As the 2020-21 academic year ended, I sighed with relief. I had survived the switch to an online teaching format, wearing a mask while teaching when I had to have a class in-person, and the loss of my father. But as quickly as my sighs of relief subsided, I began to wonder, “What will happen next academic year?” Will I be teaching all my classes in-person, will my classes be online, or will I have some classes or labs online and others in-person? As these questions swirled in my head, I began to reflect on this past year. Teaching online was tough. There were activities that bombed. But there were activities that rocked. And there were activities that could be improved. And believe it or not, there were some great things that came from teaching online. Some had to do with content, some had to do with skills, and some had to do with community. Now comes the challenge of choosing what I should take with me, and what I should leave behind? And as I reflected, I realized there are two experiences from this past year I want to use this year, whether I am teaching in-person or online. One had to do with the idea of community and the other had to do with skills. While others came up, I decided to be kind to myself and focus on two.
1. Forming an Inclusive Scientific Community
Prior to the COVID-19 pandemic, I had never taught a course online nor had I taken a class online. I had attended webinars but had never presented an online seminar either. Now I was being asked to teach courses online to students I had never met, and these students had never met each other in-person either. When I reflected on my teaching in-person, I realized I had never worried about whether I knew the students immediately or whether they knew each other. I assumed their presence in class with me and with the other students would allow relationships to form and a learning community to be built. But now they were just images on a screen and often, just names since cameras were not always on.
Now that I was teaching online, I had to be more intentional about building a learning community. This was to help not only me but also my students. Research has shown that students do not just want to be faces in a crowd (1, 2). They want to be recognized by the professor and by their peers. And as the pandemic progressed, they needed this more personal interaction. Creating a community would foster interaction and make students comfortable to share in an online environment (1, 2). To begin, I included icebreaker activities to allow me and the students to learn more about each other. And these icebreakers were not a one and done activity. They continued throughout the first several weeks of class. As the semester continued, polls or questions replaced the icebreakers. These were questions anyone could answer. They could be content questions, well-being checks, or simple questions about plans for the weekend or favorite ice cream. All meant to foster community. When in the classroom, peer interactions can be observed by the instructor. In the online classroom, it was more difficult to monitor interactions and those who were uncomfortable with group work could disappear when the breakout rooms opened.
Including these activities online allowed me and the students to feel like we were in this class together. While I was not a student, I was no longer “The Sage on the Stage.” We, the professor and the students, were in this online learning community together. When an online activity was successful, we celebrated together. If something did not work, what discussed the activity and what we could change. This community was most evident when my father fell ill and then passed away. These students I had been working with stepped up and helped me during this emotionally challenging time. While I still guided their learning, they took more on themselves, and they helped each other and me. The entire year we had spoken about grace and that we all needed to give and receive it. They gave me grace when I needed it most. Who would not want to take this community into the in-person classroom?
2. Promoting Scientific Soft Skills
With the initial move to online teaching, one of the challenges faced was laboratory experiments. Many laboratory exercises require specialized equipment (3). In my case, this was the Biopac Student Lab System®. One of the benefits of this system is that students get to record physiologic data on each other. The cost of and logistical issues regarding supervision and liability for the Biopac® home system prevented me from using this as an option. However, one of the benefits of the Biopac Student Lab System® is the free access to sample data and the free analysis software for downloading offered by the company (Figure 1). Additionally, as I had been using these systems for over 10 years, I had previously recorded student data at my fingertips (Figure 2). Students could download the software to their personal computers and open any shared data for analysis. While the students were not actually recording the data themselves, this provided an alternative for learning about physiological processes with data from subjects. This also allowed me to have the students focus more on how they presented the results and how they discussed the science behind the results. We could focus on the writing of the results and the understanding of the science because the students were no longer focusing on the possibility of user error as to why they did not get the results expected.
As I was reflecting, I realized that with lab exercises moving online that the reduction in focus on learning how to use equipment and collect data was a positive (3). This allowed students to focus on writing and understanding what they were writing. This made me think that I could expand the use of pre-recorded data to include other skills such as inter-rater reliability and statistical analysis. As stated earlier, in my physiology courses, students consistently would state user error was the reason they did not get the results they expected. While this may have been the case for some experiments it was not always the case. This is where sample raw data, whether the raw data was from the equipment company or recordings from prior years’ labs, is useful. Students can be provided with the same raw data to be analyzed. Students could then compare results with each other and determine if they were following the same directions for analyzing the data. The closer the values to their peers suggested they were analyzing the data in a comparable manner.
Another interesting opportunity that pre-recorded data provides is the ability to discuss statistical significance in a more detailed fashion. Often when students are collecting and analyzing their own raw data, there is not enough time to aggregate the data for statistical analysis. Now students could all be given multiple sets of raw data to analyze, these results could be aggregated, and statistical analysis performed. In upper-level courses, students can then learn when to use t-tests versus ANOVA, learn about post hoc tests, and p-values. As journals and professional societies recommend more in-depth presentation of statistical analysis, this can be added as well. In more introductory courses, this could be modified to focus on mean and standard deviation. Finally, by focusing on inter-rater reliability and statistics, students can further improve their writing of the results and discussion sections.
One of the reasons labs are often popular is because students get to be the scientist. I do not want this to disappear when in-person labs return. I still want students to learn how to use the Biopac® systems and record data from each other when we return to class; seeing the excitement in the students’ eyes when they see the ECG or EMG recording of their own bodies is one of the joys of teaching. But I want to find ways to keep the positive aspects of using pre-recorded data. Could this be a pre-lab activity? Could I take one or two of the experiments we do and provide the data rather than record the data? Could I have students record their own data and exchange the raw data with each other? I am still trying to decide how this might look in my class. Maybe that is my next blog?
In conclusion, the COVID-19 pandemic created a flurry of change in a short period of time. In higher education, we are not used to this quick a change. And as humans, we are typically resistant to change. However, I suggest that instead of being anxious to return to the way we used to be that we look back at this time as a needed push for some change. We should use this opportunity to see what we changed that made our teaching better.
1. Faulkner SL, Watson WK, Pollino MA, Shetterly JR. “Treat me like a person, rather than another number”: university student perceptions of inclusive classroom practices. Communication Education. 2021;70(1):92-111. doi: 10.1080/03634523.2020.1812680.
2. Kirn-Safran CB, Reid AC, Chatman MM. Peer Mentors Prove to be Strong Assets in Virtual Anatomy & Physiology Labs. Imprint. 2021:16-8.
3. Xinnian Chen CBK-S, Talitha van der Meulen, Karen L. Myhr, Alan H. Savitzky, Melissa A. Fleegal-DeMotta. Physiology Labs During a Pandemic: What did we learn? Advances in Physiology Education. 2021;In Press.
Figure 1: Image of free download Biopac Student Analysis Software®. Note you can review a saved lesson, analyze sample data from the company, or analyze data collected in the lab.
Figure 2: Image of pre-recorded spirogram with vital capacity indicated. Values are indicated in the boxes on the top of the spirogram.
Opening image Creator: Victoria Bar; Credit: Getty Images