Author Archives: Kayla Palmer

Keeping the Connection Alive During Remote Instruction
Candace Receno, PhD
Assistant Professor, Exercise Science & Athletic Training
Ithaca College

As a first year Assistant Professor, making the shift to remote learning during COVID-19 was certainly a gamechanger. As many previous blog posts have highlighted, the way we needed to look at instruction changed and forced both students and faculty to rapidly adapt. There were so many things that needed to be considered when making the transition. How flexible can our students be, now that some have become primary caretakers or have fallen ill or need to seek employment? How do instructors tackle making significant changes to their course, now that they are also dealing with similar issues? How do both groups create and participate in a high-quality course experience with fewer resources and a very short amount of time to adjust? Many of the insightful blogs posted have really highlighted how to keep these considerations in mind in order to create online courses that still meet course objectives and foster a high-quality learning experience. I have learned so much through reading these posts, in addition to numerous resources provided to our community. Through integration of these resources into my own courses, I found myself also trying to think of ways that I could keep the courses inherently “me”. Engaging and connecting with students on a personal level has always been something that I found helpful to my own teaching, but becomes hard when the mode of communication has shifted. This can also be difficult when some classes must be delivered asynchronously, in an effort to accommodate the changing lifestyles of our students. Perhaps just as important to a high-quality learning experience as shifting our instruction methods, is finding new ways to create the human connection that is much easier developed with on-campus learning. Here, I highlight some of the methods I found to be successful in making sure that I was able to keep my students engaged in the course while miles apart. While these may sound like really simple ideas, I’ll admit that I didn’t realize how important they were to the student experience until I had reflective conversations with many students after the Spring semester. With times of uncertainty still ahead, I plan to continue using these methods in the future.

1. Staying online after the class has ended.

This is probably the simplest of the suggestions to integrate, but really seemed to make a difference in getting the students more comfortable opening up over the computer screen. For my synchronous courses, I always ended class time by reminding the students I would stay in the virtual classroom to answer any questions or just to chat. I found that once students realized I would be sticking around for a few minutes regardless of if anyone else stayed, they were more willing to hang around and ask questions they might not have felt comfortable asking in front of other students or e-mailing me about. This also gave me another opportunity to reflect on how I was constructing my online course materials. Hearing what points students needed extra clarification on forced me to consider how topics that were ordinarily well understood in the physical classroom needed to be shifted with remote instruction.

2. Integrating video/audio into online discussion boards.

I needed to teach asynchronously for a particular course where students had concerns about internet availability and meeting other personal obligations, which came with completely different issues from my synchronous course. Posting notes in addition to pre-recorded lectures allowed me to successfully get course material across, but it was still missing the personal component that is fostered via in class discussion. The use of discussion boards where both the students and I posed questions to one another helped with that. Importantly, I asked students to record their questions/answers for the discussion board via video or audio whenever possible. Students continually reported that it was nice to actually hear and see one another even though live sessions were not possible. Moreover, they described how it was nice to laugh and share with one another, as responses did not have to be rehearsed and could closely mimic what might have happened in the physical classroom. 

3. Holding several office hours, varying in day and time.

Disclaimer: This may be harder to implement for some individuals because with COVID-19 comes a host of additional responsibilities and stresses that need to be attended to. But, if possible even for one day, I highly recommend it. The traditional times for which we hold office hours may not be feasible when we take into account the added responsibilities of needing to stay at home. So, why not hold office hours at different times that lend themselves to our new schedules? I found that holding office hours much later than I normally would resulted in many more students coming to them. Moreover, similar to my first suggestion, I made sure that students knew I’d be in the meeting room for my virtual hours regardless of if students signed up or not. Previously, I had always had an “open door policy” where students knew they could stop by my office without prior notice as long as my door was physically open. The new virtual office hours I held helped to mimic that. By having drastically different hours on different days, I tried to make sure that students could stop in whenever suited them. An important memory that stuck with me about this particular method was an instance when I was available at 7 pm on a Tuesday night. I had a student who showed up just wanting to talk, and stated, “I figured I wasn’t bothering you since you were on here anyway.”  Prior to COVID-19, she often stopped in to talk about how things were going. Through our virtual conversation, I learned that this student wasn’t seeking any help related to the class, but just wanted to talk because it helped things feel “normal” again. Even if you can’t hold a large variety of office hours, I truly think that doing something that helps mimic the ways you previously interacted with your students is so helpful during this time.

4. Holding “unofficial” hours.

This was a tip that I originally learned from a colleague, and adapted to fit my own subject matter. This colleague would host “unofficial”  hours, where she would sporadically e-mail students to let them know she would be in an online meeting room partaking in some fun activity. For example, on a random weeknight, she e-mailed students and said they could join in on her quest to make enchiladas. Several students took her up on that offer, and she used it as a time for the class to come together without any defined learning expectations. This gave her students the opportunity to connect as they would have previously, in a class that was now asynchronous during remote learning. She began to take sessions one step further, and would ask her students to describe ingredients in her cooking sessions in the context of her speech language pathology lectures. In an effort to take her advice and put my own spin on it, I began asking students to join me when I would participate in online workouts. It became a great way to have students connect with their classmates using an activity that we all had some interest in. With students in my pathophysiology course, I’d sneak in questions about how students felt after participating in a particular exercise and how this might impact the clinical populations they work with, giving me a way to reiterate what they had learned in a real-world context. 

In my experience, a large part in keeping students engaged was understanding that the human component to a course has the potential to impact student learning irrespective of how well we can pivot our course formats to meet remote instruction needs. No matter how it’s done, showing the students that you are still on the other side of that WiFi signal is an important consideration for all of us. I hope that my experience helps to identify other ways you might do this, and I’d appreciate you sharing your own ways to cultivate the student-instructor relationships via online methods.

Candace Receno is an assistant professor in the Exercise Science & Athletic Training department at Ithaca College in Ithaca, NY. She earned her PhD in Science Education from Syracuse University and served as a Post-Doctoral Fellow in the Biological Sciences department at Le Moyne College for two years. Candace just completed her first year as an Assistant Professor at Ithaca College, where her undergraduate and graduate courses include Advanced Exercise Physiology, Cardiopulmonary Assessment for Exercise, Pathophysiology, and Foundations of Human Performance and Wellness. She also hopes to continue engaging undergraduates in research related to exercise performance in special populations.

Teaching an Integrated Human Anatomy and Physiology Course: Additional Lessons Learned and Online Course Adjustments
Jennifer Ann Stokes, PhD
Assistant Professor of Kinesiology
Southwestern University

In my previous blog post, I outlined the lessons learned in my first run teaching a year-long integrated upper-division human anatomy and physiology course. It has been about a year and a half since the original post and after having taught the course for a second time I will review and add to my list of initial lessons learned. Additionally, this spring semester brought new challenges with a very swift move to online coursework due to COVID-19, so I will also comment on the resulting course alterations. As a reminder, this course sequence (A&P I and II) is an upper-division junior and senior level course at my college and class sizes are very small (20-24 students) allowing for maximum time for interaction, questions, and instructor guidance both in lecture and lab.

First, I will review the previous lessons learned and add additional commentary based on what I learned in my second year. If you haven’t yet, I would check out the previous blog for the initial notes.

1) Use an integrative textbook.

My textbook of choice is still Physiology: An Integrated Approach by Dee U. Silverthorn. For anatomy, I continued to supplement the anatomy information, such as the specifics of the skeletal system and joints, muscles, histology, etc., through the use of models and other reference material in hands-on lab activities. One addition made in the second year was the use of AD Instrument’s Lt online learning platform.  I discuss the addition of Lt in more detail later in this post, but I think it is important to note here too since the Lt lessons directly complemented the textbook material and helped bridge the gap between lecture and lab for the students.

2) Start building and assessing students’ A&P knowledge from the ground up, and build incrementally.

Laying the foundation for the core concepts is critical to the student’s understanding, application, and mastery of the complex integrative content that this course builds. I took this foundation building more seriously the second time around and, in the end, I did not have to spend more time on the basic content but instead I provided more formative assessment opportunities. This helped the students who did not have as strong a background or understanding of the basic material to recognize that they needed additional assistance. In addition to the weekly homework assignments which were graded for completion only, I added weekly low-stake quizzes using our learning management system (LMS). At first I thought the students would dislike the extra work, but an end-of-the-year survey indicated that they appreciated the extra practice and that the quizzes helped them feel better prepared for the exams.

3) Create a detailed course outline, and then be prepared to change it.

This lesson holds true for just about any course, but I found it especially true for an integrated A&P course – even when teaching it a second time. And it is even more important when you have to switch to online delivery. In the second year, I learned to appreciate that no two cohorts of students are the same and what took the previous cohort a day to master took the next cohort up to two days in some cases. Having the “flex days” at the end of each section was crucial for concept review and content integration. These are days where no new content is introduced, but instead we review and practice together.

4) Constantly remind your students of the new course format.

I cannot emphasize this enough: students will want to revert back to what they are comfortable with and what has worked for them in the past. I constantly remind students that their “cram and forget” method will not serve them well in this course and provide them with ample opportunity to practice this both on the formative and summative assessments. In the second year I continued the individual meetings with each student after their first exam to discuss study strategies and new ways to approach this material, but I also implemented additional check-ins throughout the year particularly with those students who were struggling. I continued to remind the students that the course content not only builds throughout the entire semester but also the entire year! I hammered this point home a bit more with the addition of “retention” quizzes which were delivered unannounced throughout the year and tested major core concepts and application.

5) Solicit student feedback.

Students can be brutally honest, so use that to your advantage. A lot of the new things I added in my second year teaching this course came from the first year-student feedback. I send out my own surveys with specific questions throughout the year which the students fill out anonymously. I find that students are happy to help, especially when they can see a course alteration mid-semester which was based on their feedback.

6) Be prepared to spend a lot of time with students outside of the classroom.

Still very true, but that’s probably my favorite part of this job. Even when we switched to online course delivery the virtual office hours were busy and students took advantage of the extra review and time to ask questions. 

In this second section, I will add additional lessons learned in my second year of teaching this course and comment on the changes made when the course moved online mid-way through the second semester.  

7) Over-communication.

One of the things I am known for with my students is consistent and clear communication, probably to the point of over-communication. I also emphasize that communication is a two-way street, so just as I am constantly communicating information to them, I expect them to do the same to me, including any accommodations, sports travel, or general course questions. I model this behavior with regular use of our LMS announcement page and I use the start of each class to review important deadlines and open the floor for questions. The move to online instruction only made this over-communication even more important. Early on in the transition period I checked in often to let them know the new plan and opened discussion pages to allow them to ask questions and express any concerns. I checked in multiple times a day using the LMS announcement page, posted a “live” course schedule and tables of new homework and quiz due dates all in one central location, and I added silly memes to the discussion boards to up engagement. I also added resource pages on the basics of Zoom and how to be an online student since this was very new territory for them (and me). Looking back this was a lot of information that was constructed and disseminated very quickly, but an end-of-the-year survey indicated they appreciated the information and that it told them that I was prepared and willing to help them during the transition.

8) More assessments. More practice. More activity.

In my second year, I assigned more practice problems from the textbook to help the students prepare for the exams and held problem sessions outside of class for review. This additional time and practice was well received even when it was a greater time commitment for the students. With the move to online instruction I was thankful that I had already established a fairly homework-heavy course as these assignments became even more important. The assigned “lecture” time was switched to virtual problem solving sessions and the course moved even more toward a flipped-classroom model. Since the switch to online occurred after I had already built a pretty solid reputation with this class (about a semester and a half) they were used to reading and problem solving before class, even if that class was now online. All homework and quizzes moved online which allowed for quicker feedback to the students on their progress and, thus, more time for questions before the exams. The switch to fully online homework and quizzes I plan to keep even when the course moves back to in-person as the quick feedback for the students and less time spent hand-grading by me is worth the extra time it takes to set-up the online modules.

9) Utilization of LMS Discussion Forums.

Honestly, the use of the LMS discussion forums did not start until the course moved online, but their quick success made me question why I had not taken advantage of this tool earlier. When the course moved online I added discussion pages with titles such as “What is going on?!? General course questions.” and “What I am most nervous about with the course moving online is…” The goal was to provide an outlet for students to ask questions and share their concerns. I always started the discussion myself, giving them a sort of “jumping off” point and an example. These discussion pages were utilized by almost all members of the course and were rated very highly in the end. Students could comment any time of day enhancing the accessibility of the discussion. I will modify these to be used in my courses moving forward for both in-person and online courses.

10) Online presence for both lecture and lab.

I actually increased my A&P online presence prior to the mandatory switch to online coursework with the implementation of AD Instruments Lt learning platform in the fall semester. My students received free access to both the anatomy and physiology modules thanks to an award from the American Physiological Society. The Teaching Career Enhancement Award supported a year-long study assessing the use of the ADInstruments Lt learning platform and its interactive and immersive lessons aimed at enhancing knowledge, retention, and practical application of the integrative course content. The Lt platform was fully customized to the course material and was used both in the lecture classroom and in the lab. In the lab, students were able to interact with a data acquisition system that is more “game-like” and familiar, while still collecting high-level human physiology data. Lt also allowed for the creation of new lessons that engaged students with the use of embedded questions in multiple formats, including drag-and-drop labeling, drawing, short answers, and completion of tables. These lessons were used in many ways: for pre-lab preparation, in-lab and post-lab assessment, and for active learning activities in the classroom. Lessons were completed individually or in small groups, and questions were set up with hints, immediate feedback, multiple tries, and/or automatic grading.

These modules were also incorporated in the active-learning lecture component of the course, providing additional exposure and practice with the content. The Lt lessons directly complemented the textbook material and helped bridge the gap between lecture and lab for the students. When the course moved fully online I was incredibly thankful that Lt was already in use in my course and that the students were already comfortable and familiar with the platform. I used Lt exclusively for the online labs and supplemental lecture content for the remainder of the spring semester. Just as before, the lessons and modules were customized by me to fit my course learning objectives and prepare the students for their new online assessments. Students could complete the online coursework at their leisure and stop by the virtual office hours for help or post questions on the discussion boards for feedback. Student feedback indicated that the addition of Lt to this course enhanced accessibility of the course content, provided extra practice and exposure to the material, and overall was rated highly by the students.  

And just as I did before, now I turn the conversation over to the MANY seasoned educators who read this blog. What did you learn in your quick move to online coursework? Did you implement any new pedagogical tools which you will continue to use even with in-person instruction? Please share!

Jennifer Ann Stokes is a soon-to-be Assistant Professor of Kinesiology at Southwestern University in Georgetown, TX, after spending the last three years at Centenary College of Louisiana. Jennifer received her PhD in Biomedical Sciences from the University of California, San Diego (UCSD) and following a Postdoctoral Fellowship in respiratory physiology at UCSD, Jennifer spent a year at Beloit College (Beloit, WI) as a Visiting Assistant Professor of Biology to expand her teaching background and pursue a teaching career at a primarily undergraduate institution. Jennifer’s courses include Human Anatomy and Physiology (using an integrative approach), Nutritional Physiology, Exercise Physiology, Medical Terminology, and Psychopharmacology. Jennifer is also actively engaged with undergraduates in basic science research (www.stokeslab.com) and in her free time enjoys cycling, hiking, and yoga.

Shifting course expectations as well as the mode of delivery during the spring 2020 COVID-19 pandemic
Kristen L.W. Walton, PhD
Biology Department
Missouri Western State University

COVID-19 (Coronavirus Disease 2019) is caused by infection with SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2).  Current evidence suggests that this zoonotic coronavirus originated in China in late 20191, and it subsequently spread rapidly across the globe, causing significant morbidity and mortality.  To help contain the spread of this virus, many countries have implemented policies and orders aimed at reducing contact between people.  The terms “social distancing” and “flatten the curve” have been rapidly imbued in our culture. Indeed, a Google Trends search shows a significant surge in searches for “social distancing” between the week of March 1-7, 2020 and the week of March 29-April 4, 20202.  In the United States, to help mitigate the rapid spread of SARS-CoV-2, a few colleges and universities began to announce in early March that they would be suspending face-to-face classes and shifting to all-online instruction, and soon most postgraduate institutions in the USA followed suit, including my institution.

In early March, as the situation became recognized as increasingly urgent by the higher education institutions in our region, the administration at my institution, Missouri Western State University (MWSU), made a decision to extend spring break by one week, through March 22.  Then, in the middle of that second week of spring break, the university administration announced that MWSU would cancel all face-to-face classes for the rest of the semester, and students would have several options regarding their grades for the spring 2020 semester3.  Higher education institutions across the USA have grappled with how to handle grades in this unprecedented time.  Students who did not sign up for online classes are finishing their face-to-face courses, in many if not most cases, as hastily-constructed online versions.  Many institutions have chosen to make all classes pass/fail, others have opted to keep letter grades as the only option, and still others, including MWSU, have given students flexible options to choose a pass/fail option or a letter grade.  The MWSU administration also gave faculty flexibility in determining whether to create a “culminating experience” for students who elected to complete their courses. This could mean anything from reducing the amount of content and/or assessments, changing the format of assessments (for example, a final paper in lieu of a final exam), or essentially continuing as originally planned but with online course delivery and assessments.  This flexibility for faculty was intended to recognize that some types of classes are more amenable than others to a shift to online delivery.  Students whose midterm grade was a C or higher could elect to choose the “credit” (pass) grade option for the course if they chose not to complete the culminating experience; students who chose to complete the culminating experience earned a letter grade based on their course grade at the end of the semester.  To increase flexibility for students, this option was available to students up until the last day of classes, April 24.  The deadline for a withdrawal from the class was also extended to April 24.

For me, as a biology faculty member, the flexibility allowed by our administration in how to structure the last five weeks of my classes led to a lot of thought about my courses and how to best achieve the course objectives for each of them.  I spent many hours considering this, discussing options with my colleagues in a socially distant manner, through emails and our first Zoom department meeting, a somewhat difficult transition for our close-knit group of faculty used to frequent in-person conversations.  I also spent time reading a flurry of articles and blog posts about the importance of being understanding of the major disruption to our students’ lives and college experience4; the importance of recognizing the difficulty in creating a high-quality online course experience with a few days’ notice5; and, not to be overlooked, the importance of tending to one’s own needs, both professional and personal, in this high-stress time.  

Depending on one’s personal situation, a faculty member could also be dealing with changes in family schedules and responsibilities due to children who were suddenly not attending school or day care.  Illness could strike any of us or our friends and family members, certainly adding to the stress and anxiety experiences.  Partners could be furloughed as businesses shuttered their doors due to the pandemic.  While some academics touted their ability to be highly productive during the quarantine and even cited the invention of calculus by Sir Isaac Newton during the black plague as inspiration, others pointed out that quarantine is not universally a time when one can focus solely on work and scientific discovery.  This is true for me, on a personal level.  I have two elementary school-aged children whose school closed a week after my university suspended face-to-face classes.  I have had sole responsibility for child care and helping them with their school work at home, while also moving my classes online and maintaining other work responsibilities.  Many of the students in my classes are non-traditional and have similar child care and “home school” responsibilities.  Others have financial stress due to job layoffs, or, conversely, increased work stress and time demands for those working in the health care field.  Another concern is that many of our students have poor access to broadband internet and technology to access class materials online.  Several of my students emailed me during the transition stating that they were using only a smartphone to access course materials and had no access to a laptop or desktop computer, printer, or other technology, and no high-speed internet.

Consideration of my students’ access to technology, stress, and other burdens, as well as the other factors described above led me to make different choices for each of my three classes this spring.  For my honors colloquium, titled, ironically enough, Plagues That Changed the World, my co-instructor and I decided not to try to coordinate the student-led presentations that were scheduled for the last 6 weeks of the semester and instead only required a final paper.  Seven of 13 undergraduates in this course chose the credit grade based on their midterm grade, and did not complete this rather minimal culminating experience. For my upper-division biology majors course, Molecular Basis of Disease, which is a capstone-type elective course that is not a prerequisite for any other classes, I chose to culminate the lab portion by keeping a scheduled lab quiz, but not attempt to recreate the planned five-week group research project.  For the lecture portion of that class, students who elected to complete the culminating experience wrote a literature review article as originally planned and were given one online exam instead of two in-class exams.  Even with this reduced workload, 6 of the 15 undergraduates enrolled in the course chose to take a credit grade and did not complete the course.  My third course this spring, Pathophysiology, is primarily populated by pre-nursing majors and population health majors, with a few pre-health-professions biology majors.  It would not have been appropriate to drop content or assessments of content knowledge from this course, because the overwhelming majority of students in the course needed to learn that content for success in later coursework.  As it happens, I have taught this lecture-only course in an online format in the summer for several years, so transitioning it to an online delivery mode was relatively easy, with a few exceptions: increased modes of accessing the material, and exams.  I have structured the all-online previous version of that class to be asynchronous, based on knowledge of my student population, many of whom work full time while also taking classes.  I felt that was still the best choice in these uncertain times.  However, in addition to posting video lectures, I downloaded the audio-only podcasts and posted them separately for students who did not have regular high-speed internet access or were working solely from a smartphone with a small screen.  I also made additional course notes available.  

As for the exams, I have always required proctored exams in the online version of this course, and structured them similarly to the written exams taken by students in the traditional, face-to-face version of the course.  Proctored online exams would not have been feasible in the COVID-19-induced chaos that ensued in late March and early April, as some of my students were moving home many states away, finding themselves under self-quarantine, caring for family members, etc., and I myself had schedule considerations to juggle with children and their school work and Zoom meetings which competed for our limited bandwidth home internet.  I tried to strike a balance between several considerations:  best practices for online unproctored exams, such as making them open-book and not easily Google-able; the format and level of rigor students were used to from the first two written, face-to-face exams; and being mindful of unequal access to technology among my students.  In this class, 81 of 86 undergraduates completed the culminating experience, a high proportion driven largely by the requirement of their specific majors for a letter grade in this required course.

As I write this, I still have several papers to grade and final course grades to enter.  I can say with certainty, however, that the choices for assessments and content coverage that I made for my Pathophysiology course did not appear to substantially disadvantage the majority of students, and the course grade distribution will be noticeably higher than usual, aside from the small number of students who did not complete the course.  Several of my colleagues have observed similar increases in their course grades this semester.  In that course, I erred on the side of leniency with the exams, but since I could not in good conscience drop content from that course – pre-nursing students still need to have learned about diseases of the digestive tract, even if COVID-19 interrupted their semester! – I am comfortable that they will at least have a reasonable degree of preparation for their subsequent courses.  For my other two courses, grades will not be higher and in some cases students submitted work that was of lower quality than I expected from their work earlier in the semester.  I strongly suspect that many students who chose to complete those courses did not have the focus or the ability to do so as well as they would have in the face-to-face courses.  I do not have survey data to help clarify what the students were thinking, but I suspect the students who needed the letter grade for subsequent coursework approached this altered, online part of the semester differently from those who were only taking an elective where a credit grade would suffice or a GPA issue was not anticipated.  Informal feedback from all three of my classes included several students commenting about how they did not sign up for online classes because they prefer traditional-format classes, comments about family issues (helping children with school work, moving back home because of job loss, stressful quarantine situations), and comments about missing deadlines because of work or other outside responsibilities.

Although I still need to submit my final course grades for the spring 2020 semester, the summer session is already looming.  My institution chose a few weeks ago to offer only 100% online summer classes, so my usual summer online Pathophysiology class will need to have exam structure revamped away from the written, proctored format that I have previously used.  In addition, many institutions including my own are having discussions about the fall semester.  At this time, we just don’t know what the COVID-19 situation will be in late August.  We have been told to prepare for something unusual, whether it will be a fully online semester, a restructured semester with two or three shorter block sessions, or some other plan.  In preparing for that, I will be considering these questions for each of my classes:

1. How can the course learning objectives best be accomplished in an altered course format?

2. What are the best ways to transition a heavily hands-on lab course to an online or shortened course format?

3. What are the needs of the student population in this course?

4. What is the appropriate balance between flexibility versus maintaining appropriate expectations in the course?

Considering the course goals and learning objectives is a critical component of any course design or transition to a different format, and the course may need to change if the different format is not amenable to the original goals and learning objectives.  In this time of forced transitions to altered course structures and the impacts of COVID-19 mitigation strategies on us and our students, choices might be different from the choices we would otherwise make. It’s also important for faculty, administrators, and students to recognize that different types of courses may be more or less easy to convert to an all-online format.  And while online instruction can be excellent and perhaps this experience will encourage broader use of certain online course components in future face-to-face classes for many faculty, it is not the “college experience” that many students expect and there is speculation among higher education administrators that enrollments will be down this fall, adding to the financial distress that many universities and colleges are already experiencing. Although I have read some opinion pieces that higher education should use this spring as a springboard to shift to more online courses permanently, I would argue that it’s also important to recognize that a large proportion of our students and faculty, myself included, strongly prefer those face-to-face classes and hope to return to them as soon as we can.  I am certain that as a global community of physiology educators we will continue to interact and support each other as we navigate all of the upcoming transitions.

References:

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536–44.

Google Trends, search term “social distancing”. URL  https://trends.google.com/trends/explore?geo=US&q=social%20distancing  , accessed April 30, 2020.

Missouri Western State University COVID-19 information. URL https://www.missouriwestern.edu/covid-19/keep-learning/ , accessed April 30, 2020.

Barrett-Fox, Rebecca. “Please do a bad job of putting your classes online” URL https://anygoodthing.com/2020/03/12/please-do-a-bad-job-of-putting-your-courses-online/ , accessed April 30, 2020. 

Darby, F.  5 Low-tech, time-saving ways to teach online during COVID-19.  The Chronicle of Higher Education  URL  https://www.chronicle.com/article/5-Low-Tech-Time-Saving-Ways/248519  accessed April 30, 2020.

Kristen Walton is a Professor in the Biology Department at Missouri Western State University.  She earned her PhD in Physiology from the University of North Carolina-Chapel Hill in 2001 and was a SPIRE (Seeding Postdoctoral Innovators in Research and Education) Postdoctoral Fellow at UNC-Chapel Hill from 2001-2006.   In 2006, she began her current position at Missouri Western State University, a primarily undergraduate institution.  She has taught a variety of undergraduate courses including animal physiology, pathophysiology, immunology, molecular basis of disease, introductory cell biology, public health microbiology, and human anatomy & physiology.  Her research interests are in intestinal inflammation and inflammatory bowel disease, and in discipline-based education research.

Challenges of migrating online amid the COVID-19 pandemic
Ida T. Fonkoue, Ph.D.
Post-Doctoral Fellow, Renal Division
Emory University School of Medicine

Ramon A. Fonkoue, Ph.D.
Associate Professor, French and Cultural Studies
Michigan Technological University

The COVID-19 pandemic has led to a total and sudden reshaping of the academic landscape across the country, with hundreds of institutions moving administration entirely online and shifting to online instruction for the remainder of the spring semester or for both spring and summer. This sudden transition with practically no time to prepare has major implications for students and faculty alike, and poses serious challenges to a smooth transition as well as effective online teaching on such a large scale. Out of these challenges, two issues in particular are examined here: 

By Phil Hill, licensed under CC-BY. See URL in references.
  • the disparity in resources and preparedness for effective online teaching 
  • the implications of the migration to virtual classrooms for diversity and inclusion

Disparity in resources and preparedness for effective online teaching

Teaching an online course requires just as much, if not more, time and energy as traditional classroom courses. It also requires specific IT skills to be effective. Some teachers have managed to achieve great success engaging students online. However, many challenges remain for the average teacher. While online teaching has now been embraced by all higher education institutions and the number of classes offered online has seen a steady growth over the years, it should be noted that until now, instructors and students had the choice between brick and mortar classes and virtual ones. Each could then choose based on their personal preferences and/or circumstances. What makes the recent changes so impactful and consequential is that no choice is left to instructors or students, as the move to online classes is a mandate from the higher administration. Whether one is willing, prepared or ready is irrelevant. It is from this perspective that the question of the preparedness to migrate online is worth examining. 

With academic units ordered to move classes online, instructors who had remained indifferent to the growing trend of online teaching have had a difficult reckoning. They have had to hastily move to online delivery, often with a steep learning curve. This challenge has been compounded in some cases by the technology gap for instructors who haven’t kept their IT skills up to date as well as the school’s preparedness to support online teaching. But even instructors who had some familiarity with learning management systems (LMS) and online delivery have faced their share of challenges. We will only mention two sources of these difficulties: 

  • First, students’ expectations in a context of exclusive online teaching are different from when most online classes took place in the summer, and were attractive to students because of convenience and flexibility. With online classes becoming the norm, students in some universities are taking steps to demand that school administrators pay more attention to quality of instruction and maintain high standards to preserve teaching effectiveness. 
  • Second, instructors can no longer use LMS resources just for the flexibility and benefits they afforded, such as in blended classes or flipped classes. Moving everything online thus requires extra work even for LMS enthusiasts.

For students, there have been some interesting lessons. Until now, it was assumed that Generation Z students (raised in the boom of the internet and social media) we have in our classes have tech skills in their DNA and would be well equipped and ready to migrate online. Surprisingly, this hasn’t been the case across the board, and these first weeks have revealed real discrepancies in student IT equipment with varying consequences for online classes. Equipment failure and problems with access to high speed internet emerge as the most serious difficulties on the students’ side. Furthermore, online learning requires independence and often more self-discipline and self-motivation. Most online courses are not taught in real time, and there are often no set times for classes. While this flexibility makes online classes attractive, it can also be a drawback for students who procrastinate and are unable to follow the course pace. If left to themselves, only the most responsible students will preserve their chances of performing well. On this last point, one unexpected issue has been students who have virtually disappeared from their classes since the migration of courses online amid the COVID-19 pandemic. The current transition has thus presented major challenges for teachers and students alike. 

Implications of the migration to virtual classrooms for diversity and inclusion

The second issue we think deserves attention is the way in which educational institutions’ commitment to diversity and inclusion would play out in virtual classes. While they are now among the professed core values of all colleges and universities across the country, implementing diversity and inclusion in an online environment presents a different set of challenges for both instructors and students. In traditional classrooms, the commitment to diversity and inclusion typically translates into the following:

  • A diversity and inclusion statement from the school must be included in the course syllabus.
  • Instructors must remind students a few rules at the beginning of the course, including: recognition that the classroom is an environment where diversity is acknowledged and valued; tolerance of and respect for diversity of views in the classroom.
  • Sensitivity to and respect for diversity (gender, age, sexual orientation, etc.).
  • Students are asked to be courteous and respectful of different opinions.

In moving into a virtual environment, instructors have to think about the challenges of virtual classrooms and their potential impact on diversity and inclusion. For instance, the faceless nature of course participation and asynchronous delivery may make it easier for participants to disregard or neglect diversity and inclusion rules. Teachers need to reflect on ways to ensure that the virtual space of online classes remains an environment that fosters diversity and inclusion. One drawback of online classes is the potential impact of the relative anonymity on social engagement. In a traditional classroom, participants are constrained by the physical presence of their peers in the confined space of the classroom. The closed physical space of the classroom, combined with the instructor’s authority and peer pressure contribute to fostering discipline. Reflecting on the way online teaching impacts the instructor, one faculty noted: “I didn’t realize how much I rely on walking around the room and making eye contact with students to keep them engaged.” As an online teacher, one lacks the ability to connect physically with students, to read emotional cues and body language that might inform about the individuality of a student. Moreover, a good grasp of the diversity in the classroom and of students’ learning abilities is needed to plan instruction, and give each of them the opportunity to learn and succeed.

Drawing from the above considerations, here are some key questions that instructors should consider as they migrate online: What skills do instructors need to properly address diversity and inclusion online? How do instructors include diversity and inclusion requirements in online course design? How to create an inclusive online classroom? How do instructors attend to diverse students’ needs during instruction? How do they monitor behaviors and enforce diversity and inclusion rules during instruction?

While the migration might have been abrupt, instructors need not seek perfection in moving their courses online. As in traditional classes, what matters the most, from the student’s point of view, is constant communication, clear directions and support from their teachers. Students understand the challenges we all face. They also understand the rules in virtual classes, provided we emphasize them.

References

Hill, Phil (2020), Massive Increase in LMS and Synchronous Video Usage Due to COVID-19. PhilonEdTech. https://philonedtech.com/massive-increase-in-lms-and-synchronous-video-usage-due-to-covid-19/

Greeno, Nathan (2020), Prepare to Move Online (in a Hurry). Inside Higher Ed. https://www.insidehighered.com/views/2020/03/10/prepare-move-online-continuity-planning-coronavirus-and-beyond-opinion


McMurtrie, Beth (2020), The Coronavirus Has Pushed Courses Online. Professors Are Trying Hard to Keep Up. The Chronicle of Higher Education. https://www.chronicle.com/article/The-Coronavirus-Has-Pushed/248299

Dr Ida Fonkoué is a post-doctoral fellow at Emory University School of Medicine in the Laboratory of Dr Jeanie Park. She trained under Dr Jason Carter at Michigan Technological University, where she graduated with a PhD in Biological Sciences in December 2016. She teaches renal physiology classes and lead small groups in the School of Medicine. Her long-term research goal is to understand how the sympathetic nervous system, the vasculature and inflammation interplay to contribute to the high cardiovascular disease risk of patients living with chronic stress, such as those with post-traumatic stress disorder.

Dr. Ramon A Fonkoué is an Associate Professor of French and Cultural Studies and the Director of Graduate Studies in the Department of Humanities at Michigan Technological University. He is also a Visiting Scholar in the department of French and Italian at Emory University. He has been teaching online for 9 years and has experience with blended, flipped and full online classes.

Involving students in the teaching experience
Karen L. Sweazea, PhD, FAHA
Arizona State University

As faculty, we often find ourselves juggling multiple responsibilities at once. Although many of us are interested in adding hands-on or other activities to our classes, it can be difficult to find the time to develop them. This is where more advanced students who have already taken the class or graduate students can help.

A couple of summers ago I requested the help of an extra teaching assistant in my Animal Physiology course. The role of the position I was requesting was unique as I was not seeking a student to help with grading or proctoring exams. Rather, the role of this student was to help develop in-class activities that would enhance the learning experience of students taking the course.

For each lesson, the special graduate student TA was tasked with finding an existing (ex: https://www.lifescitrc.org/) or creating a new activity that could be implemented in the classroom during the last 10-20 minutes of each session, depending on the complexity of the activity. This enabled me to begin converting the course into a flipped classroom model as students enrolled in the course were responsible for reading the material ahead of time, completing a content comprehension quiz, and coming to class prepared to discuss the content and participate in an activity and/or case study. Special TAs can also assist with developing activities for online courses.

While the benefits of having such a TA for the faculty are clear, this type of experience is also beneficial to both the TA as well as the students enrolled in the course. For the TA, this experience provides an opportunity to develop their own teaching skills through learning to develop short lesson plans and activities as well as receiving feedback from the faculty and students. For the students, this is a great way to build cultural competence into the course as TAs are often closer in age to the students and may better reflect the demographics of the classroom. Cultural competence is defined by the National Education Association as “the ability to successfully teach students who come from a culture of cultures other than our own.” Increasing our cultural competency, therefore, is critical to student success and is something that we can learn to address. Having special TAs is just one way we can build this important skill.

Karen Sweazea is an Associate Professor in the College of Heath Solutions at Arizona State University. Her research specializes in diabetes and cardiovascular disease. She received her PhD in Physiological Sciences from the University of Arizona in 2005 where her research focused on understanding glucose homeostasis and natural insulin resistance in birds. Her postdoctoral research was designed to explore how poor dietary habits promote the development of cardiovascular diseases. 

Dr. Sweazea has over 40 publication and has chaired sessions and spoken on topics related to mentoring at a variety of national and local meetings. She has additionally given over 10 guest lectures and has developed 4 graduate courses on topics related to mentoring and professional development. She has mentored or served on the committees for undergraduate, master’s, and doctoral students and earned an Outstanding Faculty Mentor Award from the Faculty Women’s Association at Arizona State University for her dedication towards mentoring.   

Strategies and Tips for Inclusive Advising
Katie Johnson, PhD
Programmatic Improvement Consultant
Trail Build, LLC

Educators often find themselves in the role of advisor, either formally or incidentally. If you teach or lead a research group, it is likely students or trainees arrive at your office door with a plethora of questions or issues, seeking your input. Yet, very few academics have formal training in how to advise students.

How do you become a productive advisor who supports the success of your students? For the purpose of our discussion, I am defining advisor as any person who provides guidance, information, or advice to a student or trainee, the advisee. Many productive and inclusive advising strategies align with effective teaching practices.

Inclusive advising strategies interrupt assumptions an advisor may have about the needs, issues, or questions facing an advisee. It also acknowledges and embraces the relationship between the academic, professional, and personal trajectories of each advisee. One approach to inclusive advising is to use a question-focused advising strategy. Rather than advisors serving only as a conduit for information, advisors should ask advisees thoughtful and strategic questions, within the context of a collegial and respectful conversation. When an advisor carefully and attentively listens to the responses provided by the advisee, the advisor gains important information about how to support and assist the advisee.

There are many points to consider when advising, but here are a few suggestions for advisors, followed by examples of questions advisors can ask advisees. These questions are not to be used in sequential order, but rather as needed.

1. Listen carefully. This strategy is a lot harder than it sounds. It is easy to provide information, but is the information the right information? When careful and engaged listening directs advising, advisors are much more likely to provide the information and support needed by the advisee.

Questions to ask advisees: How can I help you? What brings you to my office today? What are your goals for this project/assignment/course? Did we address the issue that brought you in today? Do you think the solutions we talked about today are attainable? Do you have any other questions for me?

2. Believe advisees when they say they are struggling. Again, much harder than it sounds. Help advisees think through productive steps forward, rather than sending them off to figure things out on their own. Check-in with them later to help address lingering questions.

Questions to ask advisees: Can you remember a time when things were going well? What worked for you at that point? What strategies are you using to navigate these issues? If those strategies are not working, can we brainstorm other strategies? Can we work together to find resources to support your success? Do you have local friends you can turn to when you are having difficulties?

3. Guide advisees to identify what they need to achieve their academic, professional, and personal goals. After careful listening, assign advisees homework. Assignments could include visiting a resource on campus or doing directed online research to find the information they need to design a plan to accomplish their goals. Schedule future appointments for the advisee to report back what they found.

Questions to ask advisees: What information do you need to achieve your goals? What information do you have? What resources do you need to find? Is there anyone you know who would be a good resource?

4. Recognize the power dynamic between advisors and advisees. Even the most friendly and welcoming advisors can be intimidating to advisees. It takes courage to talk to an advisor. Given the power dynamic, advisees may be too intimidated to speak-up when they do not understand their advisor’s suggestions or advice.

Questions to ask advisees: Can you explain to me what your next steps should be to address this issue? Is there anything I said that I need to explain in a different way for you to be better prepared to address this issue?

5. Advisors are at a different point in their career than their advisees. It is likely the life priorities of any given advisee and advisor are different. Ask advisees about their priorities, listen carefully, and believe what they say.

Questions to ask advisees: Where do you see yourself in ten years? What is your ideal lifestyle? What is essential to this lifestyle for you to feel successful? How do you like to spend your time?

While these concepts may take time to incorporate into your advising, here are a few quick tips:

1. Really good advising takes time. Make sure to reserve enough time and energy to have productive advising meetings.

2. Successful advising is a continuous process. Expect numerous interactions in the classrooms, hallways, over e-mail, and during private meetings. This multiple check-in approach allows for investigation and reflection.

3. Articulate the expectations and responsibilities of advisees and advisors. It is possible you are your advisee’s first advisor. Advisees may not know the reason or meaning for an advisor or appropriate boundaries. As an advisor, determine your expectations and communicate these expectations to your advisees.

4. Offer options to schedule meetings. While walk-in office hours have some benefits, a dedicated time and space allows both advisee and advisor to focus on the task at hand. Offer designated advising timeslots for advisees. Signing-up for timeslots could occur either on a sheet of paper or using a free online tool that automatically syncs to online calendars.

5. If you expect advisees to meet at your office, make sure you tell your advisees where your office is located. Advisees should also know how to contact you if they must change or miss a meeting.

6. Schedule group advising to work with advisees who have similar academic or professional (NOT personal) issues. This will save the advisor time, and the advisees benefit from conversations with students or trainees asking similar questions.

7. Recruit a more advanced student or trainee to meet with advisees about standard advising issues, such as program requirements or course registration. It is effective if this meeting occurs prior to the advisor-advisee meeting, so unanswered questions and clarifications can be provided by the advisor.

8. You do not need to know the answer to everything. Know your limits and your resources. Institutions often have services and professionals trained in handling various student situations. Have their phone numbers or emails readily available so you can connect advisees directly to the assistance they need. Know your responsibilities around state and federally mandated reporting.

Productive and inclusive advising is an opportunity to help and to support students and trainees as they develop their own paths to success. What an amazing perk of being an educator! Happy Advising!

REFERENCES:

Chambliss DF. How College Works. Harvard University Press, 2014.

Cooper KM, Gin LE, Akeeh B, Clark CE, Hunter JS, Roderick TB, Elliott DB, Gutierrez LA, Mello RM, Pfeiffer LD, Scott RA, Arellano D, Ramirez D, Valdez EM, Vargas C, Velarde K, Zheng Y, Brownell SE. Factors that predict life sciences student persistence in undergraduate research experiences. PLOS ONE 14: e0220186, 2019.

Johnson KMS, Briggs A, Hawn C, Mantina N, Woods BC. Inclusive practices for diverse student populations: Experimental Biology 2017. Adv Physiol Educ 43: 365–372, 2019.

Katie Johnson, Ph.D., is an experienced practitioner and evaluator of inclusive teaching and mentoring practices. Dr. Johnson advises and serves on national STEM education initiatives and committees, working with a diverse network of collaborators. As a Programmatic Improvement Consultant, Dr. Johnson assists institutions and organizations to develop innovative solutions to curricular and assessment challenges. Prior to becoming an independent consultant for Trail Build, LLC, Dr. Johnson was Chair and Associate Professor of Biology at Beloit College. She earned her Ph.D. in the Department of Molecular Physiology and Biophysics at Vanderbilt University and her B.S. from Beloit College. Disclosure: Dr. Johnson serves as an external consultant for the American Physiological Society.

Building a Conceptual Framework to Promote Future Understanding
Diane H. Munzenmaier, PhD
Program Director
Milwaukee School of Engineering

For most of my career, I taught physiology and genetics to medical students and graduate students.  My experiences with many students who had difficulty succeeding in these courses led me to the realization that the way high school and college students learn the biological sciences does not translate to effective physiology learning and understanding at the graduate level.

Medical students, by virtue of their admission to medical school, have, by definition, been successful academically prior to matriculation and have scored well on standardized exams.  They are among the best and brightest that our education system has to offer.  Yet, I have always been amazed at how many medical students truly struggle with physiology.  It is considered by many students to be the most difficult discipline of the basic medical sciences.  Most students come into medical school as expert memorizers but few have the capacity or motivation to learn a discipline that requires integration, pattern recognition, and understanding of complex mechanisms.  My overall conclusion is that high school and college level biological science education does not prepare students to succeed in learning physiology at the graduate level.  Furthermore, I believe if students were prepared to better appreciate and excel in basic physiology at earlier grade levels, the pipeline for graduate education in the physiological sciences would be significantly increased.

Over the past 5 years, it has become a passion of mine to promote a new way of teaching biology and physiology: one that helps students make connections and that lays a conceptual framework that can be enhanced and enriched throughout their educational careers, rather than one that promotes memorization of random facts that are never connected nor retained.  I recently joined the Center for Biomolecular Modeling at the Milwaukee School of Engineering (MSOE CBM) in order to focus on developing materials and activities to promote that type of learning and to provide professional development for K-16 teachers to help them incorporate this type of learning into their classrooms.

One of my first projects was to develop resources to allow students to study the structure-function relationships of a specific protein important in physiology and use that understanding to relate it to relevant physiology/pathophysiology concepts.  The program is called “Modeling A Protein Story” (MAPS) and, so far, I have developed resources for 3 different project themes: aquaporins, globins, and insulin.

The overall concept is for the students to build their understanding slowly and incrementally over time, usually as part of an extracurricular club.  They start by understanding water and its unique properties.  Then they learn about proteins and how they are synthesized and fold into specific 3D conformations in an aqueous environment based largely on their constituent amino acids and how they interact with water.  Eventually they progress to learning about the unique structure of their protein of interest and how it is related to its function.  Once they have developed a solid understanding of that protein, they work in teams to choose a specific protein story that they will develop and model.  This includes finding a structure in the Protein Data Bank, reading the associated research paper to determine what was learned from the structure, designing a model of the structure in Jmol, an online 3D visualization software, and 3D printing a physical model of the protein that helps them tell their story.  Stories can be anything related to the theme that the students find in their research and consider interesting.  For example, student-developed aquaporin stories have ranged from AQP2 in the kidney to AQP4 in the brain to the use of AQP proteins to develop biomimetic membranes for water purification in developing countries.  By choosing projects that students are interested in, they more readily accept the challenge of reading primary research literature and trying to piece together a confusing puzzle into an understandable “story”. 

In the past year, I have used the insulin theme resources and piloted an active learning project-based curriculum at the undergraduate, high school, and middle school levels on insulin structure-function, glucose homeostasis, and diabetes mellitus.  The type of learning environment in which this curriculum was introduced has varied.  Middle school level children participated in the active learning environment as part of a 2-week summer camp.  High school students from an innovative charter school in downtown Milwaukee were introduced to the project-based curriculum as a 9-week seminar course, and the activity was taught to freshman biomolecular engineering students at the Milwaukee School of Engineering as a team project in their first quarter introductory course.

Some of the activities utilized materials that we have developed at the MSOE CBM and were subsequently produced for distribution by our sister company, 3D Molecular Designs.  Others utilize resources that are readily available online such as those available at the Protein Data Bank at their educational site, PDB-101.  Finally, still other resources have been developed by us specifically for this curriculum in order to help the students move between foundational concepts in an attempt to help them make important connections and to assist them in developing their conceptual framework. 

One of the activities that helps them try to make sense of the connection between glucose and insulin is this “cellular landscape” painting by Dr. David Goodsell at Scripps Research Institute and available at PDB-101.

They learn the basic concept that when blood glucose increases after a meal, insulin is released from the pancreas and allows glucose to be taken up and stored by the cells.  But how?  When they are given this landscape and minimal instructions, they must look closely, connect it to what they already know and try to make sense of it.  They work together in a small group and are encouraged to ask questions.  Is this a cell?  If so, where is the plasma membrane and the extracellular/intracellular spaces?  What types of shapes do they see in those spaces?  What is in the membrane?  What are those white dots?  Why is one dot in one of the shapes in the membrane?  Why are there yellow blobs on the outside of the cell but not on the inside?  Eventually they piece together the puzzle of insulin binding to its receptor, leading to trafficking of vesicles contain glucose transporter proteins to the plasma membrane, thereby allowing the influx of glucose into the cell.  By struggling to make detailed observations and connections, a story has been constructed by the students as a logical mechanism they can visualize which is retained much more effectively than if it had been merely memorized.

In other activities they learn how insulin in synthesized, processed, folded, stored, and released by the pancreatic beta cells in response to elevated blood glucose.  They use a kit developed by MSOE CBM that helps them model the process using plastic “toobers” to develop an understanding of how insulin structure is related to its function in regards to the shape and flexibility required for receptor binding but also related to its compact storage in the pancreas as hexamers and the importance of disulfide bonds in stabilizing monomers during secretion and circulation in the blood.  

As the students build their understanding and progress to developing their own “story”, the depth of that story depends on grade level and the amount of time devoted to the project.  Undergraduate students and high school students who have weeks and months to research and develop their story tend to gravitate to current research into protein engineering of insulin analogs that are either rapid-acting or slow-release, developed as type 1 and type 2 diabetes medications, respectively.  The basic concepts behind most of these analogs are based on the structure-function relationships of hexamer formation.  Rapid-acting medications usually include amino acid modifications that disrupt dimer and hexamer formation.  Slow-release medications tend to promote hexamer stability.  Middle school students or high school students with limited time to spend on the project may only focus on the basic properties of insulin itself.  The curriculum is driven by the students, so it is extremely flexible based on their capabilities, time, and motivation.  Students ultimately use their understanding of insulin structure-function to design and 3D-print a physical model that they highlight to show relevant amino acid modifications and other details that will help them to present the story they have developed based on their learning progression and research. 

In conclusion, we have found that this type of open-ended project-based active learning increases learning, retention, and motivation at every educational level  with which we have worked.  Students are initially frustrated in the process because they are not given “the answer” but they eventually learn to be more present, make observations, ask questions, and make connections.  Our hope is that introduction of this type of inquiry-based instruction in K-16 biological sciences education will eventually make the transition to graduate level physiology learning more successful.

Diane Munzenmaier received her PhD in Physiology studying the role of the renin-angiotensin system on skeletal muscle angiogenesis. This was followed by postdoctoral study of the role of astrocytes in stroke-induced cerebral angiogenesis. She joined the faculty of the Department of Physiology at the Medical College of Wisconsin in 1999 and the Human and Molecular Genetics Center in 2008. As Director of Education in the HMGC, Dr. Munzenmaier lectured and developed curriculum for medical and graduate school physiology and genetics courses. She developed an ACGME-accredited medical residency curriculum and Continuing Medical Education (CME) courses for physician education. She also enjoyed performing educational outreach to K-12 classrooms and the lay public. She is passionate about education and career mentoring for students of all levels. Her specific interests in biomedical science education are finding engaging ways to help clarify the link between structure and (dys)function in health and disease.

Lighting the Spark: Engaging Medical Students in Renal Physiology
Jessica Dominguez Rieg, PhD
Department of Molecular Pharmacology and Physiology
University of South Florida Morsani College of Medicine

Recently, I spent some time reflecting on the way we teach physiology at my institution. One thing that kept coming to my mind- why does renal physiology get such a bad reputation? We often hear medical students commenting that renal physiology was the hardest topic of the first year, that there’s too much math involved, and concepts like acid-base and electrolyte disorders are too difficult to grasp. Does a negative attitude about renal physiology really matter in the long run? If the students can successfully pass USMLE Step 1, can I rest easy knowing they are competent in understanding how the kidneys function? Or can I, a basic science faculty, make a bigger impact on how these students view the renal system?

Chronic kidney disease is a growing public health concern in the United States, affecting roughly 40 million adults. Given the increasing burden of disease, an aging population, and modern medicine that is keeping patients with end-stage kidney disease alive longer, we need a robust workforce in nephrology. However, the field of nephrology is in the middle of a major crisis, and there is significant concern that there will not be an adequate workforce to meet the healthcare needs of patients afflicted with kidney disease. Only 62% of available nephrology fellowship positions were filled in the 2019 National Resident Matching Program match and less than 45% of positions were filled by U.S. MD graduates, making nephrology one of the least competitive subspecialties1. When does the waning interest in nephrology begin? Many think it starts early in a medical student’s academic journey.

I recently surveyed our medical students at the University of South Florida Morsani College of Medicine (250 respondents) and found that 60% of students agreed or strongly agreed that the topic of nephrology is interesting and yet close to one-third of them agreed or strongly agreed that renal pathophysiology is too complex and challenging for them. When asked what makes the biggest impact on their future career choice, 60% indicated that having role models and mentors in the specialty field was high impact; however, less than half of the students felt they had been exposed to encouraging role models or mentors in nephrology. Students ranked rotations during clerkships as having the highest impact in career choice; and yet our students are first exposed to nephrology during their Internal Medicine clerkship in their 3rd year, which only last 8 weeks. Not surprisingly, students ranked didactics in the preclinical years as having the lowest impact on career choice. What if we can change that? Perhaps there is too little done too late- and we just can’t get enough momentum going to gain a critical mass of students interested in nephrology. Is there anything that we, as medical physiology educators, can do to help? We can light the spark!

1. Make it matter. The complexity of renal physiology must be taught with meaningful clinical context. Students need to understand the clinical importance of what they are learning or there is a high chance they will get turned off from the very beginning. One of the best ways I have found to make it matter, is to work closely with my clinical colleagues. Not only can they provide (and co-teach) examples of how to

2. Make it digestible. Students often get overwhelmed by the level of detail that is expected in the renal block. We must ensure we are giving them the important content in bite-sized pieces so they have time to think about it, apply it, and understand it. I give our students a blank nephron map2 at the beginning of the renal block and ask that they work together to fill it out. On the last day of the renal block, we go through the maps together as a summary of renal function. Students like having all the transporters, hormones and key characteristics about each region of the nephron in one place. It helps them organize their knowledge and also gives them something to refer to in Year 2 and beyond.

3. Make it relatable. At our institution, students get renal physiology at the end of Year 1, so they’ve had all other organ systems besides reproductive physiology. I use many analogies throughout the renal system and always to try to highlight the similarities with the intestinal tract, which they are more familiar with at that point in time. After all, the nephron is like a “mini-intestine”, with similar histological features and transporter profiles. By relating the new renal content to something they’ve seen before, it can help make it a little easier to understand (and allows them to make systemic connections).

4. Make it stick. Students struggle with grasping acid-base disturbances. Consistent repetition and practice problems is key! Many times, students learn multiple ways to approach interpreting acid-base disturbances (different formulas, different values for expected compensatory responses, etc.) depending on who is teaching. This can be frustrating and confusing for students. We have found that having all faculty that teach some aspect of acid-base balance use a single resource, a step-by-step guide to interpreting acid-base disturbances3, has been very helpful in ensuring consistency in what we teach. Students also work through many practice problems in interpretation of arterial blood gases, starting in Year 1, again in Year 2, and again during the clerkships. The result is that students have gone from scoring less than 50% on NBME acid-base questions, to close to 90%- it’s sticking!

5. Make it fun! One of the notoriously challenging lectures in our preclinical years is integration of acid-base, volume, and electrolyte disorders. Traditionally, it was a lecture given by a nephrologist and was very technical and clinically oriented. However, students were lost and overwhelmed. So, I partnered with an internal medicine physician and we revamped the session into a fun, interactive series of cases where we co-facilitated discussion. Students were introduced to the 14th book of Lemony Snicket’s A Series of Unfortunate Events: The Hazardous Hospital, where they were asked to investigate the mysterious health issues of Sir Cornelius. The cases we presented were challenging and framed with very relevant basic science concepts, and students loved it! Not only did they have fun while learning, but they really appreciated having a basic scientist and clinician teaching together.

In conclusion, renal physiology is challenging and may be contributing to a lack of interest in a career in nephrology. As medical physiology educators, we have the ability to work with our clinical colleagues and revamp how we teach the renal system. We can get students engaged and excited about renal physiology by making the content clinically relevant, digestible, relatable and fun. After all, there needs to be a spark to light the fire!

References:

  1. National Resident Matching Program, Results and Data: Specialties Matching Service 2019 Appointment Year. National Resident Matching Program, Washington, DC. 2019
  2. Robinson PG, Newman D, Reitz CL, Vaynberg LZ, Bahga DK, Levitt MH. A large drawing of a nephron for teaching medical students renal physiology, histology, and pharmacology. Advances in Physiology Education. 42:2, 192-199, 2018.
  3. DeWaay D, Gordon J. The ABC’s of ABGs: teaching arterial blood gases to adult learners. MedEdPORTAL. 2011;7:9038.

Dr. Dominguez Rieg is a faculty member in the Department of Molecular Pharmacology & Physiology at the University of South Florida Morsani College of Medicine. She is the Course Director for the Gastrointestinal, Endocrine, Renal and Reproductive Systems block and the Physiology Integration Director that is responsible for mapping physiology content objectives across the entire curriculum. She teaches endocrine, renal and reproductive physiology and renal pathophysiology in multiple courses in the pre-clerkship years. She received her PhD in Physiological Sciences from the University of Arizona. Her research interests are kidney-intestine crosstalk and intestinal function in the context of systemic diseases such as obesity and diabetes. When she’s not at work, she is enjoying time with her young daughter and four German Shepherds.

Can the Flipped Classroom Method of Teaching Influence Students’ Self-Efficacy?
Chaya Gopalan, PhD, FAPS
Associate Professor
Departments of Applied Health, Primary Care & Health Systems
Southern Illinois University Edwardsville

Self-efficacy is the belief in one’s ability to succeed in a specific situation or accomplish a specific task (Bandura, 1977). Students with high self-efficacy have higher motivation to learn and, therefore, are able to reach higher academic goals (Honicke & Broadbent, 2016). Gender, age, and the field of study are some factors that are known to affect self-efficacy (Huang, 2013). Genetics plays a significant role (Waaktaar & Torgersen, 2013). Certain physiological factors such as perceptions of pain, fatigue, and fear may have a marked, deleterious effect on self-efficacy (Vieira, Salvetti, Damiani, & Pimenta, 2014). In fact, research has shown that self-efficacy can be strengthened by positive experiences, such as mastering a skill, observing others performing a specific task, or by constant encouragement (Vishnumolakala, Southam, Treagust, Mocerino, & Qureshi, 2017). Enhancement of self-efficacy may be achieved by the teachers who serve as role models as well as by the use of supportive teaching methods (Miller, Ramirez, & Murdock, 2017). Such boost in self-efficacy helps students achieve higher academic results.

The flipped classroom method of teaching shifts lectures out of class. These lectures are made available for students to access anytime and from anywhere. Students are given the autonomy to preview the content prior to class where they can spend as much time as it takes to learn the concepts. This approach helps students overcome cognitive overload by a lecture-heavy classroom.  It also enables them to take good notes by accessing lecture content as many times as necessary. Since the lecture is moved out of class, the class time becomes available for deep collaborative activities with support from the teacher as well as through interaction with their peers. Additionally, the flipped teaching method allows exposure to content multiple times such as in the form of lecture videos, practice questions, formative assessments, in-class review, and application of pre-class content. The flipped classroom therefore provides a supportive atmosphere for student learning such as repeated exposure to lecture content, total autonomy to use the constantly available lecture content, peer influence, and support from the decentered teacher. These listed benefits of flipped teaching are projected to strengthen self-efficacy which, in turn, is expected to increase students’ academic performance. However, a systematic approach measuring the effectiveness of flipped teaching on self-efficacy is lacking at present.

References:

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review84(2), 191.

de Moraes Vieira, É. B., de Góes Salvetti, M., Damiani, L. P., & de Mattos Pimenta, C. A. (2014). Self-efficacy and fear avoidance beliefs in chronic low back pain patients: coexistence and associated factors. Pain Management Nursing15(3), 593-602.

Honicke, T., & Broadbent, J. (2016). The influence of academic self-efficacy on academic performance: A systematic review. Educational Research Review17, 63-84.

Huang, C. (2013). Gender differences in academic self-efficacy: A meta-analysis. European journal of psychology of education28(1), 1-35.

Miller, A. D., Ramirez, E. M., & Murdock, T. B. (2017). The influence of teachers’ self-efficacy on perceptions: Perceived teacher competence and respect and student effort and achievement. Teaching and Teacher Education64, 260-269.

Vishnumolakala, V. R., Southam, D. C., Treagust, D. F., Mocerino, M., & Qureshi, S. (2017). Students’ attitudes, self-efficacy and experiences in a modified process-oriented guided inquiry learning undergraduate chemistry classroom. Chemistry Education Research and Practice18(2), 340-352.

Waaktaar, T., & Torgersen, S. (2013). Self-efficacy is mainly genetic, not learned: a multiple-rater twin study on the causal structure of general self-efficacy in young people. Twin Research and Human Genetics16(3), 651-660.

Dr. Chaya Gopalan received her PhD in Physiology from the University of Glasgow, Scotland. Upon completing two years of postdoctoral training at Michigan State University, she started her teaching career at St. Louis Community College. She is currently teaching at Southern Illinois University Edwardsville. Her teaching is in the areas of anatomy, physiology, and pathophysiology at both undergraduate and graduate levels for health science career programs. Dr. Gopalan has been practicing evidence-based teaching where she has tested team-based learning and case-based learning methodologies and most recently, the flipped classroom. She has received several grants to support her research interest.

Best Practices for Success in Teaching Physiology, Part III – Seeing Results
Thomas M. Nosek, Ph.D.
Professor Emeritus, Department of Physiology and Biophysics
Case Western Reserve University

In this final article of the series, the discussion comes to a completion with the remaining aspects that show the results of the tools that were presented in part I and the implementation techniques in pat II.

17. Administer weekly quizzes.
We administer a 10 multiple choice question, computer-based quiz to both resident and Internet students (using the testing function in the CMS) every Monday before class that covers the material from the previous week’s lectures. Grades on these quizzes constitute 15% of the final grade in the course. The intent of the quizzes and their 15% contribution to the final course grade is to encourage students to keep up with the course material.

Advantages
: The courses move along very quickly and if a student gets behind studying the material, they are at a severe disadvantage – there typically is not enough time for the students to catch up. Once a student’s answers are submitted, their grade is immediately reported so the students have immediate feedback on their performance.
Disadvantages: Faculty must write these quiz questions and time must be taken to administer the quizzes. Staff must be available to help students who have problems with the software on the day of the quiz. It is inevitable that a few students will have problems with their computers. Thus, the department has purchased 10 computers dedicated for use by students having difficulty during the quiz/exam administration. A room or group of rooms with Internet service and power sources for computer chargers must be available for the administration of quizzes and exams.


18. Provide weekly Study (Homework) Questions.
At the beginning of each week, we provide approximately 10 multiple choice study questions for each chapter in the assigned textbook that is covered that week. Students are encouraged to work together on these questions; they are free to use the textbook, class notes, and any other learning resource. However, the students are on their honor to enter their own answers to the question in the testing function of the CMS by noon each Saturday. Immediately after the due date for the questions, the answers with detailed explanations are provided to the students. Grades on these Study Questions constitute 15% of the final grade in the course.

Advantages: We have found that students who read the textbook do better than students who do not. These study questions encourage students to read the textbook. They key the students in on the most important points in each chapter helping them prepare for quizzes and exams. This learning resource has been rated very highly by the students.
Disadvantages: These study questions are created each year by the TA’s. Unfortunately, the TA’s are not always experienced in writing questions and many questions must be corrected after they are posted. It is best if these questions are written by faculty or at least reviewed by them before the questions are released to the students.

 

19. Administer computer-based Block examinations.
The textbook we use is organized by organ systems. The course is divided into Blocks by these organ systems. A faculty member is assigned to coordinate each Block. This faculty member is responsible for soliciting quiz and Block exam questions from each of the faculty members lecturing during the Block. At the end of each Block, a computer-based multiple-choice examination is administered through “Exemplify/ExamSoft” which we purchase for each of the students. The Block exam average constitutes 70% of the final course grade. These exams are secure so that they can be used from year to year with only slight modifications to better word questions that are found to be confusing and to modify them to accommodate for different faculty teaching the material.

Advantages: Blocks are typically 4 weeks long and there are 4 Blocks/semester. This breaks up the semester into 4 parts and gives the students 4 opportunities/semester to demonstrate their knowledge of the material. The computer-based exam system gives them immediate feedback on their performance.
Disadvantages: As noted above for quizzes, staff must be available to help students who have problems with the exam software on the day of the exam. As noted above, it is inevitable that a few students will have problems with their computers. Thus, the department has purchased 10 computers dedicated for use by students having difficulty during the exam administration. A room or group of rooms with Internet service and power sources for computer chargers must be available for the administration of Block exams. For the Internet students who cannot come to Cleveland to take the Block exams, we administer the exams through ProctorU, a service paid for by the department. This service uses the CMS to administer the exam through their proprietary software where a proctor observes the students through their computer camera and reports any inappropriate activity.


20. Use a “Difficulty Factor” (DF) to adjust quiz and Block exam grades for difficulty.
It is very difficult to predict how well students will perform on multiple choice quizzes and Block exams. Our expectation is that the median score on each Block exam will be 85% with 100% – 85% = A, 84% – 70% = B, and anything less than 70=C (with a C considered a failing performance in graduate school). Until a track record can be established for an exam, performance on each exam will be used to calculate the DF = the difference between the median on an exam and 85%. For example, if the median on an exam is 80%, 5% points are added to each student’s grade to bring the class median to 85%. If the median on an exam is greater than 85%, the DF = 0. After 3 years of administering a secure exam, the DF is calculated from the average of the DF’s for the previous 3 years.

Advantages: This system of adjusting the Block exam grades has been effective in making the final class average in the course close to 85% and a distribution of grades approximately 50% A’s and 50% B’s with only a few C’s. The students see the grading system as non-competitive; i.e., they do not see themselves as being in competition with other students for a limited number of A’s. Although it has never happened, it is possible for all students to earn an A in the course.
Disadvantages: None


21. As soon as possible after quizzes and Block exams are completed, hold a review session to discuss the correct questions.
Review sessions are conducted by the TA’s immediately after the class that follows the administration of the Monday quizzes and immediately after the Block exams. In these review sessions, the right answers to each question are provided. Students are allowed to contest the answer to a question. All contested questions of substance are taken to the faculty member responsible for the quiz or Block exam for evaluation and possibly changing the right answer or accepting multiple right answers. When this happens, the question is immediately corrected for use on the next year’s quiz/exam.

Advantages: It is very useful for students to have immediate (or near immediate) feedback on their performance on quizzes and Block exams. In this way they can identify concepts that they have not mastered and correct their thinking before moving on to the next topic.
Disadvantages: Steps must be taken to keep quiz and Block exam questions secure during these review sessions.

 

22. Provide faculty advisors to the MSMP students.
Each of the MSMP students is assigned a faculty advisor from the primary and secondary departmental faculty. We limit the number of students assigned to each faculty member to no more than 10/year. The advisors are responsible for writing letters of recommendation for their advisees. Students are encouraged to meet personally with their advisor at the beginning of the program and then at least after each Block exam in the first year core courses. During the second year, they meet with their advisors as needed. Internet students are encouraged to contact their advisor via phone or Skype on the same schedule.

Advantages: Students have access to a faculty member who can advise them on how to best navigate the courses and the MSMP program. Based on the student’s unique situation, they can also advise them on which electives will be most helpful to them when they apply to a medical professional program. Personal meetings are important so that the advisor can write a personalized letter of recommendation.
Disadvantages: Advisors are not equally knowledgeable about the intricacies of getting into professional medical programs and don’t provide the same quality of advice. Students tend to seek advice from the faculty members who have the reputation of being the best advisors, even when they are not assigned to that advisor. It is difficult to recruit enough faculty to be advisors to keep the student/advisor ratio at 10/incoming class.


23. Provide peer advisors.
At the beginning of the academic year, each matriculating MSMP student is assigned a peer advisor from the second year MSMP students. They are encouraged to meet and have social activities together. Each peer advisor is given $10/advisee to defray the cost of a social activity; ex. pizza party, bowling party, etc.

Advantages: Students appreciate meeting second year MSMP students who have successfully completed the first year core courses. Especially at the beginning of the program, this contact helps the incoming students become acclimatized to CWRU, the MSMP program, and Cleveland.
Disadvantages: It is not always easy to recruit enough 2nd year MSMP students to keep the student/advisor ratio at approximately 5.

 

24. Provide Teaching Assistants who have already had the core courses.
At the end of the academic year, we interview students who have successfully completed their first year in the program and who want to be Teaching Assistants (TA’s). Typically, these students have a perfect 4.0 GPA and have had some TA experience during their undergraduate experiences. The TA’s conduct weekly review sessions for the core courses, hold office hours for personalized Question and Answer sessions, administer the quizzes and Block exams, and post the materials provided by faculty in the CMS. Three of the nine TA’s have been assigned to work exclusively with the Internet students, being sure to contact them at least once/week.

Advantages: The TA’s provide an invaluable service to the MSMP program, relieving the AA and faculty from having to deal with many routine administrative duties. This experience is very valuable to the TA’s, greatly enhancing their resumes. This position pays $15/hour for up to 20 hours/week of work thus giving the second year students some income. These TA positions have become very prestigious, especially when considering that every TA has gained admittance to the medical professional program of their choice after graduating with the MSMP degree.
Disadvantages: We hire 9 TA’s/year and this comes with a price tag that must be met by the income generated by the program.


25. Require students to complete a faculty/course/program evaluation at the end of each Block of the course.
At the end of each Block exam in the core courses and at the end of each elective, each student is required to complete a Block/faculty/program evaluation administered through SurveyMonkey. Student grades are not released until they complete all surveys. The Director of the MSMP program creates the template for this survey and the TA’s appropriately modify it and post it online for each Block of the courses.

Advantages: This feedback is provided to the Block coordinators, the MSMP Administration Committee members, the faculty teaching in the Block, and the TA’s. This feedback is coordinated by the AA. The Block coordinator and the members of the MSMP Administration Committee see the full evaluations. The faculty and TA’s only see their own evaluations. This information is very important for faculty and TA’s to know how their interactions are valued by the students and by the Block coordinators and MSMP Administration Committee members to evaluate the courses and program and take steps to continuously improve it.
Disadvantages: The AA must take time to keep track of students who have completed the evaluations and explain to those students who have not completed them why their course grade has not been posted.

Dr. Nosek earned his B.S. in Physics from the University of Notre Dame in 1969 and his Ph.D. in Biophysics from The Ohio State University in 1973.  After post-doctoral research in the Cardiovascular Physiology Training Program in the Department of Physiology and Pharmacology at the Bowman Gray School of Medicine of Wake Forest University, he went to the Department of Physiology at the Medical College of Georgia (1976-1997) where he was the Coordinator of the Muscle Cell Biology Research Group (conducting research on the cellular basis of muscle fatigue) and the Coordinator of the Computer Aided Instruction Research Group (editing and being a section author of “Essentials of Human Physiology:  A Multimedia Resource” published by the DxR Group).  He served as Director of the medical physiology course taught to first year medical students and was the Director of the Departments Ph.D. program.  In 1997, he moved to Case Western Reserve University School of Medicine where he was Associate Dean of Biomedical Information Technologies (creating the Computer-Based Integrated Curriculum through 2006) and Professor of Physiology and Biophysics until he retired in 2014 becoming Professor Emeritus.  He served as the department’s Director of Medical Education.  He was founding Director of the MS in Medical Physiology Program at CWRU from 2010 – 2019 when he became Director Emeritus.