Author Archives: Margaret Stieben

Dramatization: The Marriage of Theater and the Teaching of Physiology

This blog tells a little bit of my personal history as an educator: from a typical boring lecturer to an extroverted educator who has tons of fun playing drama in the classroom with students.

But first let me wonder: wouldn’t it be great if we teach, and our students learned well and far beyond the exams?

What to do when students’ attendance is not required, like most medical schools, and regardless of the time we spend preparing the session only a few students attend it. Or when attendance is required, like in many undergraduate courses, students struggle and only learn enough to pass the exam. Many of us experience frustration.

It is not fun when we invest so much time in preparing to teach, but the students are overwhelmed with too much content, become so consumed with the exams, and end up relying on memorization that many times only works until the exams.

This was especially true in my early experience with teaching. I was a very traditional lecturer with a clear teacher-centered mind. One year I had to substitute for a colleague and taught the pre-requisite course (cell biology) to my class (physiology). I enjoyed teaching them and the students did well with 100% approval.

When I met the same class in the subsequent semester, I started by telling them that the physiology course would be much easier since I knew that they were taught (by me!) all they needed to know in the pre-requisite course. My naïve belief was that because they were taught, the students would have learned and would not have forgotten. I was confident they were all ready to dig deep into physiology. To my dismay and complete frustration, I realized the students did not remember what I taught them when I had them in my class just a few months before. I started doubting my abilities as a teacher and blamed myself for passing those students. I oscillated between feeling depressed and ashamed.

Who in heaven let me teach them!!!

I guess due to my scientific training, I looked for help in the literature and discovered the journal Advances in Physiology Education. Reading papers about research in education, I realized that something was wrong with the method of teaching most of us use. Lecturing and pushing a massive amount of information at the students makes it difficult for them to learn and remember. I wasn’t the only professor whose students didn’t remember what was taught. Richardson (1) showed that naïve students without prior physiology instruction scored the same as students who had learned physiology before.

All students benefit from some fun in their classroom. When we smile, nerves send signals to the brain, releasing neurotransmitters such as dopamine, endorphins, and serotonin into the bloodstream. Dopamine is the main neurotransmitter in the regulation of motivational processes. It drives us to achieve goals.

Thanks to Advances, the readings opened my mind to explore all forms of learning and teaching – visual, audiovisual, reading, and kinesthetic. Back in 2002, at Unigranrio Medical School in Brazil, the students would come to me struggling to understand action potential and cardiac cycle. The next thing I saw was, that I get them to lift their arms to demonstrate depolarization and step forward to contract the cardiac muscle cell. All of this would happen spontaneously in the corridors and university halls with me telling them to imagine “the depolarization goes from cell to cell, and the electrical signal precedes the mechanical event”. Then with the help of very dear students, DRAMATIZATION was born as a method of teaching that is fun for the students (and teachers) and allows students to better learn new and complicated concepts.

Learning must be fun (2), and we teachers should love teaching. To enjoy teaching we need to create an exciting and relaxed environment for our students. Dramatization is the perfect way to teach while having fun in the classroom. Each participant acts as a cell/structure, and the entire group mimics the organ/system. In this very interactive and engaging activity, every mistake is a learning opportunity (3).

I have been having an extremely positive experience with Dramatization while doing it for two decades. From my first student in 2002, who contacted me years later, to tell me he became a cardiologist due to having fun with cardiac cycle dramatization, from physiology educators who attended my workshop (4) in 2017 at IUPS in Buzios (Brazil), to ITL this year in Madison, WI just to cite a few. Every time I teach other faculty how to do Dramatization, it is a rewarding experience that fills me with the hope that I am contributing as an educator to a better physiology education for a broad learner community.

Art in general is part of our lives, and theater can and should be used for the training of future health professionals. When we think about theater and science education, an aspect that must be considered is the importance of interpersonal relationships between teachers and students. A good interpersonal relationship can contribute as another motivating factor for the fixation on knowledge. A relaxed atmosphere in which humor is present brings the parties involved in the learning process closer together, thus creating an even more favorable space for the process of acquiring knowledge at the same time as creating a moment of relaxation from the usual state of tension experienced by our students. The students might forget what you said, but they will remember what they did.

When students experience this innovative learning modality, it not only promotes retention of information, but it also stimulates a highly engaged class participation. Such an environment favors bonds among classmates and reinforces interrelational intelligence, an invaluable skill for the work of health professionals.

When I first published dramatization, I not even use this name (5).  Then I presented it for medical students at VTCSOM, and one of my students got inspired and developed his own dramatization of the Starling forces (6). Also, very rewarding is to see faculty who attended my workshop, get to develop, and publish their own original dramatizations (7).

I hope you are inspired to try something new in your classroom. If you need data to be convinced how well Dramatization works, the graphs below show the scores of a class of VTCSOM 1st year medical students before doing it (pre-test); for the students who watched it but elected not to actively participate in it (post don’t act); and the students who acted in it (post drama). In summary, simply watching peers doing dramatization already helps to learn, but when the student actively participate in it, they learned even more.

 

 

Next blog I will tell you all about an exciting new project: DramaZoom (8, 9). The lockdown during COVID stimulated us to develop dramatization via Zoom. In collaboration with two physiologists who participated in my workshops before, Patricia Halpin and Elke
Scholz-Morris, we created videos that use dramatization to teach online. Also, Daniel Contaifer Jr designed the background, and Rosa de Carvalho taught us how to do the mimics and facial expressions in DramaZoom.

So, if you want more information on how to bring drama to the classroom, please contact us and let us know how it goes. Finally, if you publish it please cite us, and let’s spread the fun!

Happy teaching

helena@vt.edu

References:

  1. Richardson DR. Comparison of naive and experienced students of elementary physiology on performance in an advanced course. Adv Physiol Educ. 2000 Jun;23(1):91-5. doi: 10.1152/advances.2000.23.1.S91. PMID: 10902532.
  2. DiCarlo SE. Too much content, not enough thinking, and too little fun! Adv Physiol Educ. 2009 Dec;33(4):257-64. doi: 10.1152/advan.00075.2009. PMID: 19948670.
  3. Carvalho, H., McCandless, M. J., 23rd Annual IAMSE meeting, “Dramatization Promotes Learning and Engages Students,” IAMSE, Roanoke (June 11, 2019).
  4. Carvalho, H., IUPS & ADInstruments Teaching Workshop, “The Use of Dramatization to Teach Physiology,” IUPS, Armação de Buzios – Rio de Janeiro, Brazil (August 7, 2017). Additional Information: Start Date: August 2017.
  5. Carvalho H. A group dynamic activity for learning the cardiac cycle and action potential. Adv Physiol Educ. 2011 Sep;35(3):312-3. doi: 10.1152/advan.00128.2010. PMID: 21908842.
  6. Connor, B., Carvalho, H. (2019, August). Using dramatization to teach Starling Forces in the microcirculation for first year medical students. 2019;15:10842.https://doi.org/10.15766/mep_2374-8265.10842.
  7. Halpin PA, Gopalan C. Using dramatizations to teach cell signaling enhances learning and improves students’ confidence in the concept. Adv Physiol Educ. 2021 Mar 1;45(1):89-94. doi: 10.1152/advan.00177.2020. PMID: 33529141.
  8. Carvalho H, Halpin PA, Scholz-Morris E (2022). Dramatization via Zoom to Teach Complex Concepts in Physiology FASEBJ 36:S1. https://doi.org/10.1096/fasebj.2022.36.S1.R2956
  9. Carvalho H, Halpin P, Scholtz-Morris E and de Carvalho R (October 28, 2021). Can We Teach Using Dramatization via Zoom? Teach Excellence Academy for Collaborative Healthcare, Teach Education Day Poster Presentations via zoom. Virginia Tech Carillion School of Medicine.
Helena Carvalho is an educator with more than 20 years of experience. She is an associate professor at Virginia Tech Carilion School of Medicine, Block Director for basic sciences, a PBL facilitator, and teaches several areas in human physiology for medical and Ph.D. students. The main focus of her educational research is to develop innovative teaching methodologies such as Dramatization, DramaZoom, and Manipulatives. She also enjoys outreach and has been sharing excitement about physiology with all levels of education including middle and high school.

 

Rosa de Carvalho is a theater/drama director, actress and teaches mimicking and acting to children and adults for 25 years.  She has specialization in psych pedagogy and has used her talents to empower low-income communities in Rio de Janeiro (Brazil). Her has an incredibly creative mind and uses theater to improve all levels of education and human relationship. Her contribution to education span from elementary school to college level.

Still looking for an ethical way to assess “lifelong learning”

Medical school accreditation process requires that institutions document that medical students develop the skills for “lifelong learning”.  As other standards of the section require that you answer precisely the question that is asked, I found this topic particularly challenging.  “Lifelong” requires that the assessment occurs at the end of life.   Otherwise, you may have been a learner for three-quarters of your life, and this is not lifelong.  One option would be to assess learning capability and then immediately “dispatch” the individual, providing a data point that indeed reflects lifelong learning.  Even as my caffeine titers swing wildly from under- to over-caffeinated, this approach seems unlikely to pass the Institutional Review Board.  In fact, submission of the application may result in my developing a close relationship with individuals with behavioral clinical expertise.

When reaching an impasse, return to the original question. Revisiting the Liaison Committee on Medical Education (LCME) element # 6.3, the title is actually “Self-Directed and Lifelong Learning”.  So, there may be an opening – focus instead on Self-Directed Learning.  The accreditation documents helpfully provide an expanded description

“The faculty of a medical school ensure that the medical curriculum includes self-directed learning experiences that allow medical students to develop the skills of lifelong learning. Self-directed learning involves medical students’ self-assessment of learning needs; independent identification, analysis, and synthesis of relevant information; appraisal of the credibility of information sources; and feedback on these skills from faculty and/or staff.”

Part of the quandary is rooted in the shift of professional education from information acquisition to the development of competencies.  Competencies are much better aligned with professional behaviors, and include aspects of knowledge, skills, and attitudes.  Among the competency domain buckets, self-directed learning is more appropriately identified as a skill and an attitude.

Conversation with a friend (pre-pandemic) indicated that a transposition of the phrase would be useful, and that “directed self-learning” is a more appropriate goal for professional school.  Each institution has a desired set of learning outcomes – the curriculum for the faculty must guide the students so that the skill of independent learning focuses on the knowledge content that must be learned.

The first component in the LCME expanded definition of the element is “…self-assessment of learning needs.”  Assessing this is a challenge – if a learner does identify a gap, you as the facilitator can check off that box.  More challenging is a situation when you recognize a learning need and the learner does not.  To get to check off that box, you have to use open-ended questions to probe the learner’s current state of awareness and lead them on a voyage of self-discovery.  It is indeed a challenge, but the ability to self-identify gaps is an essential characteristic of a professional.  While the journey is a challenge, the creation of the list of learning objectives as an outcome is nice, tangible, and easy to assess.

The second component is more straight-forward “…independent identification, analysis, and synthesis of relevant information.”  Finally, I get to return to my comfort zone – information.   Acquiring information as proof that you know how to acquire information is one logical outcome that is easy to assess.  Assessment of the ability to synthesize that information with other relevant information gets more obscure, and ultimately requires a value judgment.  Overall, still doable.

The third component is “appraisal of the credibility of information sources”.   After establishing a few boundaries (such as “Cite Wikipedia and I will hold you up for public shaming”), learners progressively master when to use texts, professional society position papers, clinical research studies and meta-analyses to obtain the appropriate type and depth of information.  That box is checked.

The concluding component “feedback on these skills”, returns the focus to assessment.   To document this, you have to do an assessment on assessment, or a meta-assessment.  And as evidence both that knowledge alone is not enough and that the ability to appraise the credibility of sources is needed, a Bing search produced over 1 billion web hits for the term “meta-assessment”.  Google Scholar was a little more selective returning only 1,290 results.  None of which I intend to read.

We now live in a world where knowledge gaps are no longer perceived as a problem.  For example, what if I wanted to go to Vermillion South Dakota and did not know how to get there?  The knowledge gap is unimportant as long as I know a successful strategy to remedy that gap.  Apple maps now becomes my new best friend.  Even in 2022, knowledge does still matter.  A keyboarding or spelling error can send (and has sent) travelers in interesting directions.  An individual needs to realize when they are headed in the wrong direction.

So, the “lifelong” adjective remains a non-starter in terms of assessment.  Directed self-learning, however, is a needed goal as we prepare professionals for the challenges that await them.

 

Robert G. Carroll earned his Ph.D. in 1981 from the Graduate School of Biomedical Sciences of the University of Medicine and Dentistry of New Jersey-Newark. Following a 3 year post-doc at University of Mississippi Medical Center in Jackson, he moved to East Carolina University in 1984 as an Assistant Professor of Physiology. He is currently Professor of Physiology at the Brody School of Medicine at East Carolina University and the Associate Dean for Medical Education.

Rob is the past chair the Education Committee for the American Physiological Society, and currently chairs the Education Committee of the International Union of Physiological Sciences. He was editor of the journal “Advances in Physiology Education” from 2008-2013.

Robert G. Carroll, PhD.

Professor of Physiology

Associate Dean for Medical Student Education

Brody School of Medicine at East Carolina University

Greenville NC USA

Navigating Through Imposter Syndrome: A Glimpse of the Reality of Black Mothers in Graduate School

Throughout my entire educational journey, it has always been my nature to consistently work hard.  Coming into a PhD program immediately after my undergraduate studies, I thought I had everything figured out, ranging from potential lab mentors for rotations to specific study strategies for first year curriculum classes. However, no amount of preliminary preparation could have braced me for the mental and emotional challenges that are associated with obtaining a PhD, specifically Imposter Syndrome while being an underrepresented individual in the field. Going through the process of finding a dissertation mentor and adjusting to a new academic setting contributed to the several factors that triggered a deep sense of loneliness and confusion on whether I belong in research. The most difficult aspect of this transition was learning what to look for in a mentor and what type of support would I need to finish the program successfully.  After going through three rotations, I found myself still without a mentor and a lab environment that I felt that I could thrive in. The overwhelming feelings of defeat and rejection clouded my mind, and I was not quite sure where I went wrong.  I asked myself constantly, “Did I not make more conscious decisions on mentors based off their personalities?  Was I not available enough to juggle classes, lab, and being a mom? All these factors were important in my mind but none of these things seemed to put me in the right direction.

 

From that point forward, I decided to take a leap of faith and acknowledge why I wanted to become a scientist in the first place. I came into this field to change the world through scientific discovery, break racial and socioeconomic barriers, and educate minority communities on disease prevention. Looking at the big picture of how my goals are set to impact humanity is what allowed me to change my mindset. As soon as I realigned my values, everything came to me at once. With positivity, patience, and persistence, I was blessed to acquire a mentor who gives me the opportunity to truly express myself without questioning my intellectual ability. This lab is a place where I can be seen for who I am and not what I look like. No matter what I say I am heard, acknowledged, and appreciated for who I am as I am and not what I am expected to be or what I have to offer. I am appreciative of the knowledge, wisdom, and affirmations that are spoken into every experiment I conduct. Learning is an adventure that is worth taking. There will never be a day I regret the lab I chose. Picking your lab is about finding the mentor who is edifying to your soul. When you find your lab, you will know it, and the feeling is indescribable. Working with a team of cutting-edge researchers never gets old.  As a scientist and a black mother in STEM we must never forget to nurture ourselves while also liberating the world through one discovery at a time.

 

Mia Edgerton-Fulton is a highly motivated and aspiring PhD trained neuropathologist, who is passionate about investigating potential therapies in dementia-related diseases. She is currently completing her PhD in Neuroscience at the Medical University of South Carolina where she actively engages in research related to post-stroke cognitive impairment (PSCI) and vascular dementia. Mia’s previous undergraduate experience as a historically black college/university student at Savannah State University has inspired her to advocate for improved health in minority communities by incorporating her scientific knowledge on the impact of stroke and its comorbidities on overall brain health. Mia also expanded her knowledge in dementia research as a neuroscience undergraduate research fellow at the Mayo Clinic. For the future, she plans to pursue a career in the biotechnology industry as an independent scientist with her own startup company.

Mia Edgerton-Fulton

Neuroscience PhD Candidate

Medical University of South Carolina

Do Animals & Aliens belong in a Human Physiology course?

As a human physiology instructor, one of the most frequent comments I get from students is about how hard the course is. In fact, I have started to bring this up right at the beginning of the semester and offer my students many ways to overcome the challenges, including keeping up with the reading and the homework, coming to office hours with questions, forming study groups, etc… There are several reasons why the students struggle with the physiology course. Physiology can be hard for students due to the amount of material and the nature of the subject which requires integrating knowledge from other fields such as anatomy, biochemistry, cell biology, physics, and chemistry. There is also a lot of heterogeneity among the students learning human physiology. They may be biology majors taking physiology as an elective, or those who are preparing for a career in a health profession, and they may be coming from different backgrounds with varying levels of preparation. Some students may start the course with basic biology knowledge and some pre-conceived notions that may even hinder their ability to learn the intricacies of human physiology.

There is a belief among many physiology students that since there is a lot of factual detail then memorization is the way to go. This inevitably leads to memorization fatigue, and confusion when seemingly contradictory material is encountered. Instead of focusing on the overwhelming number of details, a better strategy would be to focus on common themes or core concepts that once learned will allow the formation of a strong foundation. When the students learn core concepts, they do not need to learn all the details of all the systems, just the common themes and this reduces the cognitive load. By having to remember fewer items, the students can work on learning as opposed to memorizing. Focusing on core concepts allows the students to transfer their learning from one body system to another with an understanding of the basics. Core concepts provide a way to raise the level of knowledge of the students, so that long after they have completed the course, they can continue to learn physiology even if they do not remember all the details.

Michael & McFarland (2011) have compiled a list of 15 physiology core concepts based on physiology faculty surveys that describe the most important parts of teaching physiology. It is clear from Michael et al. (2017) that these core concepts are ‘general models’ as they are widely applicable in most areas of physiology. Some of these core concepts include homeostasis, cell membrane, cell-cell communication, flow-down gradients, and interdependence and provide an excellent framework for the teaching of physiology.

The wide applicability of core concepts allows the instructor to generate models involving animals as well as hypothetical aliens. It may be reasonable to assume that learning core concepts will then enable the students to answer questions and solve problems involving animals and aliens. There are some really good reasons for the use of animal and alien models for teaching core concepts as well as for assessment. The use of animals & aliens in teaching and assessment removes any preconceived notions about how the human body works and can hone in on the most important facets of the concepts that we want the students to learn. Animal & alien models in assessment can be an excellent way to test for comprehension of concepts and the ability to transfer the learning from the known system to a novel scenario.

Problem sets with animals & aliens can be used in teaching as well as assessment. Courses on animal physiology or comparative physiology can shine a spotlight on the common themes between animals and humans. Animal models are routinely used in research to study human diseases as well as to test interventions. Teaching modules that incorporate animal physiology like the one from HHMI Biointeractive on dinosaurs’ ability to maintain their body temperature can engage the students to apply principles of physiology to understanding how dinosaurs were able to regulate their body temperature. Tools like the Fictional Animal project (Batch et al. 2017) help students in their systems thinking to identify the most important physiological models to integrate the various body systems and in addition to understanding the interactions between an animal and its environment.

With the increased interest in space exploration and human travel to moon and Mars, physiology questions on aliens can help us learn more about human physiology and how we might adapt to space. Research on extraordinary life forms at the bottom of the oceans and hydrothermal vents that provide us with more ways to imagine life in space while emphasizing similarities with human physiology. Most importantly, bringing animals, fictional or real, and aliens into the classroom can increase student engagement and impact learning and transfer of knowledge.

One way to use non-human examples is by using the framework of Test Question Templates (TQTs; Crowther et al. 2020), in which clearly articulated Learning Objectives (LO) are used to generate questions. Every TQTs based on an LO can be used to create multiple questions, thus reducing the possibility of memorizing answers. The use of TQTs can result in questions that assess student understanding and application of core concepts, expecting students to use higher levels of Bloom’s taxonomy. (Casagrand & Semsar, 2017). The consistent use of TQTs can build an appreciation of physiology concepts leading to better preparation for patient care and real-life medical scenarios.

The appeal of TQTs for students, in addition to learning concepts as opposed to facts, is also that they can envision what questions can be asked based on an LO. TQTs can be used in class as models for generating questions in which the students can also participate. As instructors, we like it when our students answer questions, but it is even better when they ask the questions. So, does it matter to a pre-health student whether a dinosaur was endothermic or ectothermic? And the answer to that is if it helps the student understand how temperature regulation works, it certainly does.

References:

Batch, S.A., et al. 2017 Adv Physiol Educ. 41:2 https://doi.org/10.1152/advan.00159.2016

Casagrand, K. and Semsar, J. (2017). Adv in Physiol Educ. 41: 170-177. 10.1152/advan.00102.2016

Crowther, G. J. et al. (2020). HAPS Educator 24(1):74-81. https://doi.org/10.21692/haps.2020.006

Michael, J. and J. McFarland (2020). Advances in Physiology Education 44: 752-762. https://doi.org/10.1152/advan.00114.2020.

Michael, J. & McFarland, J. (2011) https://doi.org/10.1152/advan.00004.2011

Usha Sankar Ph.D. is a Sr. Lecturer at Fordham University, Bronx, NY and has been teaching human physiology for over 10 years. Usha is very interested in bridging the gap between teaching and learning and is looking to improve her own physiology teaching as she believes learning about the inner workings of the human body is the most fun thing anyone can do. Usha is also involved in conducting air quality research and collaborating with young scholars from middle and high schools about air quality, health impacts, and climate change research. This research combines all her interests including human health, education, and climate change.

Usha Sankar Ph.D.

Senior Lecturer

Dept. of Biological Sciences

Fordham University

441 E Fordham Rd

Bronx, NY 10458

Impactful activities to create a framework to support team-based activities

While the recent pandemic has forced a number of rapid reforms in learning and teaching, the need to rethink how we learn and teach at the tertiary level began well before that. This has been exemplified by increasing interest in topics such as flipped classrooms, authentic assessments, and students as co-contributors. Although one might argue that the idea of flipped classroom is not new, there has been a growing push to create authentic learning experiences and authentic assessments to better prepare our graduates for the next stage of their careers – be it further professional education or employment. To work towards this goal our department recently restructured our final-year physiology courses to create an environment that empowers students to be agents of their own learning. We believe that over their lifetimes of their degrees, the students should transition from learning through knowledge transfer to self-guided agents in their own learning to promote lifelong learning. To achieve this aim, our assessments were restructured to shift the focus and emphasis from tests and exams, to more authentic assessment tasks. Here we will share an example of one such assessment and the guides we provide to help the students succeed.

In one subject Physiology: Adapting to Challenges, the students are required to work in a team on a project to be presented in a mini-student conference at the end of the semester, to mimic a scientific conference. While a team presentation might not be a truly novel idea, a few factors that we have included in the project design make it distinctive from other similar assessments.

In the early years we were concerned that students would shy away from the team project aspect of the subject. We, like many of our colleagues, thought that the students would detest the prospect of group work and thus be put off by a group project as was observed in a study at another Australian University (White et al. 2007). However, when we surveyed our second- and third-year Physiology students, it was interesting to find that approximately 75% of respondents in both second- and third-year preferred working in groups rather than individually, and the majority of the students understand the importance of acquiring teamwork skills. Many raised concerns about working in a group from prior negative experiences, similar to concerns raised in a previous blog post here. This led us to come up with ways to support the students’ success in this team project. Here we will share some of the lessons we have learned along the way.

1) Broad topics with multiple possible directions

The students were presented with a number of broad research topics or questions of physiology, examples of topics include “Tips and tricks to aging well.” Or “Stress: is it always bad?”. While at first these topics might seem like ‘bad’ topics as they do not appear to provide any research direction, this apparent flaw is also the beauty of this design, as the ‘vagueness’ of the topic gives the student groups flexibility and scope to develop and identify their own common interests within the broad field of physiology and is one of the unique aspects of this assessment. As the starting point covers a broad range of potential directions, the team must arrive at a consensus on the ultimate and final direction of the project. This freedom was an intentional design to give students agency and choice in their project. While some teams do find this lack of direction challenging, the majority of the feedback from the students was positive, with 85% of the respondents in an end of semester survey enjoying the flexibility this provides. In fact, some students stated that they have never experienced this type of freedom in taking their learning into their own hands in their university degree and felt empowered by this option. The feedback from academics who help review these presentations was overwhelmingly positive and we have been consistently impressed by the quality and depth of work produced by our undergraduate students.

2) Create groups based on common interest

The groups were created based on the student nominated projects and not randomly assigned. The students are asked to nominate and rank their top three picks of the projects, together with a short description of their reason for picking that project. The student groups are created from their nominations and the rationale for their interest in the project. This creates groups with a common goal and facilitates the group formation process. While diversity in groups is a well-recognized factor in strong groups, it is also important that groups have common goals. A fine balance must be struck between diverse groups and the common goal. Student feedback on this aspect of the assessment was positive as it gave them a choice on what to research on a topic of their choice. Something that they don’t often get a chance to do in other subjects.

3) Nominate a team mate – if you want

Our previous experience in group formation has shown us that being introduced to a group of unfamiliar people can be a stressful experience for some students, especially with the added stress of an associated assessment. We found that many students appreciated the option and opportunity to nominate a team mate. This reduced their social anxiety in the formation phase of the team. While some students did try to ‘cheat’ the system by either nominating multiple people, or in some cases nominating people in a chain, it is up to the academic to decide whether to allow or disallow these cases. It is important to keep in mind a number of other factors such as making sure that no single student in any group is the solo person without a nominated ‘buddy’ to minimize social exclusion, and still maintaining diversity in the group. The observation from the tutors and teaching staff was that this nominated ‘buddy’ system reduced the social anxiety in early group formation and allowed the groups to move forward to the next stage to discuss their direction sooner.

4) Effective ice breaker activities

Most of us would have experienced ice-breaker activities in a workshop or other types of settings and may have cringed at the idea of these activities. However, finding effective ice breaker activities can help overcome the initial social anxiety and allow the students to get to know each other. The key to effective ice breakers is to choose ones that require and assist their communication, whether it is discussing an idea that is not associated with the assessment (e.g. team name) to reduce the stress, or activities where the team members get to learn something about each other, or work towards a common goal that is not assessment associated. The ultimate aim is to get them to start conversing and help ease the more in depth and intense discussions that will follow. Indeed, in a survey of our students following the ice-breaker activity, the students noted that the ice-breaker activities were cliche but did benefit by increasing comfort with team members by the end of the activity and thus could see the benefit of the activity.

5) Team contract

Following the ice breaker activity, the student teams are asked to discuss and sign a team contract. The team contract provides a framework for the students to discuss and outline their expectations within the team. It includes basic information such as contact information. There are also general procedural discussions such as location for sharing documents, the best means of communication within the team, the preferred method for everyone. The students are advised to set up a team chat that everyone can access. This was an extra layer of challenge in the online learning space as some messaging tools may not be available in some geographical locations.

As the team progresses through the contract, the discussion topics get progressively deeper. The team is asked to discuss their goals and expectations of the project and of each other. They are encouraged to discuss the frequency and duration of meetings outside of scheduled class times; to include discussion of people work responsibilities so they can be considerate of others in setting alternative meeting times; preparation for meetings; note taking in meetings. Finally, the team is asked to discuss how they will deal with conflicts in their group, including topics such as assigning specific tasks, or unmet expectations. The students are provided with scenarios on potential conflicts that they might face and given the time to work through the scenarios as a team. Thus, the team contract guides the teams in a structured and scaffolded discussion about some of the challenging situations they may face.

For the majority of students, this is the first time they have encountered this type of document and it was a daunting task to begin with. However, many students also found the structure of the document with the guided discussion points helpful in navigating some of the more tricky questions.

6) Peer-review and feedback

The student teams undergo two rounds of peer review over the course of 8 weeks. The first peer-review is a required (hurdle) task but is not included in the assessment. This peer review takes place 3 weeks after the groups are formed. The first peer-review is entirely a formative feedback for each member so they have the opportunity for self-reflection and to receive anonymous feedback from their team. This feedback provides the students with an opportunity to adjust any problem behaviors before the final peer review at the end of the project. It also provides the academics with an opportunity to identify any group dynamic issues before it gets too late!

The second peer-review occurs after the final presentation and is counted towards the student grade. The average of the grade they receive from their team mates is used for the grade. In each peer review, the students are asked to assess their team members in a number of criteria:

  • Initiative / self – motivation / motivates others
  • Communication
  • Accountability & sense of responsibility
  • Timeliness and preparation
  • Contribution to the team work & Commitment to the team success
  • Respect & Adaptability

Another key factor is that the peer-review score may be used to adjust the team presentation grade if the student receives a low grade from their team. This increases the student accountability to their team. This also provides the team members a means to hold their team mates to account and minimizes the impact of ‘freeloading’ in the team project. Student feedback on this aspect confirms that peer review is a good way to encourage individual accountability and contribution to the team project with 83% of the respondents in our end of semester survey agreeing to that statement.

We used the tool Feedback Fruit for the peer-review process and it has been a smooth process as this is integrated into our learning management system (Canvas) and the groups synch and import automatically. This reduces the workload tremendously! Before Feedback Fruit become available we tried the same process with Qualtrics. However, this required much more background work to set up the groups for the peer-review process.

We have now run this assessment or similar variations of it, for 5 years, over this time we have made a number of tweaks and adjustments to improve the student learning experiences. Here we have shared some of the lessons we have learned along our journey that we hope readers will find useful. We believe that with some careful sign posts and guard rails we have created a positive and enjoyable learning experience for the students. Not only has this made for an enjoyable learning experience and environment for the students, the workshops have become a highlight of our weeks as we watch the student projects develop and grow. This is reflected in the overall feedback from students, tutors, and assessing academics. Most pleasing is perhaps the student feedback that many found this to be an enjoyable and highly memorable experience and was a highlight of their university journey and they may have learned some interesting facts about physiology that they will take with them as they continue their life journeys.

Angelina is a senior lecturer and the Physiology discipline coordinator in the Department of Anatomy and Physiology in the Faculty of Medicine, Dentistry and Health Sciences, at the University of Melbourne. Her current learning and teaching focus is on practical-based in practical classes, using technology to engage learners in large cohorts in Physiology, and in integrating employability skills within the science and biomedicine curriculum.

Dr Angelina Y Fong PhD GCUT | Senior Lecturer

Physiology Discipline Coordinator

Department of Anatomy and Physiology

School of Biomedical Sciences

Faculty of Medicine, Dentistry and Health Sciences
The University of Melbourne, Victoria, Australia

White, F., Lloyd, H., & Goldfried, G. (2007). Evaluating student perceptions of group work and group assessment. Sydney University Press

 

Designing asynchronous learning material: the Pomodoro way

This post shares my reflection on making asynchronous learning materials during COVID19. I taught physiology to years 1 and 2 medical students at Newcastle University Medicine Malaysia. My usual approach in the classroom is: passive – active – passive i.e. I would first clarify the concepts in which students listen passively, ask questions to push students to think actively, back to passive again, and so forth.

 

When the pandemic hit Malaysia and the country went into complete lockdown, teachers were asked to decide if they wanted to make their teaching session synchronous or asynchronous. It was a stressful time as it was just my third year of teaching, and I still had a lot to learn about teaching. Fortunately, this happened during the semester break, and I had time to ponder these potential issues. Synchronous online sessions happen in real time, just like an in-person teaching session but online. Asynchronous sessions, on the other hand, allow students to go through the learning materials at their convenience.

 

I chose to make all my teaching sessions asynchronous after reflecting on several issues which the students and I might encounter if they were synchronous sessions. The student demography in the university consists of both local (Malaysian) and international students (ranging from Australia, to South Asia, and all the way to Canada). Considering where the students were from, the first problem with conducting synchronous sessions would be the time difference. After making adjustments, we had only a couple of hours a day where the schedule was appropriate for everyone.

 

Using Zoom for teaching was my first time, I needed to take into consideration student engagement, internet connectivity (both students’ and mine), glitches etc. Taken together, I realized that there were more things that were not within my control for a synchronous session, so asynchronous session was the better choice: the students could just go through the materials at their convenience. They could learn at their own pace without the need to stress themselves (and myself) about internet connectivity during a synchronous session or waking up at 5 in the morning; And I could avoid real-time technical issues in the middle of a teaching session. What’s left is student engagement. How do I engage students during asynchronous teaching? What can I do to motivate the students to complete the seemingly ‘boring’ hour-long lectures when they were on their own? Once I decided to make asynchronous materials, I actually felt relief in a way as I just needed to focus on making the materials rather than worried about other issues.

 

When I started working from home during the semester break, I had productivity anxiety which I had not experienced before. I began watching videos and reading articles which people shared on how to be more productive. This was when I discovered the Pomodoro technique. In general, this time management technique improves productivity by breaking down the work day into 25-minute blocks (also called Pomodoro’s) with 5-minute breaks in between the blocks. This actually gave me the idea on how I could help the students to go through the asynchronous learning materials with ‘less suffering’, as well as to achieve more when they were on their own.

 

I divided an hour-long lecture into three parts: Part 1, Part 2 and Summary which mimicked the block mentioned above. Parts 1 and 2 were recorded lectures that were 20-25 minutes long, and the Summary was a short, 5-minute roundup of what had been mentioned. Within the recorded lectures, I also prepared activities for students to assess their own understanding (active learning). For instance, after describing the structure of the skeletal muscle, I inserted another diagram of muscle fibers and asked students to pause the video to try and label the diagram. After explaining the two-neuron model, receptors and the neurotransmitters in the autonomic nervous system lecture, I prepared another diagram and students were asked to pause the video to fill in the blanks. When students resumed the video, I explained the answers. The videos were uploaded into Microsoft Stream and the links to the videos were shared on the university learning management system. I could easily track the number of views of the videos.

 

In between the two parts, there was a 5-minute-long interlude that mimicked the break in Pomodoro technique. A variety of activities was used in the interlude, including a short reading or fun fact related to the previous part. For instance, a question that required students to apply what they learned from the previous part; or games such as crossword puzzles, drag-and-drop for students to match the meanings with the terminology; or in the muscle physiology lecture, a short reading on rigor mortis were given in the interlude. Students could skip this if they wanted to but I encouraged them to follow the activities in the interlude to take a break from the passive listening, and do something active.

 

Other small things I did with this ‘Pomodoro arrangement’ of the learning materials included a clear instruction and the estimated time required to complete it. These are common if one is familiar with taking online courses. Clear instructions and estimated time of completion helped setting goals and expectations for the students the moment they opened the asynchronous learning materials. This might seem trivial, but it’s one of the keys of getting things done.

 

I included captions to all my videos to improve accessibility. Particularly for the new students, they might need time to get used to my accent and certain terminology. On top of that, captions could also be useful to English speakers to improve comprehension (1). PLYmedia found that videos with captions are more engaging and the viewers tend to watch until the end (1). These are something that I wanted for my videos as well. In fact, the sound quality, the accent of the teachers, the internet connection, and whether English is the student’s first language, could all affect the quality of synchronous teaching without proper captions. I would acknowledge that adding captions could be troublesome. When I first tried to edit the caption generated automatically by Microsoft Stream, I was amused by how bizarre it was, full of errors. However, I was actually glad as it reminded me to put efforts into my speaking and pronunciation (especially if you do not have a good microphone). One thing that I learned was that YouTube actually has a better AI system in terms of generating captions, the accuracy rate was high. After getting used to recording videos and adjusting how I speak, I didn’t have to do much editing in my subsequent videos. I also took caption-editing as an additional step to assess the contents of my videos.

 

The completion rate of the videos was 100% based on the number of views recorded in Microsoft Stream and students showed great appreciation about the captions in their feedback. When I asked them privately how they felt about the ‘Pomodoro arrangement’, some students said that they felt accomplished whenever they finished the 20-plus-minutes long videos and were motivated to continue. I believe this is the effect of the original Pomodoro method. Although COVID19 is pretty much ‘over’ in most countries and in-person teaching has resumed, I think this ‘Pomodoro arrangement’ could still be beneficial in blended learning. One might argue that there is no need to deliberately include the ‘breaks’ for the students since the students can just pause an hour-long video on their own. But I see no reason why we can’t actively make this happen by breaking up the lectures into smaller chunks and inserting fun active learning in between.

References:

[1] Albright, Dann. “7 Reasons Your Videos Need Subtitles [Infographic].” Uscreen, 18 Nov. 2020, www.uscreen.tv/blog/7-reasons-videos-need-subtitles-infographic/.

Dr. Tan received his BSc and MMedSc from the University of Malaya, Malaysia, and his Ph.D. from the National University of Singapore. He then worked at Newcastle University Medicine Malaysia (2018-2021) as lecturer, teaching physiology to years 1 and 2 medical students. Currently, he is a lecturer at the Chinese University of Hong Kong (Shenzhen), teaching physiology and histology to years 1 & 2 medical students.
The Great Student Disengagement

With excitement and anticipation for a “return to normal,” faculty, staff and administrators were especially excited to launch Spring semester 2022.  People were vaccinated, students would be attending class with their peers on campus, and extracurricular activities would return to campus. However, it was soon discovered that a return to campus would not mean a return to “normal.”

In addition to the period of “great resignation” and “great retirement,” we soon discovered that a return to campus could be described as the “great student disengagement.”  Faculty observed concerning student behaviors that impacted academic success. Students on our campus have been vocal about their desire to remain at home and on MS TEAMS/ZOOM©. Classroom sessions were required to shift and were often a mixed modality (high flex) as students and faculty underwent COVID protocols that required remote attendance. In a curriculum in which all sessions are mandatory (approximately 20 hours each week in a flipped environment), students requested far more absences in the spring semester than ever before. Even when students were physically present in class, blatant disengagement was observed by faculty.  Attempts to appeal to students’ sense of responsibility and professionalism had little impact in changing behavior.

In attending the Chairs of Physiology meeting at Experimental Biology (EB), student disengagement was an impactful topic of discussion. Somewhat surprisingly, it quickly became apparent that the environment on our campus was somewhat ubiquitous across all institutions of higher education represented in the room that day. Although we shared similar observations, few potential solutions were offered.

Serendipitously, on the final day of EB meetings, the Chronicle of Higher Education published an article by Beth McMurtrie titled “A Stunning Level of Student Disconnection.”  The article shared insight gained from faculty interviews representing a wide range of institutions:  community colleges, large public universities, small private colleges, and some highly selective institutions. Ms. McMurtrie shared stories of faculty who described how students’ brains are “shutting off” and limiting their ability to recall information. The article reports that far fewer students show up to class, those who do attend often avoid speaking, and many students openly admit that they do not prepare for class or complete assignments. Faculty commonly described students as defeated, exhausted, and overwhelmed.

Although specific causes of the “great student disengagement” have not been substantiated, many believe it is the after-math of the pandemic. It seems plausible that the learning environment became more individualized and flexible with fluid deadlines and greater accommodations during the pandemic. Thus, a return to normal expectations has been difficult.

It also seems reasonable that amid the more pressing issues of life (deaths within families, financial struggles, spread of disease), students are reporting high levels of stress, anxiety and general decline in mental health. Perhaps being absent or disengaging while in class (being on cell phones/computers, frequently leaving the room) are simply avoidance mechanisms that allow the student to cope.

Although post pandemic conditions have brought student disengagement to our awareness, some faculty have seen this coming for years.  In a 2020 Perspectives on Medical Education article by Sara Lamb et al. titled “Learning from failure: how eliminating required attendance sparked the beginning of a medical school transformation,” the authors reported low attendance rates, at times as low as 10%, which they attempted to fix with a mandatory attendance policy.  However, over the next six years, student dissatisfaction rose due to the inflexible and seemingly patronizing perception of the policy. This led students to strategize ways to subvert the policies while administration spent significant time attempting to enforce them.  To address the situation, the school transitioned away from required to “encouraged” and “expected” for learning activities.  This yielded both positive and negative results, including but not limited to: increased attendance to non-recorded activities which students deemed beneficial to their learning; reduced attendance to activities that were routinely recorded and posted leading to increased faculty discouragement; reduced administrative burden and tension; and increased student failure rate and feelings of isolation and loneliness.  The authors go on to describe efforts to mitigate the negative outcomes including empowering faculty with student engagement data, and training in active learning pedagogies to enhance student engagement.

As the definitions and root causes of student disengagement pre-date COVID and are somewhat ambiguous, finding effective solutions will be difficult. Perhaps the rapid evolution of teaching and learning brought about by COVID now dictates an evolution of the academic experience and the rise of scholarly projects to address both causes and solutions.

Suggestions on solving the disengagement crisis were published by Tobias Wilson-Bates and a host of contributing authors in the Chronicle of Higher Education dated May 11, 2022. Although we will leave it up to the reader to learn more by directly accessing the article, a list of topics is helpful to recognize the variety of approaches:

  1. Make Authentic Human Connections
  2. Respect Priorities
  3. Provide Hope
  4. Require Student Engagement
  5. Acknowledge that Students are Struggling
  6. Fight Against Burnout

Although we rely on faculty to address student disengagement, it is also useful to consider the stressful environment of faculty. In addition to experiencing the same COVID conditions that students experience, faculty are being asked to continue to provide up-to-date content, utilize engaging teaching modalities, become skillful small group facilitators, as well as advise, coach and provide career counseling.  It is perhaps not surprising that faculty may also feel stressed, isolated, and burned out, surmising that nothing they do makes much difference – opting instead to remain hopeful that students will bounce back.

Regardless of the learning environment on your campus, it is safe to say that now is the time to come together as faculty, students and administrators to discuss the best path forward. Collectively we can work together to set solutions into motion and gather evidence for our effectiveness. It is time to leverage our shared experiences and lessons learned over the past several years of transitioning away from and back into face-to-face classroom instruction. Such reflection and study will support teaching and learning as we all seek to find a “new normal” that meets the needs of students, faculty, and administration alike.

Lamb, Sara & Chow, Candace & Lindsley, Janet & Stevenson, Adam & Roussel, Danielle & Shaffer, Kerri & Samuelson, Wayne. (2020). Learning from failure: how eliminating required attendance sparked the beginning of a medical school transformation. Perspectives on Medical Education. 9. 10.1007/s40037-020-00615-y.

A Stunning Level of Student Disconnection  https://www.chronicle.com/article/a-stunning-level-of-student-disconnection

How to Solve the Student Disengagement Crisis https://www.chronicle.com/article/how-to-solve-the-student-disengagement-crisis

 

Mari Hopper, PhD, is an Associate Dean for Pre-Clinical Education at Ohio University Heritage College of Osteopathic Medicine where she facilitates the collaboration of faculty curricular leadership and their engagement with staff in curricular operations.  Dr Hopper’s areas of professional interest include curricular development, delivery and management; continuous quality improvement including process efficiency and the development of positive learning environments and work culture; and mentorship of trainees in medical education.
Leah Sheridan, PhD, is a Professor of Physiology Instruction at Ohio University Heritage College of Osteopathic Medicine where she serves in curriculum innovation, development and leadership. Dr. Sheridan’s areas of professional interest include the scholarship of teaching and learning, physiology education, and curriculum development.
Don’t Panic!

I write this post at the end of my career in UK higher education (HE) and it was suggested that I reflect on how the sector (in the UK at least) has changed since the early 1990s? For weeks, nothing grabbed me. Completely unrelated to this brief, and for pleasure (much under-rated), I revisited the late Douglas Adams’ Hitch-hiker’s Guide to the Galaxy (H2G2) and to my surprise these two threads – my lived experience of UK HE and the imaginary world of H2G2 – have emerged from my subconscious as a couple of rather bizarre waking dreams. These dreams have provoked me to reflect broadly on education, particularly on HE.  Anyone familiar with H2G2 might comment that the eve of retirement is rather late in the day to start thinking about education. They would be right!

I’ve borrowed more than my title from the H2G2; ‘Don’t Panic’ being ‘written in large friendly letters’ at the start of eponymous guide. In H2G2, the Earth (and everything on it) was a computer tasked with finding the question to which the answer was 42.  My task here is to imagine the question to which the answer is education.  Ever since I revisited H2G2 I’m haunted by the thought that we are to the development of education as those who set out in the B Ark were to the development of the wheel (all thought of shape was subdued whilst they argued over what color it should be).  In my waking dreams, I was tasked with explaining what we were doing (in university education) to several key educational figures from my mind’s limited databank: Aristotle; John Ruskin; and John Dewey.  My surprise that Aristotle spoke flawless English aside, I was struck by their puzzled looks and their questions. My abiding impression was that my imaginary visitors believed that I had something in common with the B Ark architects of the wheel; we were both confidently and blissfully clueless. From that moment I’ve been wondering if we have become lost or confused and that we no longer serve society well.

I want you to stop reading for a second and reflect on what you understand by the suitcase term, ‘education’. What is the purpose of education; what is its role in society?

I think it’s necessary to point out that education changes over time; it evolves, not in a Darwinian sense, but by episodes of what we fervently hope turns out to be intelligent design.  So, what is ‘education’? What does it require or imply?  How was education regarded in the past?

In antiquity, education was not made available to all, but its value was clearly appreciated as shown by Aristotle’s assertion that

a man should be capable of engaging in business and war, but still more capable of living in peace and leisure; and he should do what is necessary and useful, but still more should he do what is noble. These then are the aims that ought to be kept in view in the education of the citizens both while still children and at the later ages that require education.’  (Rackham, 1944; book 7, sections 1333a and b).

The key point, for me, is that education should encourage citizens to ‘do what is noble’. In today’s parlance that means to have high moral principles (to include honesty, integrity and generosity).

By the early 20th century, education was becoming more technical but the capacity for critical analysis in the service of judgment was clearly valued, as illustrated by John Dewey, who suggested that education provided one with the tools for analysis and interpretation necessary for intelligent action (Dewey, 1938; pages 105-6). It was also Dewey who crystalised a view that, for me, comes closest to defining the value of education to any modern [democratic] society. In ‘Moral Principles in Education, Dewey argued that education should develop in all citizens what he termed ‘force of character’, elements of which he listed as ‘initiative, insistence, persistence, courage, and industry’. (Dewey, 1909, page 49)

Because I think it is justified, I’ll give a little more room to Dewey’s conception of education. In Democracy and Education, Dewey asserts that a society’s values and beliefs are communicated from generation to generation through education (Dewey, 1916, page 17).  Dewey is by no means alone in believing that education has a special role in any modern society; education, in a very real sense, is the means by which the knowledge, wisdom and values of a society are shared with successive generations (to be adopted, adapted or rejected). For this reason, I regard education as the most important responsibility of a society.

Dewey was nevertheless concerned by the relative neglect of wider societal concerns within the context of education, and this was voiced by non-other than President Franklin Roosevelt, who claimed that

There is not in all America a more dangerous trait than the deification of mere smartness unaccompanied by any sense of moral responsibility’.  (Roosevelt, 1903).

I confess that since reading Roosevelt’s assertion, I see little evidence that we still make a virtue of ‘moral responsibility’ in UK HE. There clearly are groups of people (often young) who are highly motivated by ethical and moral issues (e.g. climate activism) and too often they are not supported by the generation with the power and influence to effect change. In contrast to the student-led activism of the 1960s, Universities in recent years don’t seem to foster the same degree of critical thought and action.  Perhaps there are just too many issues?

As our society has become more complex, the interdependence on others felt by anyone with sufficient money to pay rent, buy food and stay warm has become less visible. Moreover, the huge financial incentives for those who increase profits (or influence public opinion) seems to erode the notion of societal value in favour of personal enrichment, as outlined in Mark Carney’s 2020 BBC Reith Lectures and in the 2016 Netflix documentary, The Great Hack. In consequence, it might be argued that focusing only on technical education goals and ignoring the development of societal values is reckless in the extreme. With luck, humanity will persist and so observe our present with the benefit of hindsight; with the perspective to judge the merits of this concern.

As I said at the outset, I write this at the end of my career in HE. What changes have I witnessed?

Despite believing with every fibre of my being that I’m right (see cognitive bias), I should acknowledge that the changes I describe might be more imaginary than real. The last two years of COVID-19 imposed change notwithstanding, not much has changed if one were to judge only on the movements of people from room to room, or the movements of the written word between students and educators. Lectures persist, as does laboratory work, small group teaching and a myriad of assessments.  What has changed in 35 years might appear more or less trivial; changes in the methods of presentation (chalk for computer graphics, with and without recordings) and notetaking (transcribed on paper or a tablet, or annotation of pre-circulated presentations). The point is that the activities appear to have undergone only a minor technical evolution, far short of a revolution. I would argue that appearances can be deceiving. In my opinion, several factors account for subtle but important changes in the process of education. My top three are 1) information overload, 2) marketisation of education and 3) intellectual isolation.

Information overload has at least two dimensions, first, we have more detailed knowledge of the cellular and molecular basis of biomedical science. Mastery of the additional detail imposes greater demands on the same educational window of opportunity. Second, there has been a proliferation of information sources that are readily available via a browser. Many of these information sources attempt to simplify the complex and some introduce substantial errors that are often not obvious to the learner. When simplifying the complex, we should make the effort to explain the unavoidable risks inherent in all simplification.

The marketisation of HE was intended to bring about the same sorts of improvements and efficiencies as seen in manufacturing and service industries (Molesworth, et al 2010). In the UK this has coincided with substantial expansion of student numbers, increasing the staff:student ratio. In practical terms, the competing needs for research outputs (in most HEIs) and student (customer) satisfaction is an equation that can only be balanced by extracting more from staff who teach and conduct research.  Despite the reports of higher workloads in HE, there is a reduced opportunity for dialogue between educators and students – there is finite supply of time and a larger number of calls on our time. Larger numbers of students is a relatively minor factor in the increased consumption of staff time – most staff report substantial increases in administration relating both to research and to teaching.

Intellectual isolation seems somewhat unlikely given the much-vaunted power of social media to ‘connect people’ and yet even those most closely aligned with social media are dubious of its merits. It is possible for students to have access to a million points of view without discussing them in any meaningful way. How does one properly evaluate the evidence for so many opinions without the combination of many minds and the probing power of discussion? It is relatively easy to find an information source that confirms our bias and which we, therefore, immediately recognise as right-thinking and entirely reasonable, regardless of what it might be that we believe. The emergence of a rainbow of myths and wisdom regarding effective treatment (or prevention) of COVID-19 infection over the last two years surely demonstrates this to be true.

Am I optimistic for the future?  Yes. Innovation in society is a lot like an experiment in nature, even if the innovation were the result of intelligent design. If it is seen to be beneficial, it will be retained and propagated.  If it is not beneficial it might persist but is unlikely to propagate.  If it is harmful, the harm will (eventually) be recognised and steps taken to discourage what the innovation initially encouraged. Child-labour and tobacco smoking are very conspicuous examples, but there many such examples in our collective histories. That said, the damage done can sometimes persist and things that cause harm in the long-term seem to be tolerated if short-term effects are positive (think alcohol and sugar).

So, what sort of steps could we take? Information overload could be reduced if what is expected of an undergraduate degree is re-imagined.  We might do better to focus on how to pare away unnecessary detail to find the key issues and to then frame good questions for further [curious and creative] thought or research. Marketisation within HE has been a creeping cancer (my view) and the solution will require surgery – all other treatment choices are palliative! Making the university system into an industry that has no aspiration beyond expansion has been a foolish experiment. The university system needs to be regarded by everyone as a social good, regardless of one’s personal interaction with it.  Intellectual isolation can be reduced in a host of ways. In the 1999 work, ‘Seven complex lessons in education for the future’, the French philosopher Edgar Morin (now 100 years old), argues that the development of separate scientific disciplines was closely linked to information overload – the human mind was too limited – and that despite advances, this isolation ultimately limits understanding and stifles innovation. The recent emergence of cross-disciplinary teaching and research is a move in the right direction.

More generally, I believe it would benefit society if we could make a virtue of exploring the choices we’ve made in the past and how well our current choices fit our society for the future. When economies were mainly local, interests could be local but as the developed countries now operate in a global market economy, our interests must be similarly global; we can’t pretend otherwise and to try is to gamble everyone’s future. A democracy can’t be led honestly if the population is ignorant of factors that make difficult change necessary (political parties would use public ignorance to manipulate opinion and voting habits). I’d like to see society (through education) champion wisdom and integrity rather more enthusiastically and perhaps we should all try to go to sleep behind Rawls’ veil of ignorance – not knowing the colour of our skin, our gender or our place in society when we wake the next day. Afterall, you never know whether the Earth will still exist tomorrow![1]

 

References (not included as in text hyperlinks)

Dewey, J. (1909). Moral Principles in Education. Riverside Press, Section V – The psychological aspect of moral education, page 49; https://www.gutenberg.org/files/25172/25172-h/25172-h.htm

Dewey, John. (1938). Experience and education. New York: Macmillan. Pages 105-106

Dewey, J. (1916). Democracy and education. Project Gutenberg. https://www.gutenberg.org/files/852/852-h/852-h.htm#link2HCH0002 – Chapter 2: Education as a Social Function, page 17

Molesworth, M., Scullion, R., & Nixon, E. (Eds.). (2011). The marketisation of higher education and the student as consumer. London: Routledge.

Rackham, H. (Harris), 1868-1944, trans.: Politics, by Aristotle (HTML at Perseus, Aristot. Pol. 7.1333a/b)

Roosevelt, T. (1903, May 2). Speech of President Roosevelt at Abilene, Kansas, May 2, 1903. Theodore Roosevelt Papers. Library of Congress Manuscript Division. Retrieved from https://www.theodorerooseveltcenter.org/Research/Digital-Library/Record?libID=o289769

[1] In H2G2 the Earth was demolished by aliens only minutes after humanity became aware that aliens existed.

Phil Langton is a senior lecturer in the School of Physiology, Pharmacology and Neuroscience, University of Bristol, UK.  A biologist turned physiologist, he worked with Kent Sanders in Reno (NV) and then with the late Nick Standen in Leicester (UK) before moving to Bristol in 1995.  Phil has been teaching respiratory and GI physiology for vets, nerve and muscle physiology for medics and cardiovascular and respiratory physiology for physiologists. He also runs a series of units in the second and third (final) years that are focused on the development of soft (but not easy) skills.  He has been interested for years in the development of new approaches to old problems in education.
The Olympics, sex, and gender in the physiology classroom

Are there sex based difference in athletic performance before puberty?

In the past few years most state legislatures have considered laws stating that only members of the female sex can participate in girl’s and women’s sports (37 states in 2021 alone), and as of April 20, 2022 fifteen states have adopted such legislation (1). There have also been several well publicized instances of transwomen competing for championships in women’s sports (for example see 2, 3, 4). The International Olympic Committee, the NCAA, and other sports governing bodies have also recently revised their policies regarding the inclusion of transwomen in women’s sports (5, 6).  All of this has resulted in students in my exercise physiology classes commonly asking questions about sex-based differences in sports performance and the inclusion of transwomen in women’s sports.

In a previous PECOP Blog (7) I briefly summarized the sex-based advantages men have in athletic performance in adults, and the research evaluating the effects of testosterone suppression and cross sex hormone use on factors that influence athletic performance. In this PECOP Blog, I will briefly summarize the sex based prepubertal differences in athletic performance and touch on puberty blockers.

A 2012 report from the CDC indicated there were no differences between 6–11-year-old boys and girls in performance on physical fitness tests (8).  Many sports leagues for pre-pubertal children are not separated by sex since the focus is developing basic sports skills rather than competition (9). Furthermore, some scholars have stated that there are no differences in athletic performance between boys and girls prior to the onset of puberty, and that it is only the increased testosterone secretion during puberty that causes males to outperform females in athletic competition (10, 11).

On the other hand, evaluations of fitness testing in children as young as 3 years old shows that boys perform better than girls of the same age on tests of muscular strength, muscular endurance, and aerobic fitness (12-17).  For example, Tomkinson et al. (17) observed that at age 9 boys are running an average of 3.2% faster than girls of the same age during the last stage of a 20 m shuttle run (Figure 1).  In a separate evaluation Tomkinson et al. (16) reported that at age 9 boys have a bent arm hang time that is an average of 48.1% longer than girls of the same age (Figure 2).

Furthermore, youth records from USA Track & Field (18) in the 8-and-under age group and in the 9-10-years-old age group (who can reasonably be assumed to be pre-pubertal) show that boys outperform girls in all events (Table 1).  The smallest difference in track and field records between boys and girls is 0.94% in the 8-and-under 100 m run, with the largest difference being 38.42% in the 8-and-under javelin throw.  We recently analyzed top 10 data for national performance from Athletic.net in 100 m, 200 m, 400 m, 800 m, 1500 m, and 1600 m running events for children in the 7-8 and 9–10 year-old age groups for the years 2019-2021 and found that across all events 7-8-year-old boys were 4.4 ± 1.9% faster than girls, and 9-10-year-old boys were 5.4 ± 1.8% faster than girls (figure 3; not yet published data).  Youth records from USA swimming also show that in 19 out of 23 events the national records for 10 and under boys are faster than girls by an average of 1.72% (19).  It is important to note that in competition the difference between first and second place often comes down to as little as 0.02% difference in speed (Data to be presented at the 2022 ACSM Annual Meeting).

There is no question that the differences in running performance between prepubertal boys and girls is less than the 10-13% difference in running performance observed between post-pubertal boys and girls, and between adult men and women (10, 11, 20).  And there is no question that the large increases in circulating testosterone experienced by boys during puberty is responsible for most of the differences in athletic performance between post-pubertal boys and girls, and between adult men and women (21).  But the existence of differences in athletic performance between prepubertal boys and girls is well demonstrated (12-19).  Juxtaposing the statements of no pre-pubertal athletic differences between boys and girls (8, 10, 11) and the evidence demonstrating that there are pre-pubertal athletic differences between boys and girls (12-19) can facilitate an interesting discussion about data collection, sample size, data analysis, and other factors that may contribute to these contradictory findings.

When explaining the biological causes of the prepubertal athletic advantages in boys, a good starting point is to discuss the differences in growth and development between boys and girls and to explain the processes of sex determination and sex differentiation (22).  Sex determination occurs at conception with the conferral of sex chromosomes.  Six weeks later, sex differentiation begins to become apparent and during the remainder of development the gonads and genitalia acquire male or female characteristics.  During sexual differentiation, the presence of the SRY gene on the Y chromosome along with androgen exposure and anti-Müllerian hormone cause the internal and external genitalia to follow the male developmental pathway. In the absence of the SRY gene on the Y chromosome, lack of androgen exposure, and lack of anti-Müllerian hormone the female developmental pathway occurs. Of course these few brief sentences fail to cover the myriad of complex interactions of genes, primordial stem cells, and hormones that regulate sex development, and the possible differences and disorders that can occur. But it is remarkable that with all of the possible missteps that can happen during sexual differentiation and development, sex can be accurately and easily identified at birth 99.83% of the time (23).

Further substantiating the important role of sex in growth and development are the World Health Organization fetal growth charts (24), which indicate small but meaningful sex-based differences with male fetuses being consistently larger than female fetuses.  Similarly, substantiating the important role of sex in growth and development, the Centers for Disease Control and Prevention have different growth charts for boys and girls from birth through adolescence with boys having consistently higher values for body mass and body height (25).

With an eye towards physical fitness and athletic performance, starting at birth and continuing throughout youth girls have more body fat and less fat-free mass than boys. For example, Davis et al. (26) in an evaluation of 602 infants reported that at birth and age 5 months, infant boys have larger total body mass, body length, and fat-free mass while having lower percent body fat than infant girls. In an evaluation of 20 boys and 20 girls ages 3-8 years old, matched for age, height, and body weight Taylor et al. (27) reported that the boys had less body fat, lower percent body fat, and a higher bone free lean body mass than the girls, such that the girls’ fat mass was 52% higher than the boys, while the bone-free lean tissue mass was 9% lower. In an evaluation of 376 prepubertal [Tanner Stage 1] boys and girls, Taylor et al. (28) observed that the boys had ~22% more lean mass, and ~13% less body fat (when expressed as percent of total body mass) than did the girls. In a review of 22 peer reviewed publications on the topic, Staiano and Katzmarzyk (29) concluded that girls have more total body fat than boys throughout childhood and adolescence.  It is a tenet of exercise science that having more lean body mass provides athletic advantages, so it is reasonable to conclude that having more lean body mass contributes to the prepubertal sex-based male athletic advantages.

It is worth noting that serum testosterone concentrations in boys are higher for the first 5 months after birth than in girls (30). Testosterone concentrations are then similar between boys and girls until the onset of puberty, when testosterone concentrations increase 10-20-fold in boys.  Given the well know anabolic and androgenic effects of testosterone, the higher testosterone levels in newborn boys likely contributes to the sex related differences in body size and composition in newborns.  It is unknown how much the lingering sex-linked differences in body size, body composition, physical fitness, and athletic performance are due lasting effects of the higher testosterone levels in newborns, and how much the differences are due to Y chromosome or other sex-linked effects.

Strongly suggesting that sex linked differences in physical fitness and athletic performance in children before puberty are due to biological factors, Eiberg et al. (13) measured body composition, VO2max, and physical activity in 366 Danish boys and 332 Danish girls between the ages of 6 and 7 years old.  Their observations indicated that absolute VO2max was 11% higher in boys than girls, while relative to body mass the boys’ VO2max was still 8% higher than the girls.  Accelerometry based measurements of physical activity indicated that when boys and girls regularly participated in the same amount and intensity of physical activity, the boys had higher measured physical fitness than the girls.  When the findings of Eiberg (13) are taken collectively with the findings of large scale school based physical fitness testing in children that also shows pre-pubertal boys outperforming girls in measurements of aerobic fitness, muscular strength, and muscular endurance (12, 14-17), the youth records from USA Track & Field (18) showing that pre-pubertal boys outperform girls in all events, and the 10 and under records from USA Swimming showing that boys outperform girls in 19 out of 23 events (19), there exists strong evidence that there are differences in physical fitness and athletic performance between boys and girls before puberty.

And finally, this discussion arising from laws stating that only members of the female sex can participate in girl’s and women’s sports can lead to questions about the effects of puberty blockers on physical fitness and athletic performance in prepubertal children.  Puberty blockers are correctly known as gonadotropin-releasing hormone agonists (GnRHa), which disrupt the normal pattern of secretion of as gonadotropin-releasing hormone causing the pituitary gland to stop producing follicle-stimulating hormone and luteinizing hormone. Unfortunately, there is minimal research on the effects of puberty blockers on factors that influence physical fitness and athletic performance.

To the best of my knowledge, there is no research on the effects of puberty blockers on muscle strength, running speed, or other measures of athletic performance.  Indeed, Klaver et al. (31) is the only published research that I am aware of that has evaluated the use of puberty blockers on any athletic performance related factor, and this is only on body composition. Klaver et al. (31) demonstrated that the use of puberty blockers in Tanner stage 2-3 teenagers increased body fat and decreased lean body mass in transgirls, but the use of puberty blockers did not eliminate the differences in body composition between transgirls and comparable female teenagers. Roberts and Carswell (32), concluded that there is no published research that sufficiently characterizes the impact of puberty blockers on growth or final adult height.  Thus, the effect of prescribing puberty blockers to a male child before the onset of puberty on the physical components of athletic performance is almost entirely unknown. This becomes a great point in a discussion to remind students of the ever-evolving nature of science.  Any further discussion on this topic becomes speculation or can be removed from the realm of physiology and into metaphysical discussions of what is or is not fair.  Such metaphysical discussions can be fascinating, and also heated, so caution is advisable when proceeding outside of the realm of physiology in a physiology classroom.

In summary, there is strong evidence that even before puberty there are sex-based differences in physical fitness and athletic performance with boys running faster, jumping farther and higher, and demonstrating greater muscle strength than girls of the same age.  These pre-pubertal sex based differences are smaller than the differences in post pubertal teens and adults, but the differences are likely meaningful in terms of competition.  There is currently insufficient evidence to determine what effects puberty blockers have on physical fitness and athletic performance in children.

References

  1. Lavietes M. (April 13, 2022) Kentucky Legislature overrides governor’s veto of transgender sports ban [online]. NBCNews.com  https://www.nbcnews.com/nbc-out/out-politics-and-policy/kentucky-legislature-overrides-governors-veto-transgender-sports-ban-rcna24303 [Accessed April 20, 2022]
  2. Barnes K.  (March 17, 2022)  Amid protests, Penn swimmer Lia Thomas becomes first known transgender athlete to win Division I national championship. [online]. espnW.com. https://www.espn.com/college-sports/story/_/id/33529775/amid-protests-pennsylvania-swimmer-lia-thomas-becomes-first-known-transgender-athlete-win-division-national-championship [Accessed April 20, 2022]
  3. Ellingworth J, Ho S.  (August 2, 2021) Transgender weightlifter Hubbard makes history at Olympics. [online]. APNews.com https://apnews.com/article/2020-tokyo-olympics-sports-weightlifting-laurel-hubbard-e721827cdaf7299f47a9115a09c2a162 [Accessed April 20, 2022]
  4. Morton V.  (June 3, 2019)  CeCe Telfer, Franklin Pierce transgender hurdler, wins NCAA women’s national championship [online]. Washingtontimes.com  https://www.washingtontimes.com/news/2019/jun/3/cece-telfer-franklin-pierce-transgender-hurdler-wi/ [Accessed April 20, 2022]
  5. Yurcaba C.  (January 22, 2022) NCAA’s new trans athlete guidelines sow confusion amid Lia Thomas debate [online]. NBCnews.com https://www.nbcnews.com/nbc-out/out-news/ncaas-new-trans-athlete-guidelines-sow-confusion-lia-thomas-debate-rcna13073 [Accessed April 20, 2022]
  6. Nair A, Nair R, Davis T.  (April 8, 2022) Transgender women unable to compete in British Cycling events as policy suspended [online]. Reuters.com https://www.reuters.com/lifestyle/sports/british-cycling-suspend-transgender-participation-policy-2022-04-08/[Accessed April 20, 2022]
  7. Brown G. (August 18, 2021). The Olympics, sex, and gender in the physiology classroom [online].  PECOP Blog. https://blog.lifescitrc.org/pecop/2021/08/18/the-olympics-sex-and-gender-in-the-physiology-classroom/ [Accessed April 20, 2022]
  8. Ervin RB,  Wang CY, Fryar CD, Miller IM, and Ogden CL. [online] Measures of Muscular Strength in U.S. Children and Adolescents, 2012.  NCHS Data Brief No. 139, December 2013. (https://www.cdc.gov/nchs/products/databriefs/db139.htm; accessed April 6, 2022)
  9. Wells MS, Arthur-Banning SG.  The Logic of Youth Development: Constructing a Logic Model of Youth Development through Sport. J Pakr & Rec Admin.  26: 189-202, 2008
  10. Handelsman DJ. Sex differences in athletic performance emerge coinciding with the onset of male puberty. Clin Endocrinol (Oxf). 87:68-72, 2017
  11. Handelsman DJ, Hirschberg AL, Bermon S. Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocr Rev. 39:803-829, 2018
  12. Catley MJ, and Tomkinson GR. Normative health-related fitness values for children: analysis of 85347 test results on 9-17-year-old Australians since 1985. Br J Sports Med 47: 98-108, 2013.
  13. Eiberg S, Hasselstrom H, Gronfeldt V, Froberg K, Svensson J, and Andersen LB. Maximum oxygen uptake and objectively measured physical activity in Danish children 6-7 years of age: the Copenhagen school child intervention study. Br J Sports Med 39: 725-730, 2005.
  14. Latorre Roman PA, Moreno Del Castillo R, Lucena Zurita M, Salas Sanchez J, Garcia-Pinillos F, and Mora Lopez D. Physical fitness in preschool children: association with sex, age and weight status. Child Care Health Dev 43: 267-273, 2017.
  15. Tambalis KD, Panagiotakos DB, Psarra G, Daskalakis S, Kavouras SA, Geladas N, Tokmakidis S, and Sidossis LS. Physical fitness normative values for 6-18-year-old Greek boys and girls, using the empirical distribution and the lambda, mu, and sigma statistical method. Eur J Sport Sci 16: 736-746, 2016.
  16. Tomkinson GR, Carver KD, Atkinson F, Daniell ND, Lewis LK, Fitzgerald JS, Lang JJ, and Ortega FB. European normative values for physical fitness in children and adolescents aged 9-17 years: results from 2 779 165 Eurofit performances representing 30 countries. Br J Sports Med 52: 1445-14563, 2018.
  17. Tomkinson GR, Lang JJ, Tremblay MS, Dale M, LeBlanc AG, Belanger K, Ortega FB, and Leger L. International normative 20 m shuttle run values from 1 142 026 children and youth representing 50 countries. Br J Sports Med 51: 1545-1554, 2017.
  18. (December 19, 2018)  American Youth Outdoor Track & Field Records.  [online] USATF http://legacy.usatf.org/statistics/records/view.asp?division=american&location=outdoor%20track%20%26%20field&age=youth&sport=TF  (accessed April 20, 2022)
  19. (2022) National Age Group Records [online]. USA Swimming. https://www.usaswimming.org/times/popular-resources/national-age-group-records (accessed April 20, 2022)
  20. Millard-Stafford M, Swanson AE, Wittbrodt MT. Nature Versus Nurture: Have Performance Gaps Between Men and Women Reached an Asymptote? Int J Sports Physiol Perform. 13:530-535, 2018
  21. Levine BD, Joyner MJ, Keith NR,  Bagish AL, Pedersen BK, Schmidt W, Stachenfeld N, Girard O, Nagatomi R, Foster C, Okazaki K, Stellingwerf T, Jiexiu Z, Robson SJ, Bailey DM, Bosch A, Murphy RM, Qiu J, Lollgen H, Mitchell J, Kearney J, Scott JM, Lundby C, Steinacker J, Trappe S, La Gerche A, Masuki S, Roach R, Schneider S, Millet G, Kohrt WM, Roberts WO, Kraus WE, Benjamin HJ, Koning JJ, Gatterer H, Wehrlin JP, Charkoudian N, Lawley JS, Hopman MTE, Hawley J. The role of testosterone in athletic performance. [online] https://web.law.duke.edu/sites/default/files/centers/sportslaw/Experts_T_Statement_2019.pdf (accessed April 6, 2022).
  22. Rey R, Josso N, Racine C. Sexual Differentiation. 2020 May 27. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Hershman JM, Hofland J, Kalra S, Kaltsas G, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, Morley JE, New M, Purnell J, Sahay R, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Online]. South Dartmouth (MA): MDText.com, Inc.; 2000–. PMID: 25905232. (Accessed April 6, 2022)
  23. Sax L. How common is intersex? a response to Anne Fausto-Sterling. J Sex Res. 39:174-8, 2002
  24. Kiserud T, Piaggio G, Carroli G, Widmer M, Carvalho J, Neerup Jensen L, Giordano D, Cecatti JG, Abdel Aleem H, Talegawkar SA, Benachi A, Diemert A, Tshefu Kitoto A, Thinkhamrop J, Lumbiganon P, Tabor A, Kriplani A, Gonzalez Perez R, Hecher K, Hanson MA, Gülmezoglu AM, Platt LD. The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight. PLoS Med. 14:e1002220, 2017
  25. Centers for Disease Control and Prevention.  Clinical Growth Charts  [online] https://www.cdc.gov/growthcharts/clinical_charts.htm; (Accessed April 6, 2022)
  26. Davis SM, Kaar JL, Ringham BM, Hockett CW, Glueck DH, and Dabelea D. Sex differences in infant body composition emerge in the first 5 months of life. J Pediatr Endocrinol Metab 32: 1235-1239, 2019.
  27. Taylor RW, Gold E, Manning P, and Goulding A. Gender differences in body fat content are present well before puberty. Int J Obes Relat Metab Disord 21: 1082-1084, 1997.
  28. Taylor RW, Grant AM, Williams SM, and Goulding A. Sex differences in regional body fat distribution from pre- to postpuberty. Obesity (Silver Spring) 18: 1410-1416, 2010.
  29. Staiano AE, Katzmarzyk PT. Ethnic and sex differences in body fat and visceral and subcutaneous adiposity in children and adolescents. Int J Obes (Lond). 36:1261-9. (2012).
  30. Senefeld JW, Lambelet Coleman D, Johnson PW, Carter RE, Clayburn AJ, Joyner MJ. Divergence in Timing and Magnitude of Testosterone Levels Between Male and Female Youths. JAMA. 324:99-101, 2020
  31. Klaver M, de Mutsert R, Wiepjes CM, Twisk JWR, den Heijer M, Rotteveel J, Klink DT. Early Hormonal Treatment Affects Body Composition and Body Shape in Young Transgender Adolescents. J Sex Med 15: 251-260, 2018.
  32. Roberts SA, Carswell JM. Growth, growth potential, and influences on adult height in the transgender and gender-diverse population. Andrology. 9:1679-1688, 2021.
Dr. Greg Brown is a Professor of Exercise Science in the Department of Kinesiology and Sport Sciences at the University of Nebraska at Kearney where he has been a faculty member since 2004. He is also the Director of the General Studies program at the University of Nebraska at Kearney. He earned a Bachelor of Science in Physical Education (pre-Physical Therapy emphasis) from Utah State University in 1997, a Master of Science in Exercise and Sport Science (Exercise Physiology Emphasis) from Iowa State University in 1999, and a Doctorate of Philosophy in Health and Human Performance (Biological Basis of Health & Human Performance emphasis) from Iowa State University in 2002. He is a Fellow of the American College of Sports Medicine and an American College of Sports Medicine Certified Exercise Physiologist.
Cultivating Belonging through Asynchronous Discussion Assignments and “State Your Perspective”

Advancing diversity, equity, and inclusion (DEI) within college classrooms, whether virtual or in-person, has perhaps never been as high a priority as now. One outcome of pandemic teaching has been critical evaluation of historic teaching practices, placing the onus on instructors to provide inclusive learning environments that are responsive and adaptive to a wide range of individualized circumstances. At the same time, some students have expressed feeling isolated and disconnected from peers, reducing motivation and academic persistence. Cultivating a sense of community and belonging in educational spaces, for all learners, is a current hot topic in higher education. In fact, two recent PECOP blogs have centered around the related idea of incorporating team-building practices to enrich learning in physiology education (From a Group to a Team: Medical Education Orientation Curriculum for Building Effective Teams and Developing a Community of Practice in an A&P Course)

Belonging, or the belief that one’s individual abilities and attributes are valued, respected, and on par with others’ abilities, is a strong driving force for persistence in STEM fields (1, 2, see also the Iowa State University Center for Excellence in Learning and Teaching webpage: Foster a Sense of Belonging and the Indiana School of Education Building a Sense of Community for All resources). I am not an expert on this, yet I care about supporting the community of learners within the courses that I teach.  This led me to ask: What can I do to build students’ understanding of physiology while also deepening their belief that they belong here, in my classroom, which in turn may foster resilience, persistence, and improved satisfaction within college-level coursework?

Collaborative work is included in all courses I teach. These collaborations take different forms based on the learning goals for the course, learner characteristics (first year versus fourth year students, for example), and topic complexity. Summarized below is one course activity I have used which aims to: (1) help students master challenging physiology concepts through peer-to-peer interactions, (2) develop communication skills related to expressing ideas about human function (a highly-valued professional skill),  and (3) build community and a sense of belonging.

Asynchronous Discussion Assignments and “State Your Perspective”. One course I teach is an in-person, large lecture-style Human Physiology service course for second, third, and fourth year undergraduate students (as well as a handful of graduate students) from biomedical sciences, biomedical engineering, pharmacy interest, public health, and other STEM programs. Many students express trouble “learning how to learn” human physiology, which can be quite different compared with the academic work typical for their varied primary programs of study. They also report feeling isolated in a large classroom and that they have trouble finding study groups, which they value while preparing for exams.

Traditionally, exams in this Human Physiology course were comprised predominantly of multiple choice questions and a few short answer questions (e.g., 3-4 sentences in length). I recently found myself asking: WHAT IF students moved from providing short written explanations on exams that lacked detail due to time constraints to having sufficient time to carefully think through how to explain a physiological process? And, WHAT IF this activity could be designed in such a way to help students recognize what they understand (and what they don’t understand) in advance of an exam, giving them the opportunity to review course materials and try again? And, WHAT IF groups of students were working through this together, leveraging peer-to-peer learning?

These questions, along with experiences from the online and blended instruction I have been doing for many years, gave rise to incorporating asynchronous, online discussion assignments that students would complete in small groups (6-8 students per group). The goal was to give students an opportunity to practice using appropriate anatomical and physiological terminology to precisely describe how the human body functions in a relatively low-stakes setting that supported peer interactions. Students were given a discussion prompt (see below for examples) to which they posted an initial response in the LMS-based virtual discussion forum. Next, all group members were responsible for reviewing their peers’ initial posts and providing two follow-up responses, adding to and building upon the initial physiological descriptions. There were a total of four sets of discussion assignments, one per unit, across the semester. While the discussion assignment structure remained similar from unit to unit, the expectation to communicate increasingly complex ideas was inherent within the discussion prompts.

Specifically to address DEI and belonging, students were to begin their initial responses with a “State Your Perspective” statement. “State Your Perspective” entailed providing a 1-2 sentence summary statement to describe the context by which the topic at hand was viewed. In Human Physiology, this might be knowledge based on prior coursework, the focus of the lab in which they worked, practical clinical experiences for those who work in health care settings, and such. While ice-breaker introductions are frequently incorporated into group work, the use of bolder “State Your Perspective” language is intentional. It helps to move from a generic introduction that generally alludes to differing background experiences to an explicit and purposeful statement intended to summarize the specific context for the way a particular physiological function is understood.

Here are excerpts of the discussion prompts and how “State Your Perspective” is modeled for students.

UNIT 1 Discussion Prompt: One theme for UNIT 1 has been to develop connections between new information and previously-known concepts in order to understand how the human body works:  What have you learned in prior courses that apply to human physiology? Specify (1) the prior knowledge/what you knew before this course, and (2) the new ideas presented UNIT 1 that expands upon your background knowledge and therefore your understanding of human function.

  • “State Your Perspective”: Include a 1-sentence introduction at the beginning of your initial post that includes your major and anything else important for your group members to know that provides context for your perspective. For example “I am a third year biomedical sciences student and I work in a research lab that studies RNA, therefore I have learned ….”.
  • As you will see, some of your group members may have academic backgrounds that are different from yours, and they might present concepts in a different way. This is great! We hope the discussions become more interesting from sharing multiple ways to view the same physiological concept.

UNIT 2 Discussion Prompt: Prepare an answer to one of the Exam 2 Study Guide prompts to share with your group members. Include at least one type of conceptual model within your response: how one “Core Concept of Physiology” can be used to remember this process [see Reference 3 for information about the Core Concepts of Physiology], an originally-created concept map, an analogy, an annotated figure, or another self-generated study tool.

  • Begin your response with a 1-sentence “State Your Perspective” that provides context for your response. For example “I am a pharmacy interest student, and it is important for me to learn about neurotransmitters and receptors because ….”

UNIT 3 Discussion Prompt: Summarize one physiology concept presented in UNIT 3 for your group members, in your own words and including the appropriate anatomy and physiology terminology. Suggested length:  4-6 sentences. NEXT: Create four different 1-sentence statements about your topic, including two statements that are TRUE and two statements that are FALSE (but don’t identify which is which, see below).

  • Begin with a 1-sentence introduction, similar to previous discussion forums so that your new group members understand something about your perspective. Example: “I am an interdisciplinary studies student interested in healthcare; therefore, I found the lecture on hypertension really interesting ….”
  • For your responses to classmates: Carefully review each statement. Select one that you think is false and provide a physiological rationale to support your reasoning. Next, make the appropriate corrections to turn it into a TRUE statement.

Teaching Hint #1: This is manageable in a large lecture course of 150-250 students because I have teaching assistants who understand their primary responsibility is to regularly engage directly with students in the small-group discussions and provide feedback for correct and incorrect descriptions (this is a high priority for students. Practically speaking, this equates to each TA managing 6-10 groups of ~8 students each.

Teaching Hint #2: Once the grading is completed, I ask the TAs to summarize what they learned about how students learn physiology. This has been a good way to mentor TAs and prompt thoughts about their own teaching philosophies. I sometimes ask them what they would change (nothing like grading 50+ discussion assignments based on a poorly-worded prompt…). In fact, this is how the UNIT 3 true/false statements came to be; a graduate student proposed it as a way to incorporate greater critical thought and reasoning within discussion assignments.

So what did students think about this type of discussion assignment? Here are examples of comments provided on the end-of-class evaluation forms, paraphrased and in aggregate form (i.e., these are not actual student comments but represent themes in responses):

  • The discussion assignments were a good way for me to think critically about one idea then communicate my understanding of human function to my peers.
  • Discussions were a great way to see what my classmates were doing to learn human physiology that I could apply to my own learning—my group members proposed study strategies and ways of thinking about the human body that I hadn’t thought of before.
  • I enjoyed learning from my peers, who might know something more than me based on their experiences outside of class.
  • Even though this was a large lecture course with quite a bit of content presented online, I enjoyed interacting with my peers, the professor, and TAs in the discussions. I felt like everyone was there to support my learning.

Despite initial skepticism, very few students conveyed negative comments about the discussion assignments or described them as “busy-work”.

Beyond student feedback, here are a few subjective comments conveying my personal observations about classroom dynamics that arose from this course activity.

  • By design, one aim of “State Your Perspective” statement was to help students recognize that they hold certain views on a topic based on their background experiences. For some 20-something year-olds, it might not be intuitive that they, in fact, have certain perspectives and attitudes that they bring into group work. “State Your Perspective” has the potential to be affirming—when articulating prior experiences it can become more explicit, to ourselves and others, that we all have something unique to contribute to group work.
  • Sharing perspectives, along with the underlying narrative (but briefly, in 1-2 sentences), seemed to normalize the idea that we all have different backgrounds and experiences so OF COURSE we may hold different perspectives, or ways of viewing things.
  • Because the context for why discussion prompts were answered with a particular focus was evident, it seemed to reduce the pressure that every student should know “everything”. Instead, over time and through several rounds of discussions, students became more comfortable talking about what they understood and what they didn’t understand. Clarifications could be made and misperceptions could be corrected by peers, who almost always demonstrated remarkable diplomacy and kindness toward their classmates.
  • In some cases, the online and asynchronous nature of these discussions seemed to reduce barriers with regard to asking for help. It seemed to move students from a mindset of “I should know this but I don’t/everyone knows this but me” to the non-threatening “This is a topic maybe I need to ask about.” Students seemed less self-conscious when asking questions.

In summary, collaboration during small group, asynchronous discussion assignments seemed to promote a sense of community and belonging among students in a Human Physiology for non-majors course. As the instructor, it was rewarding to see improvement in students’ abilities to explain physiological processes across the semester. It was also extremely rewarding to see the great care exhibited by students to be inclusive and supportive of their peers.

 

References:

  1. Herman J, Hilton M. Supporting Students’ College Success The Role of Assessment of Intrapersonal and Interpersonal Competencies (Consensus Study Report of the National Academies of Sciences, Engineering, and Medicine). Washington, DC: The National Academies Press, 2017.
  2. Wilton M, Gonzalez-Nino E, McPartlan P, Terner Z, Christoffersen RE, Rothman JH. Improving academic performance, belonging, and retention through increasing structure of an introductory biology course. CBE Life Sci Educ, 18:1-13, 2019.
  3. Michael J, Cliff W, McFarland J, Modell H, Wright A. The Core Concepts of Physiology A New Paradigm for Teaching Physiology. New York: Springer, 2017.
My Perspective: I am an Associate Professor of Instruction in the Department of Health and Human Physiology at the University of Iowa. I am the Program Director for the B.S. Human Physiology program, which serves approximately 625 majors. I am also an active participant in several undergraduate student success initiatives at the collegiate level.  The most rewarding part of my job is learning about how students learn physiology, in their own words. I solicit student feedback for their academic experiences regularly.

Jennifer Rogers, PhD

Associate Professor of Instruction

Department of Health and Human Physiology

University of Iowa