etc.) in transwomen are not available.  Nor have there been evaluations of the effects of male-to-female hormone therapy on agility, flexibility, or reaction time.  There has been no controlled research evaluating how male-to-female hormone treatment influences the adaptations to aerobic or resistance training.  And there are only anecdotal reports of the competitive athletic performance of transwomen before and after using male-to-female hormone treatment.

The safe and fair inclusion of transgender athletes and athletes with DSD in women’s sports is a topic being debated in many states and countries, and by many sporting organizations including the International Olympic Committee.  In the end, whether it is safe and fair to include transgender athletes and athletes with DSD in women’s sports comes down a few facts that can be extrapolated, lots of opinions, and an interesting but complicated discussion.  This is a worthwhile discussion in a physiology classroom because it allows a good review of the biologically dimorphic nature of human sex.  However, the safe and fair inclusion of transgender athletes and athletes with DSD in women’s sports is also a discussion that should be approached with caution due to the many opinions this topic entails that reside outside of physiology.

 

 

1.    The Economist explains: Why are transgender Olympians proving so controversial? The Economist. https://www.economist.com/the-economist-explains/2021/07/16/why-are-transgender-olympians-proving-so-controversial. [Accessed: August 12, 2021, 2021].

2.    Pruitt-Young S. Live Updates: The Tokyo Olympics Canadian Soccer Player Quinn Becomes The First Out Trans And Nonbinary Gold Medalist NPR. https://www.npr.org/2021/08/06/1025442511/canadian-soccer-player-quinn-becomes-first-trans-and-nonbinary-olympic-gold-meda. [Accessed: August 12, 2021, 2021].

3.    The Clock Ticks on Caster Semenya’s Olympic Career https://www.nytimes.com/2021/06/28/sports/olympics/caster-semenya-olympics-gender.html. [Accessed: August 12, 2021, 2021].

4.    Tokyo 2020: Two Namibian Olympic medal contenders ruled ineligible for women’s 400m due to naturally high testosterone levels CNN. https://www.cbs58.com/news/tokyo-2020-two-namibian-olympic-medal-contenders-ruled-ineligible-for-womens-400m-due-to-naturally-high-testosterone-levels. [Accessed: August 21, 2021, 2021].

5.    APA Dictionary of Psychology: sex. American Psychological Association. https://dictionary.apa.org/sex. [Accessed: August 12, 2021, 2021].

6.    APA Dictionary of Psychology: gender. American Psychological Association. https://dictionary.apa.org/sex. [Accessed: August 12, 2021, 2021].

7.    Mazure CM, and Jones DP. Twenty years and still counting: including women as participants and studying sex and gender in biomedical research. BMC Womens Health 15: 94, 2015.

8.    Bhargava A, Arnold AP, Bangasser DA, Denton KM, Gupta A, Hilliard Krause LM, Mayer EA, McCarthy M, Miller WL, Raznahan A, and Verma R. Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocr Rev 2021.

9.    Sparling PB, O’Donnell EM, and Snow TK. The gender difference in distance running performance has plateaued: an analysis of world rankings from 1980 to 1996. Med Sci Sports Exerc 30: 1725-1729, 1998.

10.  Tang L, Ding W, and Liu C. Scaling Invariance of Sports Sex Gap. Front Physiol 11: 606769, 2020.

11.  Cheuvront SN, Carter R, Deruisseau KC, and Moffatt RJ. Running performance differences between men and women:an update. Sports Med 35: 1017-1024, 2005.

12.  Thibault V, Guillaume M, Berthelot G, Helou NE, Schaal K, Quinquis L, Nassif H, Tafflet M, Escolano S, Hermine O, and Toussaint JF. Women and Men in Sport Performance: The Gender Gap has not Evolved since 1983. J Sports Sci Med 9: 214-223, 2010.

13.  Sandbakk O, Solli GS, and Holmberg HC. Sex Differences in World-Record Performance: The Influence of Sport Discipline and Competition Duration. Int J Sports Physiol Perform 13: 2-8, 2018.

14.  Millard-Stafford M, Swanson AE, and Wittbrodt MT. Nature Versus Nurture: Have Performance Gaps Between Men and Women Reached an Asymptote? Int J Sports Physiol Perform 13: 530-535, 2018.

15.  Seiler S, De Koning JJ, and Foster C. The fall and rise of the gender difference in elite anaerobic performance 1952-2006. Med Sci Sports Exerc 39: 534-540, 2007.

16.  Nuell S, Illera-Dominguez V, Carmona G, Alomar X, Padulles JM, Lloret M, and Cadefau JA. Sex differences in thigh muscle volumes, sprint performance and mechanical properties in national-level sprinters. PLoS One 14: e0224862, 2019.

17.  Higerd GA. Assessing the Potential Transgender Impact on Girl Champions in American High School Track and Field. In: Sports Management. PQDT Open: United States Sports Academy, 2020, p. 168.

18.  Tonnessen E, Svendsen IS, Olsen IC, Guttormsen A, and Haugen T. Performance development in adolescent track and field athletes according to age, sex and sport discipline. PLoS One 10: e0129014, 2015.

19.  Hilton EN, and Lundberg TR. Transgender Women in the Female Category of Sport: Perspectives on Testosterone Suppression and Performance Advantage. Sports Med 2020.

20.  Harper J, O’Donnell E, Sorouri Khorashad B, McDermott H, and Witcomb GL. How does hormone transition in transgender women change body composition, muscle strength and haemoglobin? Systematic review with a focus on the implications for sport participation. Br J Sports Med 2021.

21.  Roberts TA, Smalley J, and Ahrendt D. Effect of gender affirming hormones on athletic performance in transwomen and transmen: implications for sporting organisations and legislators. Br J Sports Med 2020.

Dr. Greg Brown is a Professor of Exercise Science in the Department of Kinesiology and Sport Sciences at the University of Nebraska at Kearney where he has been a faculty member since 2004. He is also the Director of the General Studies program at the University of Nebraska at Kearney. He earned a Bachelor of Science in Physical Education (pre-Physical Therapy emphasis) from Utah State University in 1997, a Master of Science in Exercise and Sport Science (Exercise Physiology Emphasis) from Iowa State University in 1999, and a Doctorate of Philosophy in Health and Human Performance (Biological Basis of Health & Human Performance emphasis) from Iowa State University in 2002. He is a Fellow of the American College of Sports Medicine and an American College of Sports Medicine Certified Exercise Physiologist.
The COVID-19 Pandemic: An Opportunity for Change in my Teaching

As the 2020-21 academic year ended, I sighed with relief. I had survived the switch to an online teaching format, wearing a mask while teaching when I had to have a class in-person, and the loss of my father. But as quickly as my sighs of relief subsided, I began to wonder, “What will happen next academic year?” Will I be teaching all my classes in-person, will my classes be online, or will I have some classes or labs online and others in-person? As these questions swirled in my head, I began to reflect on this past year. Teaching online was tough. There were activities that bombed. But there were activities that rocked. And there were activities that could be improved. And believe it or not, there were some great things that came from teaching online. Some had to do with content, some had to do with skills, and some had to do with community. Now comes the challenge of choosing what I should take with me, and what I should leave behind? And as I reflected, I realized there are two experiences from this past year I want to use this year, whether I am teaching in-person or online. One had to do with the idea of community and the other had to do with skills. While others came up, I decided to be kind to myself and focus on two.

1. Forming an Inclusive Scientific Community
Prior to the COVID-19 pandemic, I had never taught a course online nor had I taken a class online. I had attended webinars but had never presented an online seminar either. Now I was being asked to teach courses online to students I had never met, and these students had never met each other in-person either. When I reflected on my teaching in-person, I realized I had never worried about whether I knew the students immediately or whether they knew each other. I assumed their presence in class with me and with the other students would allow relationships to form and a learning community to be built. But now they were just images on a screen and often, just names since cameras were not always on.
Now that I was teaching online, I had to be more intentional about building a learning community. This was to help not only me but also my students. Research has shown that students do not just want to be faces in a crowd (1, 2). They want to be recognized by the professor and by their peers. And as the pandemic progressed, they needed this more personal interaction. Creating a community would foster interaction and make students comfortable to share in an online environment (1, 2). To begin, I included icebreaker activities to allow me and the students to learn more about each other. And these icebreakers were not a one and done activity. They continued throughout the first several weeks of class. As the semester continued, polls or questions replaced the icebreakers. These were questions anyone could answer. They could be content questions, well-being checks, or simple questions about plans for the weekend or favorite ice cream. All meant to foster community. When in the classroom, peer interactions can be observed by the instructor. In the online classroom, it was more difficult to monitor interactions and those who were uncomfortable with group work could disappear when the breakout rooms opened.
Including these activities online allowed me and the students to feel like we were in this class together. While I was not a student, I was no longer “The Sage on the Stage.” We, the professor and the students, were in this online learning community together. When an online activity was successful, we celebrated together. If something did not work, what discussed the activity and what we could change. This community was most evident when my father fell ill and then passed away. These students I had been working with stepped up and helped me during this emotionally challenging time. While I still guided their learning, they took more on themselves, and they helped each other and me. The entire year we had spoken about grace and that we all needed to give and receive it. They gave me grace when I needed it most. Who would not want to take this community into the in-person classroom?


2. Promoting Scientific Soft Skills
With the initial move to online teaching, one of the challenges faced was laboratory experiments. Many laboratory exercises require specialized equipment (3). In my case, this was the Biopac Student Lab System®. One of the benefits of this system is that students get to record physiologic data on each other. The cost of and logistical issues regarding supervision and liability for the Biopac® home system prevented me from using this as an option. However, one of the benefits of the Biopac Student Lab System® is the free access to sample data and the free analysis software for downloading offered by the company (Figure 1). Additionally, as I had been using these systems for over 10 years, I had previously recorded student data at my fingertips (Figure 2). Students could download the software to their personal computers and open any shared data for analysis. While the students were not actually recording the data themselves, this provided an alternative for learning about physiological processes with data from subjects. This also allowed me to have the students focus more on how they presented the results and how they discussed the science behind the results. We could focus on the writing of the results and the understanding of the science because the students were no longer focusing on the possibility of user error as to why they did not get the results expected.
As I was reflecting, I realized that with lab exercises moving online that the reduction in focus on learning how to use equipment and collect data was a positive (3). This allowed students to focus on writing and understanding what they were writing. This made me think that I could expand the use of pre-recorded data to include other skills such as inter-rater reliability and statistical analysis. As stated earlier, in my physiology courses, students consistently would state user error was the reason they did not get the results they expected. While this may have been the case for some experiments it was not always the case. This is where sample raw data, whether the raw data was from the equipment company or recordings from prior years’ labs, is useful. Students can be provided with the same raw data to be analyzed. Students could then compare results with each other and determine if they were following the same directions for analyzing the data. The closer the values to their peers suggested they were analyzing the data in a comparable manner.
Another interesting opportunity that pre-recorded data provides is the ability to discuss statistical significance in a more detailed fashion. Often when students are collecting and analyzing their own raw data, there is not enough time to aggregate the data for statistical analysis. Now students could all be given multiple sets of raw data to analyze, these results could be aggregated, and statistical analysis performed. In upper-level courses, students can then learn when to use t-tests versus ANOVA, learn about post hoc tests, and p-values. As journals and professional societies recommend more in-depth presentation of statistical analysis, this can be added as well. In more introductory courses, this could be modified to focus on mean and standard deviation. Finally, by focusing on inter-rater reliability and statistics, students can further improve their writing of the results and discussion sections.
One of the reasons labs are often popular is because students get to be the scientist. I do not want this to disappear when in-person labs return. I still want students to learn how to use the Biopac® systems and record data from each other when we return to class; seeing the excitement in the students’ eyes when they see the ECG or EMG recording of their own bodies is one of the joys of teaching. But I want to find ways to keep the positive aspects of using pre-recorded data. Could this be a pre-lab activity? Could I take one or two of the experiments we do and provide the data rather than record the data? Could I have students record their own data and exchange the raw data with each other? I am still trying to decide how this might look in my class. Maybe that is my next blog?
In conclusion, the COVID-19 pandemic created a flurry of change in a short period of time. In higher education, we are not used to this quick a change. And as humans, we are typically resistant to change. However, I suggest that instead of being anxious to return to the way we used to be that we look back at this time as a needed push for some change. We should use this opportunity to see what we changed that made our teaching better.

1. Faulkner SL, Watson WK, Pollino MA, Shetterly JR. “Treat me like a person, rather than another number”: university student perceptions of inclusive classroom practices. Communication Education. 2021;70(1):92-111. doi: 10.1080/03634523.2020.1812680.
2. Kirn-Safran CB, Reid AC, Chatman MM. Peer Mentors Prove to be Strong Assets in Virtual Anatomy & Physiology Labs. Imprint. 2021:16-8.
3. Xinnian Chen CBK-S, Talitha van der Meulen, Karen L. Myhr, Alan H. Savitzky, Melissa A. Fleegal-DeMotta. Physiology Labs During a Pandemic: What did we learn? Advances in Physiology Education. 2021;In Press.

Figure 1: Image of free download Biopac Student Analysis Software®. Note you can review a saved lesson, analyze sample data from the company, or analyze data collected in the lab.

Figure 2:  Image of pre-recorded spirogram with vital capacity indicated. Values are indicated in the boxes on the top of the spirogram.

Opening image Creator: Victoria Bar; Credit: Getty Images

Melissa DeMotta, PhD is currently an Associate Professor of Biology at Clarke University in Dubuque, IA. Melissa received her BS in biology from Lebanon Valley College. After working for three years at Penn State’s College of Medicine in Hershey, PA, she received her PhD in Physiology and Pharmacology from the University of Florida in Gainesville. Following postdoctoral fellowships at the University of Arizona and Saint Louis University, Melissa joined the Biology Department at Clarke University. Melissa currently teaches Human Physiology and Exercise Physiology to physical therapy graduate students and undergraduates. She also enjoys teaching non-majors life science courses as well.