Author Archives: Jessica Taylor

Beyond Content Knowledge: The Importance of Self-Regulation and Self-Efficacy

You can lead students to knowledge, but you can’t make them understand it …

Undergraduate physiology education has been steadily morphing from a traditionally instructor-centered, didactic lecture format to a more inclusive array of practices designed to improve student engagement and therefore motivation to learn.  Many excellent resources are available regarding the theory and practice of active learning (4) as well as guidelines specific to teaching physiology (2).  Common questions instructors ask when redesigning courses to be student-centered, active learning environments are often along the lines of:

  1. What specific content areas should I teach, and to what depth?
  2. What active learning strategies are most effective and should be included in course design? Common methodologies may be in-class or online discussion, completion of case studies, team-based learning including group projects, plus many others.
  3. How do I align assessments with course content and course activities in order to gauge content mastery?
  4. How do I promote student “buy-in” if I do something other than lecture?
  5. How do I stay sane pulling all of this together? It seems overwhelming!

These last two questions in particular are important to consider because they represent a potential barrier to instructional reform for how we teach physiology– the balance between student investment and responsibility for their learning versus time and effort investment by the instructor.  All parties involved may exhibit frustration if instructor investment in the educational process outweighs the learner’s investment.  Instructors may be frustrated that their efforts are not matched with positive results, and there may be concerns of repercussions when it comes time for student course evaluations.  Students may perceive that physiology is “too hard” thus reducing their motivation and effort within the course and possibly the discipline itself.

To improve the likelihood of a positive balance between instructor and student investment, perhaps we should add one additional question to the list above: What is the learner’s role in the learning process?   

Students often arrive to a class with the expectation that the instructor, as the content expert,  will tell them “what they need to know” and perhaps “what they need do” to achieve mastery of the factual information included as part of course content.  This dynamic places the responsibility for student learning upon the shoulders of the instructor.  How can we redefine the interactions between instructors and students so that students are engaged, motivated, and able to successfully navigate their own learning?

 

Self-Regulated Learning: A Student-Driven Process

Self-regulated learning is process by which learners are proactive participants in the learning process.  Characteristics associated with self-regulated learning include (4):

  • an awareness of one’s strengths and weaknesses broadly related to efficacious learning strategies (e.g., note-taking)
  • the ability to set specific learning goals and determine the most appropriate learning strategies to accomplish goals
  • self-monitoring of progress toward achieving goals
  • fostering an environment favorable to achieving goals
  • efficient use of time
  • self-reflect of achievement and an awareness of causation (strategies à learning)

The last characteristic above, in particular, is vitally important for development of self-regulation: self-reflection results in an appreciation of cause/effect with regard to learning and mastery of content, which is then transferrable to achievement of novel future goals.  Applied to undergraduate physiology education, students learn how to learn physiology.

At one point recently I was curious about student perceptions of course design and what strategies students utilized when they had content-related questions.  The following question was asked as part of an anonymous extra credit activity:

The results of this informal survey suggest that, at least in this cohort , undergraduate students generally did have a strategy in place when they had content-related questions—utilization of online resources, the textbook, or the instructor via e-mail to review how others have answered the question.  The good news (if we can call it that) is that only one student reported giving up and did not attempt to find answers to questions.  However, it is interesting to see that only 14% of respondents reported using critical thinking and reasoning to independently determine an explanation for their original question.  Extrapolating to a professional setting, would I want my health care provider to be proficient at looking up information that correlates with signs and symptoms of disease, or would I prefer my health care provider capable of synthesizing a diagnosis?  Thus, self-regulation and having an action plan to determine the answer for a particular question (or at least where to find an answer) may only be part of the learning process.

 

Self-Efficacy: A Belief in One’s Ability to Achieve a Defined Goal

While self-regulation refers to a collection of self-selected strategies an individual may use to enhance learning, self-efficacy is the confidence that the individual possesses the ability to successfully apply them.

Artino (1) has posed the following practices associated with building self-efficacy in medical education.

  • Help students with the goal-setting process, which could be related to learning or the development of skills and competencies; facilitate the generation of realistic and achievable goals
  • Provide constructive feedback, identifying specific areas for which students are demonstrating high performance and areas for improvement
  • Provide mechanisms to compare self-efficacy to actual performance; this could take the form of instructor feedback, metacognitive strategies, self-assessments, and self-reflections
  • Use peer modeling and vicarious learning; best practices would be to use peers at a similar level of competence who are able to demonstrate successful achievement of a learning goal

I am interested in the relationships between self-regulated learning, self-efficacy, how students learn physiology, and tangentially student perceptions of my role as the instructor.   Thus, here is another example of a self-reflection activity that was offered in an online class-wide discussion forum as extra credit (Hint: extra credit seems to be a sure-fire way to promote student engagement in self-reflection).  Once students responded to the prompt shown below, they were able to review other student’s responses.  Following the due date, I diplomatically consolidated all responses into a “peer suggestions for how to learn physiology” handout.

Three outcomes were in mind when creating this activity:

  1. To encourage students to think about the control they have over their own learning and recognize specific practices they can utilize to empower learning; also peer modeling of learning strategies
  2. To set reasonable expectations for what I can do as the instructor to foster learning, and what I cannot do (I would make it easy to understand all physiological processes, if only I could…)
  3. To plant the seed that course activities build content knowledge applicable to a future career goal, which hopefully translates into increased motivation for active participation in course activities

 

Beyond Content Knowledge: Integration of Self-Regulation and Self-Efficacy into Course Design

Incorporation of activities to build self-regulation and self-efficacy can be included along with content knowledge in the active learning classroom environment.  Moving away from didactic lecture during class time to a more flexible and dynamic active learning environment provides opportunities to discuss and model different learning strategies.  If incorporated successfully, students may experience increased self-efficacy and self-confidence, setting the precedent for continued gains in academic achievement and subsequently the potential for professional success.

It is also important to consider that what we do in the classroom, in a single course, is just one piece of the undergraduate educational experience.  Currently there is a call for undergraduate physiology programmatic review and development of cohesive curricula to promote knowledge of physiology as well as professional/transferrable skills and competencies directed toward a future career (3).

If the overarching goal of an undergraduate education is development of knowledge, skills, and abilities transferrable to a future career, as well as life-long learning, it is vitally important that discussion of self-regulated learning and self-efficacy are included within the curriculum.   Although this seems a daunting task, it is possible to purposefully design course structure, and indeed programmatic structure, with appropriate activities designed to enhance learning and self-efficacy.  One key suggestion is to make the inclusion of knowledge, skills, and competencies transparent to boost awareness of their importance, throughout the educational experience.  Here is one example of what this could look like:

 

Students frequently focus upon content knowledge, and subsequently their grade as the primary outcome measure, rather than seeing the “big picture” for how the sum total of course activities most likely directly relate to their professional goals.

A second key component to building well-prepared and high achieving undergraduates is to involve your colleagues in this process.  It takes a village, as the saying goes. Talk to your colleagues, decide which course/s will emphasize specific attributes, and also be a united front.  If students hear the same message from multiple faculty, they are more likely to recognize its value.

Finally, course or curricular reform is time-consuming process.  Don’t expect the process to be complete within one semester.  There are many excellent resources related to backward course design, core concepts of physiology as conceptual frameworks for student learning, student-centered activities, etc.  Be purposeful in selecting 1-2 areas upon which to focus at a time.  Try it out for a semester, see how it goes, and refine the process for the next time around.

 

Jennifer Rogers, PhD, ACSM EP-C, EIM-2 received her PhD and post-doctoral training at The University of Iowa (Exercise Science).  She has taught at numerous institutions ranging across the community college, 4-year college, and university- level  higher education spectrum.  Jennifer’s courses have ranged from  small, medium, and large (300+ students) lecture courses, also online, blended, and one-course-at-a-time course delivery formats.  She routinely incorporates web-based learning activities, lecture recordings, student response activities, and other in-class interactive activities into class structure.  Jennifer’s primary teaching interests center around student readiness for learning, qualitative and quantitative evaluation of teaching  strategies, and assessing student perceptions of the learning process.

Dr. Rogers is a Lecturer in the Health & Human Physiology Department at The University of Iowa.  She is the course supervisor for the Human Physiology lecture and lab courses.  Jennifer also teaches Human Anatomy, Applied Exercise Physiology, and other health science-focused courses such as Understanding Human Disease and Nutrition & Health.

  1. Artino AR. Academic self-efficacy: from educational theory to instructional practice. Perspect Med Educ 1:76–85, 2012.
  2. Michael J, Cliff W, McFarland J, Modell H, Wright A. The Core Concepts of Physiology: A New Paradigm for Teaching Physiology. Published on behalf of The American Physiological Society by Springer, 2017.
  3. Wehrwein EA. Setting national guidelines for physiology undergraduate degree programs. Adv Physiol Educ 42: 1-4, 2018.
  4. Zimmerman BJ. Becoming a self-regulated learner: an overview. Theory Into Practice, 41(2): 64-70, 2002.
Home is Where the Heart(h) is – My Reflections as an Educator

I think I always knew, deep down, that I wanted to be a teacher.

Sure, I considered myself ‘pre-med’ from the time in second grade when I told my best friend that I wanted to be a heart surgeon, until the last day to sign up for the MCAT my junior year in college.  If I’m being honest, I flirted with the idea of transferring into the MD/PhD program after my first year in graduate school.  In any case, after falling in love with my SLAC (small liberal arts college), I knew what I was going to do:

  • go to a medical school and earn a PhD,
  • do a post-doc, and
  • set up my own little corner in the best of both worlds – teaching at a SLAC, with a small, but productive lab, comprised of talented and driven undergraduates.

 

In fact, when I arrived at the Physiology department (at what is now known as the Lewis Katz School of Medicine) at Temple University for my PhD program, I emphatically announced my intent.  While I loved my time in the lab, and particularly my work in cardiovascular physiology and the heart transplant research program, I was meant first and foremost to be a teacher.  I took advantage of the few teaching opportunities in the medical school to hone my craft, I took adjunct work when available, and appropriate, at a local college, and I looked for a post-doc which presented me with the opportunity to study a model system which could be done relatively inexpensively at a small school.

 

Then “life” happened; in 2008 I got married, entered the job market, and found out I was pregnant.  If you recall, 2008 was not a good year for tenure-track candidates.  The words “hiring freeze” were pervasive and debilitating for those of us on the market.  As a result, I continued to hold an adjunct position, working part-time to try to stay relevant as an educator, while also being a part-time stay at home mother.  I questioned everything that led up to this moment – I had the blinders on from the time I was seven with regards to my career progression.  Now, in my new role as a mother and only partially employed, I wondered if the years of higher education and the student loans were worth it.  I was also keenly aware of the problem of watching my employability dwindle away with each passing month, and the competitiveness of the field.

 

The silver lining of this situation was that it forced me to do what I had refused to do pretty much my entire life – slow down, reflect, and figure out where I was headed.  I ended up applying for, and getting, a job as an Assistant Professor at a small liberal arts school, teaching pretty much whatever biology course I wanted, and coordinating the Anatomy and Physiology courses for the health professions.  The down side was that this position was teaching-heavy and while scholarship was not only strongly encouraged, but pretty much required for promotion, there were limited resources and very little time or space to set up a lab. This meant opportunities had to be made elsewhere and on my own time.

 

Then, about three years ago on a whim, I checked the job ads.  The first position that appeared was for a Physiology Educator at my graduate school alma mater.   The questions started.  Did I want to leave my job?  Was I qualified?  Did I really want to go back “home”?  Long story short, the answers were “for the right opportunity”, “apparently yes”, and “absolutely”.

 

This is where I come back to my title – Home is Where the Heart(h) Is.

 

As I came back to Temple, I noticed that some things had changed while others had stayed the same.  It is an incredible privilege to teach beside my own professors and mentors, and I truly feel like I came back home.  One of the changes, as seen both in the curriculum, as well as in the hallways, was the infusion of more humanities.  Student artwork is now found along the wall near the Medical Education offices.  I started thinking about what I, as an alumna, could contribute.

 

My interest and passion for art far exceeds my natural ability, although I have taught myself to quilt over the years.  My interest blends modern with traditional – couldn’t you just see an art quilt of the anatomical heart mounted on that wall with the photographs, oil paintings, and charcoal sketches? – but I am also interested in the history of quilting and the more traditional patterns.

 

One of my favorite patterns, and one of the most versatile yet symbolic, is the Log Cabin quilt.  The American version dates back to at least the 1800s, although there is evidence that a similar pattern has been traced back to Ancient Egypt1,2.  This pattern gained popularity in the United States around the time of the Civil War.  While the components are the same, the colors can vary and the blocks can be arranged in many different ways, conveying different feelings and even meanings.

 

The basic pattern is as follows:  Rectangles of fabric (“logs”) are arranged around a center square (“heart” or “hearth”).  The color of the center square is thought to provide symbolism; for example, red means “hearth”, yellow means “letting light in”, and, anecdotally and through oral history, black is thought to have been used to discreetly identify stops on the Underground Railroad1,2.

 

I have made several Log Cabin quilts over the past decade, but I find myself using red for my center.  Home is where the heart is.  A metaphor for my career progression thus far, as I started at LKSOM as a physiology student in the cardiovascular group almost 20 years ago, which makes Temple the heart.  Each subsequent stop on my journey – the colleges for which I taught as an adjunct, my role as a mother, my previous Visiting Assistant Professor and Assistant Professor positions, my mentors and role models – all serve as logs that make up my cabin.  My cabin looks different than those of my colleagues and my former classmates, who may have taken other paths, like careers in industry, scientific writing, or a traditional academic position, or as a physician.

 

Our cabins might all look different, but in the center is the fire that burns in the hearth, or the light; it is that which centers us and from where our passion comes.  For me, my passion is as an educator.

 

I am forever grateful for those who mentored me along the way, and who continue to serve as mentors and as inspiration.   What I learned (so far) on my journey:

 

  1. Apply for the job

Although it might be human nature that we are apprehensive to take a chance, surveys have shown that more women have the tendency to not apply for a position unless they feel 100% qualified, and more women cite the fear of failure and therefore wasting time as a reason why3.  However, you don’t get 100% of the jobs you don’t apply for.

 

  1. Keep an open mind

The career you think you want might not be the career you end up in for a number of reasons.  Don’t get so hyper-focused that you miss other interesting opportunities.

 

  1. Don’t be afraid to listen to your heart and follow your own path

I spent my undergraduate, graduate and postdoctoral career preparing for a job I didn’t know if I would get, and as it turns out didn’t really exist at the time.  I took every biology course I could in undergrad, assuming I would need to be well rounded to teach in an undergraduate program.  I took time to work on my teaching skills during my graduate and post- doctoral studies, so that by the time I finished, I already had several semesters-worth of teaching and evaluations that made me more marketable for an undergraduate teaching position.

 

  1. Make your own opportunities

I attended an in-house conference a few years ago.  One of the panelists suggested that we take care to be more proactive in letting supervisors know if we are interested in a particular opportunity that becomes available.  He relayed a story in which he needed to fill a position, and his mind immediately went to colleagues who had expressed an interest, even if there were several people who were qualified.  I took this advice a few months later and subsequently found myself not only assigned to a new opportunity, but was also invited to participate in related working groups and committees.

 

  1. Don’t discount your previous experience

I was concerned when I left an undergraduate institution to go back to the graduate and professional level.  Would I remember the level of depth and nuance that wasn’t appropriate in the courses I had gotten used to teaching?  Not only did I find it easier in some ways (it’s easier to teach physiology when students have already had physics and chemistry!), I found that my experience working with undergraduates provided me with insight that is unique in that I had a better as to where the students were coming from.

 

  1. Keep in mind work-life balance

This is something I am continuously working on.  Does this even exist?  If anyone has any advice, I’m all ears.

 

Maybe it’s time I dust off my sewing machine.

Dr. Rebecca Petre Sullivan earned her Ph.D. in Physiology from the Lewis Katz School of Medicine at Temple University and completed a Post-Doctoral Fellowship in the Interdisciplinary Training Program in Muscle Biology at the University of Maryland School of Medicine.  She taught undergraduate biology courses at Ursinus College and Neumann University.  As an Associate Professor of Physiology, she is currently a course director for two courses in the Pre-Clerkship curriculum at LKSOM; in addition to teaching medical students, she also teaches cell physiology and cardiovascular physiology in Temple’s dental and podiatry schools and in the physician assistant program.  She was the recipient of a Golden Apple Award from LKSOM in 2017 and the Excellence in Undergraduate Teaching Award from Neumann University in 2012.
  1. Log Cabin Quilts – A Short History. (AQSblog, May 15, 2012, http://www.aqsblog.com/log-cabin-quilts-a-short-history)
  2. Quilt Patterns Through Time: Log Cabin Quilts – Inspirations from the Past. (http://www.womenfolk.com/quilt_pattern_history/logcabin.htm)
  3. Are Women Too Timid When They Job Search? (Forbes, September 11, 2014, https://www.forbes.com/sites/nextavenue/2014/09/11/are-women-too-timid-when-they-job-search/#7fe6961a411d)
Fastballs, houses, and ECG’s

As adults of ever increasing age, I am sure almost every one of you has had a conversation lamenting your loss of physical abilities over the years. “I used to be able to do that.” “I used to be good at that.” As a parent to two young, energetic, fearless boys I hear (and think) these sentiments almost daily. While watching children play on a playground, sprinting for hours, hanging upside down, contorting their bodies into nearly impossible positions, jumping (and falling), twisting and turning, and literally bouncing off walls, parent conversations almost always include incredulous statements about children’s’ physical capacity followed immediately by a statement of the parents’ lack thereof. More than once I’ve heard a parent say, “If I did that, I’d be in the hospital.”

But have you ever actually thought, “Why can’t I do that anymore?” The answer isn’t just “I’m too old”. Obviously the physiologic changes of age are undeniable, but it’s a more complicated reason. At some point in your life, you stopped playing like children play. You stopped running and jumping and twisting and turning. You move in straight lines. You sit for hours. You don’t try that new move. It looks too hard. You might hurt yourself. As physiologists, we all know about homeostasis and adaptations, and it’s no surprise that our lifestyles have contributed to our physical inability in adulthood. Of course you would hurt yourself if you tried ‘that’, but only because you haven’t tried anything like that in years. Start trying ‘that’ though, and over time you’ll find yourself much more physically capable despite the aging process.

This childhood to adulthood performance decrement is not exclusive to physical capacity though. We are doing much the same to our mental capacity with age. A child will take physical risks on the playground, much as they also take mental “risks” in the classroom. Ask a group of 3rd graders a question, any question, almost all of them raise their hand hoping to answer…even if they don’t know the answer. And the student who got it wrong, will raise his hand again after the next question. Give them a challenge or a mystery to solve and they will dive right in. Let them touch and feel and manipulate. They don’t hesitate. They are on their mental playground. This is how they learn. As adults though, we aren’t going to the mental playground, because that’s not what adults do. We sit in chairs. We watch lectures. We make notecards. We read papers. We study the learning objectives and the PowerPoints.

Just as adults could physically benefit from some time on the playground every day, adults (and I’m including college students in this category) can also benefit from time on a mental playground. Even as educators of other adults, we need to remember this. We often forget the multitude of ways that we can put our students on the mental playground. We don’t do an activity, because the students might think it’s ridiculous. It might waste too much time, and there is too much material to cover today. I have found in my classrooms though, that activities that would work with kindergarteners can work equally well for college students.

To give examples of ways to put college students on the mental playground, I would like to share two activities that I have done in a physiologic assessment of health course that have been very effective. The course consists of juniors and seniors who have already taken several biology, chemistry, and physiology courses beyond anatomy and physiology. The first assignment that I give them is to work with a partner to draw a picture of a person with as many health risk factors as they can think of. I have found that most students who take this class (instructor included) are horrible artists, but this adds to the fun of the assignment. The students love it and come up with thousands of creative ways to represent health risk factors. We have a discussion over which drawings have incorporated the most “official” risk factors (as designated by national organizations like ACSM, AHA, etc.) and why some of the others are certainly not healthy (setting off fireworks indoors), but not listed as official risk factors.  Something about taking the time to draw silly pictures on a specific topic really aids in student understanding (anecdotally in my class, but evidence exists that this is effective (Ainsworth S, Prain V, Tytler R. Drawing to Learn in Science. Science. 333 (6046),1096-1097, 2011.).

Another assignment I’ve had good results with to get students onto the mental playground is half mystery for the students to solve and half drawing pictures. I tell the class that we are going to learn about how the heart works and talk about the electrocardiogram. The first thing I ask them to do is to get out of a sheet of paper and to draw a picture of the house they grew up in as if they were looking at it from the road. Normally confusion ensues and the students want to know if it’s for a grade (yes), and why they’re doing it (trust me, it’ll make sense later). After giving the students time to sketch their house, I ask permission to show each to the class, and then ask the question to the class. “Whose house is bigger?” Ultimately the students come to the conclusion that it is nearly impossible to tell without knowing the perspective and distance from the artist and the other views of the house (the front view is only one of multiple views that would be needed to construct the 3-dimensional size of the house). Then, still without talking about the heart, I ask them to draw a picture of a baseball (just the baseball) being thrown. Once again I show the drawings to the class. All usually agree that everyone probably knows the approximate size of a baseball, but then I highlight how different people drew different sizes on the paper. Once again I discuss perspective and how large a baseball looks when it’s about to hit you in the face, because it takes up your entire field of vision, but if it were thrown at you, it would look smaller relative to your field of vision at the start. If you’re watching people playing catch equidistant from both, the ball might move back and forth without appearing to change size relative to the visual field. But all the baseballs are still the same size!

Finally, after the house and baseball drawings I ask, “what did all of that have to do with the heart and electrocardiograms?” After a few minutes, most students understand the theory behind the electrocardiogram without ever having analyzed one. I’ve even had a strong student who was finishing her clinical exercise testing degree that semester say that even though she had taken several courses on ECG analysis and knew how to read them to get good grades on ECG tests, this was the first time she truly “got it.”

Thousands of other ways to engage students on the mental playground are out there as well. Discussing muscle physiology? Hand out rubber bands before class starts and ask them to think about how muscles and rubber bands are remarkably similar yet not the same at all. Teaching about bones? Pass out a few models to let them hold and manipulate. Then ask the students to pretend they’re cavemen and they need to build all of their tools out of bones, which bones would make a good hammer? A good bowl? Spoon? Fork? Weapon? Teaching about brain physiology? Have the students invoke thoughts, memories, feelings or movements and then tell them which part of the brain is responsible. Be creative and remember that just like our bodies, our minds work best when they’re stretched and twisted and used in different ways on a regular basis.

I do not know enough about educational psychology to understand the underlying mechanisms by which these types of activities work (my PhD is in Kinesiology after all – a content expert told to teach well!).  And admittedly most of my evidence that they work is anecdotal or comes by way of gradually improved student scores on final exam and practical questions related to my course objectives over several semesters in which I certainly adjusted more than one variable. However, I do know that in learning, students attend to touch and feel, emotion, and mystery. The same thing you’ll witness at an elementary school playground. Incorporating these into your lessons, even in the simplest of ways can be beneficial for all different types of learners. I’m asking you to turn your classrooms into intellectual playgrounds. Encourage risk taking. Validate atypical approaches. Make it fun. Make it engaging. All the memorized note cards might be forgotten by next semester if it’s not.

   Ed Merritt is an assistant professor in the Department of Kinesiology at Southwestern University in Georgetown, Texas. Ed received his doctorate in Kinesiology from the University of Texas at Austin and completed a postdoctoral fellowship in Cellular and Integrative Biology at the University of Alabama at Birmingham. Ed was a faculty member at Appalachian State University until family ties brought him back to central Texas and Southwestern University. Ed’s research focuses on the molecular underpinnings of skeletal muscle atrophy after trauma and with aging, but he is also equally involved in the scholarship of teaching and learning and melding educational outreach activities with service learning.
When words have lost their meaning!

As a start, ponder what you think that title means!

File that thought away for a minute, we will come back to it. For many years now, I have been considering this topic.  As educators, our whole life is spent as conversants in many different situations.  We converse with each other, either one on one, or with small groups or large groups in classes.  Words are how we convey the context of our lectures, instructions, research, or simple daily conversations.  The meaning of each word is important to the conveyed meaning of our intended outcomes. We write texts to support our teaching.  We write articles to publicize our research findings.  We generate a tremendous volume of recorded, typed and spoken communications using words to convey the exact meaning of what we want to say.  The intent of many of these communications is to deliver a very specific meaning to the person or persons who are the intended target of our words.

Let that last statement sink in a minute………….

Now think back to the question I asked earlier about the title of this blog.  What did you think I meant?  Was your first thought a little confusing, trying to think of a word that no longer has any meaning whatsoever. If so, you have just demonstrated my point.  You, as the recipient of my words, took the meaning of my words literally.  However, my intent was to propose and describe words that have so many meanings that the mere use of the word in a conversation introduces significant misunderstandings between the conversants. Even to the point that when the conversation is over both parties are sure they know what was being said by the other participant(s), yet in reality neither party is aware of the actual meaning intended by the other conversant. The intended meaning of the message was not received with the same meaning by the other participant in the conversation.  I first noticed this when discussing curriculum design with colleagues at national meetings.  Over the past 10 years, this has become increasingly apparent to me when discussing the development of “integrated curricula”.  The use of the term “integration” in many conversations has generated my current perspective. 

What does “integration” mean?   Google definition… “The action or process of integrating” which means to combine one thing with another so that they become whole.

In the world of educators, this could be integration between two instructors, between two classes or disciplines, between clinical and basic science curricula or many other combinations.  Many conversations that I have had over the years have led to misunderstandings of meaning to the point of stopping the conversation and having a discussion as to the meaning of the word integration for each person involved.  In the process of curriculum design, a tremendous amount of time is spent trying to force “integration” by teaming faculty together in a single classroom at one time.  Sometimes this works, other times it does not.  I have come to realize that “true integration” must occur in the recipients mind regardless of modality of the delivery.  In summary, for educators this means that as always, integration is an achievement in the mind of the student that comes from the student’s dedication and hard work regardless of the number of faculty involved or the effort expended by their teachers.  I challenge each of you as educators to think about this and try to help me define other words that fall in the same category as “integration” and respond with other words that may similarly have too many meanings to the point that they “have lost their meaning”…

I will start with these: active learning, clinical relevance…

David Osborne has 26 years of teaching and research experience.  He is a whole animal Physiologist, with a research interest in Gastrointestinal Physiology.  He is a member of IAMSE and the American Physiological Society (APS) with primary affiliations with the Teaching Section and the Gastrointestinal Section.  He is a founding member of APPEL (Affiliation of Professional Physiology Education Leaders), which is an organized group of Physiology course directors dedicated to the preparation of students for professional service such as medicine and dentistry. He has taught Physiology, Biochemistry and Histology in undergraduate, graduate and medical school environments.  He joined Burrell College of Osteopathic Medicine (BCOM) as Professor of Physiology and Chair of the Department of Physiology and Pathology, after being a founding member of the faculty that developed the El Paso campus of Texas Tech Health Sciences Center (Paul L Foster School of Medicine, PLFSOM) into a freestanding four-year medical school. He was instrumental in developing the physiology curriculum and driving the integration of basic science disciplines with clinical application.  He is currently the Assistant Dean for Curriculum at BCOM.  His research focus is two-fold. The focus of his scientific research has been to investigate the factors that influence the normal growth of the intestinal epithelial cell lining. His research has applications related to understanding Colon Cancer and in pursuing the successful use of intestinal transplants following removal of the intestines.  His other focus is in education research where he has been investigating methods to deliver complex scientific concepts to naive and experienced students in a more effective manner. Most recently, he has been investigating the use of the “Flipped Classroom” in application to medical education.
The Undergraduate Physiology Lab – A New Shine on a Classic Course

The evolution of the workplace in the twenty-first century has created the need for a workforce with a skill set that is  unlike that needed by previous generations.  The American Physiological Society recognized this need  over a decade ago and with the assistance of  Association of Chairs of Departments of Physiology created  a set of professional skills needed by physiologists in the workplace (1).  This effort was echoed by the AAMC, the  STEM Innovation Task Force, and professional organizations  as they composed a  set of core competency or workplace  skills (2, 3).  Subsequent surveys of US employers across multiple industrial sectors indicated that students entering the technical workforce lacked these  critical skills.  Higher education has since been  tasked to provide students with training experiences in workplace skills, as well as content knowledge.

What are these workplace or employability skills?  The APS Professional Skills are a diverse set of skills, however the generally accepted workplace skills are a subset of this group and can be distilled into the list below.

Students entering the workplace should be able to:

  1. Work in a team structure
  2. Solve problems and think critically
  3. Plan, organize, and prioritize time
  4. Manage projects and resources
  5. Work with technology and software
  6. Communicate in oral or written formats
  7. Obtain and process information
  8. Pursue lifelong learning

Many of these skills have been embedded in the program objectives of the bachelor’s  degree.  Educators have found it difficult to insert skill training experiences into the traditional lecture classroom but most can be readily embedded into a lab curriculum such as the undergraduate physiology lab.

Let us consider these skills individually and examine how they can be found in a physiology  lab.

 

Students entering the workplace should be able to work in a team structure.

This skill is easily adapted to the physiology lab curriculum because lab partners are essential in most physiology lab courses.  The workload, experimental design, or timing of the protocol demands collaboration to accomplish tasks and complete the experiment.  The question that arises is, “How can we  train students to be productive team members in the workplace?”

Let’s think about the characteristics of good team work.  First and foremost good teamwork means completing assigned tasks promptly and responsibly.  It is easy to address this on an individual level in any course through graded assignments but it can be a challenge on a team level.   In labs however individual responsibility to the team can be addressed by assigning each team member a job that is essential to completion of the experiment.

There are also a set of interpersonal skills that promote good teamwork and these translate into practices that are important in any workplace.

  • Respect your team members and their opinions.
  • Contribute feedback, criticism, or advice in a constructive manner.
  • Be sensitive to the perspectives of different
  • When a conflict arises approach the dialog with restraint and respect.

These ideas  aren’t novel but when an instructor reviews them in class they not only provide students with guidelines  but they also communicate the instructor’s expectations for team behavior.

Finally, by using the common direction “Now show your partner how to do it.” or the well-known adage “see one, do one, teach one” an instructor promotes a subtle suggestion of responsibility for one’s team members.

Students entering the workplace should be able to solve problems and think critically. 

This objective has been a long-standing cornerstone of undergraduate life science education (4, 5).  Many instructors think that a bachelor’s degree in science is de facto a degree in critical thinking causing some instructors neglect this objective in curricular planning.  After all, if you are ever going to understand physiology, you have to be able to solve problems.  However in the workplace a physiologist will encounter many kinds of problems, challenges, puzzles, etc., and the well-prepared student will need experience in a variety of problem solving techniques.

Let’s review some problem solving practices and look at  how they occur  in the lab.

  • Use troubleshooting skills: Labs are a perfect place to teach this aspect of problem solving because it shows up so many times.  Consider the situation where a student asks  “Why  can’t I see my pulse, ECG, EMG, ….  recording on the screen?”  A typical instructor response might be, “Have you checked the power switch, cable connections, gain settings, display time..?”  only to find that the students has not thought to check any of these.  Ideally we want students to progress to the point where they can begin to troubleshoot their own problems so that their questions evolve to, “I have checked the power switch, cable connections, gain settings, display time and still don’t see a  recording on the screen.  Can you help me?”
  • Identify  irregular results:  This practice is similar to troubleshooting and again,  labs are a good place to learn about it.   Consider the situation where a student asks “My Q wave amplitude is 30.55 volts.  Does it look right to you?”  Be the end of the course the instructor hopes that the student will be able to reframe the question and ask “My P wave amplitude is 25.55 volts and I know that that is 10 fold higher than it should be.  Can you recheck my calculations?”
  • Use appropriate qualitative approaches to research problems: In the workplace a physiologist may be using this skill to ask a questions like “How can our lab evaluate the effect of Compound X on escape rhythm?”  but in the physiology lab students will learn a variety of experimental techniques and on the final exam must be able answer a less complex question like “How could you identify  third degree heart block?”
  • Use quantitative approaches to express a problem or solution: While physiology labs are rich in sophisticated  quantitative analyses it seems that it is simple calculational mechanics can often perplex and confound, students.  For example, students can readily calculate heart rate from an R-R interval when given an equation but without the equation some students may struggle to remember whether to divide or multiply by 60 sec.  Instructors recognize that the key is not to remember how to calculate rates but rather to understand what they are and be able to transfer that knowledge to problems in other areas of physiology  and ultimately be able to create their own equation for any rate.  The ability to use qualitative skills for problem solving in the workplace relies on making this transition.
  • Supporting a hypothesis or viewpoint with logic and data; Critically evaluating hypotheses and data:    In many ways these two problem solving skills are mirror images of each other. Physiology lab students get a lot of experience in supporting a hypothesis with logic and data, particularly as they write the discussion section of their lab reports.  However, the typical student gets little opportunity to critically evaluate untested or flawed hypotheses or data, a practice they will use frequently in their careers as they review  grants, manuscripts, or project proposals.  One solution might be engage students in peer review in the lab.

Students entering the workplace should be able to plan, organize, and prioritize time.  Students entering the workplace should be able to manage projects and resources.

These two skills representing personal organization and project organization often go together.  They are fundamental to any workplace but a lab is a special environment that has its own organizational needs and while they are idiosyncratic they provide experience that can be transferred to any workplace environment.  For a lab scientist  these skills can be characterized as being able to prioritize project tasks, identify needed resources, plan a project timeline, and track a projects progress.

Let’s consider some organizational and planning practices and examine on how they are used  in the lab.

As students read an experimental protocol they may ask themselves “What should do I do first – collect my reagents or start the water bath?” ,  “What is Type II water and where can I get it?” or “Can I finish my part of the data analysis and get it to my lab partner by Friday?”  How can instructors teach this?  As we look for an answer, let’s consider the realities of teaching a lab course.  Often in an effort to facilitate a lab session and enable students to complete the experiment on time, an instructor will complete some of the protocol like preparing buffers, pre-processing tissue, doing preliminary stages of dissection in advance  of the lab.  How can this instructional altruism help students learn about prioritizing tasks, identifying needed resources, or planning a project timeline.  There is no clear  or obvious answer.  Lab instructors routinely juggle learning objectives with time and content restraints  but  recognizing  that these skills are a fundamental part of professional practice makes us pause and think about  when and if  we can fit them in.

Students entering the workplace should be able to work with technology

This is clearly where lab courses can provide experiences and training that lecture courses cannot but it can be difficult for undergraduate institutions to equip labs with the most recent iteration in technology.   This does not diminish the significance of the course because physiology labs support an additional programmatic goal.  They train students to work with and use technology in ways that complement and extend their knowledge of physiology.

Let’s look at how these ideas show up in the lab.  Consider the situation where a student raises their hand during the lab and says,  “I can’t see anything on my recording but a wavy line.”  The instructor goes over to their experiment, surveys it and shows the student how to adjust the gain or display time.  Voila their data returns!

Or, consider the situation where a student raises their hand and says, “I know I am  recording something but it doesn’t look like my  ECG, pulse, etch”.  The instructor goes over to the experiment, surveys it and shows the student how to apply a digital filter.   Voila their data recording returns! Instructors recognize these situations as ‘aha!” moments where the lab has a tremendous impact on the student learning  but these experiences also provide students with  a long-term value – an appreciation  for knowing how to manage the technology they use.

Students entering the workplace should be able to communicate in an oral and written format

Many of the writing skills that are valued in the workplace are fundamental pieces of the physiology lab, particularly the physiology lab report.  Students are expected to organize their ideas, use graphics effectively, write clear and logical instructions in their methods, and support their position(s) with quantitative or qualitative data.

Let’s consider how writing skills are taught  in the lab report.  Instructors encourage and reinforce these skills by inserting marginal comments like “make the hypothesis more specific”,  “discuss and explain your graph”,  “discuss  how your results can be explained by homeostasis, cardiac output, etc.….” in the lab report.  Students, in the interest of  in getting a better grade on that next lab report, will ask their instructor “How can I make my hypothesis clearer?”, “I thought that I discussed that graph – what more do I need?”, or “  “I thought that I wrote about how the baroreceptor reflex explained my results – what should I have done instead?”  The typical instructor then gives their best explanation and grades the next lab report accordingly.

Some communication skills are embedded in the a lab course in a less transparent manner.  For example, one of the valued professional skills is the ability to convey complex information to an audience.  Instructors observe this in practice regularly as a student asks their lab partner “Show me how you did that?”

Finally there are some communication skills that are not so readily inserted into the lab curriculum and require a special effort on the part of the instructor.  One example of this is the ability to write/ present a persuasive argument which is a part of every  physiologists career in the preparation of  project proposals, contract bids, or project pitches.

Students entering the workplace should be able to obtain and process information

As physiologists we understand how critical it is to have these skills because much of our career is spent pursuing information or processing it.  There are however, multiple steps to becoming proficient.  One needs to be able to recognize  the what they need to know, identify resources to find it, be able to converse with experts to gain it, and finally be able to compile and process it in order to create learning or new knowledge.

The first step of this process, “knowing what you don’t know”, is the hardest for students because they often pursue and learn all the information available rather than focusing on what they don’t know or need to know.  This dilemma is faced by all undergraduate students at some point in their education and a lab course like many other courses tests them on this skill at least once or twice during the term.   The second step to proficiency is  identifying the resources needed to find information.   College libraries in collaboration with faculty inform students about institutional resources available for information gathering however they key to learning this skill is practice.  The physiology lab provides opportunities for practice each time an instructor asks a student to  “include 3 relevant  references in your lab report”, or asks a student to “describe clinical condition X in the discussion and explain how it relates to this lab, these results, etc.”.

Finally one of the objectives of most physiology labs is to teach students how to collect and process physiological information (data)  in a way that allows it to be compiled  into useable physiological information  (inferential statistics).   Students get plenty of practice with this in lab and even though it is discipline specific the general process can be applies to many other fields.

Students entering the workplace should be able to pursue lifelong learning.

Many of us teach or have taught physiology labs at one time or another  and found that not only is this an opportunity to reinforce concepts in physiology and dispel misconceptions  but also to impart to students a true appreciation for physiology and how it makes living organisms work.  Is there better way to promote lifelong learning?

This blog was not meant to be a complete presentation of professional or workplace skills nor was it intended to suggest that these skills  are the  most important in a physiologist’s career.   It was meant to reveal that fundamental professional skills are central components of most physiology lab courses and that sometimes we teach them without realizing it.

REFERENCES

  1. APS/ACDP List of Professional Skills for Physiologists and Trainees. The American Physiological Society.   http://www.the-aps.org/skillslist.aspx  accessed 10/24/2017.
  2. AAMC Core competencies for entering medical students. American Association of Medical Colleges.   accessed 10/20/2017.  https://www.careercenter.illinois.edu/sites/default/files/Core%20Competencies%20forEntering%20Medical%20Students.pdf accessed 10/25/2017.
  3. Focus on employability skills for STEM points to experiential learning. STEM Innovation Task Force.  https://www.stemconnector.com/wp-content/uploads/2016/12/Focus-on-Employability-Skills-Paper-1.pdf   accessed 10/21/2017.
  4. Vision and Change in undergraduate biology education:  A call to action.    http://visionandchange.org/files/2011/03/Revised-Vision-and-Change-Final-Report.pdf
  5. Bio 2010 Transforming undergraduate education for future research biologists. The National Academies Press.   https://www.nap.edu/login.php?record_id=10497&page=https%3A%2F%2Fwww.nap.edu%2Fdownload%2F10497
Jodie Krontiris-Litowitz is a Professor of Biological Sciences in the STEM College of Youngstown State University.  She currently teaches Human Physiology Lab, Advanced Systems Physiology and Principles of Neurobiology and has taught Human Physiology and Anatomy and Physiology.  In her classroom research Jodie investigates using active learning to engage students in the lecture classroom.  She is a long-standing member of the Teaching Section of the American Physiological Society and has served on the APS Education Committee.  Jodie is a Biology Scholars Research Fellow and a recipient of the YSU Distinguished Professor of Teaching award.
Five lesson design tips to help your learners find their Happy Place (…with some help from Dr Seuss)

We’ve all been there, that unhappy place at the pointy end of some badly designed learning material. You know the place – it’s grim and grey and jammed full of text-laden power point slides, complicated jargon, and at least one terrifying pie graph with microscopic labeling. It’s a place that’s confusing, generic, and entirely unengaging for you as a learner. In the words of Dr. Seuss, “You will come to a place where the streets are not marked. Some windows are lighted. But mostly they’re darked.”[1]

And dark these places are. The challenge can be even greater when you’re creating online lessons for students to use away from the classroom. But that’s where thoughtful lesson design helps: it switches on the floodlights, clears the way, and points your students in the right direction by putting them at the center of the learning experience, whether a teacher is in the room with them or not.

So, here are five simple design tips for creating effective and engaging online lessons, so you can help your learners find their happy place and stay on track:

 

Tip 1: Keep it simple!

  • Define your learning outcomes and post them in the lesson.
  • If content doesn’t support your instructional goals, delete it!
  • Make notes of relevant, contextual examples that could bring “life” to the learning outcomes, and help students understand why they are learning it.
  • Some hacks specifically for Life Science teaching:

 

Tip 2: Break up the text

  • Use your learning outcomes to help guide you in dividing up / chunking your text.
  • Keep sentences and paragraphs short and simple.
  • Highlight the focal points using headings, text formatting, color, and contrast.
  • Intentionally leave blank space on your lesson pages – it can be a powerful design tool to give important concepts some buffer space to call attention to their importance.
  • Make use of lists, bullet points, and tables to present information:

 

Tip 3: Make it visual

Did you know the old saying, “A picture is worth a thousand words,” is backed by neuroscience? Research suggests that we remember more of what we see than what we read.[2]

Try these:

  • Use icons as virtual “signposts” for extra information. You can use these in multiple lessons to add cohesiveness.
  • Turn information into graphs or infographics for your lessons – you could even turn this into an assessment for students. This works especially well for conveying relationships or showing steps in a process:

Here’s another example of a complementary visual element:

 

These are some of our favorite free resources to help you create or add public domain or Creative Commons media to your lessons:

Note: While free, most of the sources above require proper attribution. Don’t forget to give the creator a virtual high-five by adding a citation to their media!

 

Tip 4: Ask questions

Adding practice and feedback to lessons is the most effective way to enhance the retention and recall of new material [3,4,5]. It also enables students to check their understanding and self-monitor for misconceptions early on in the learning process.

Test it out:

  • Distribute formative questions with feedback throughout lessons, not just at the end. (By making questions formative, the emphasis is placed on learning rather than earning or losing points.)
  • Mix up question types: categorizing, matching, ordering, and labeling exercises, MCQs, completing tables, free recall, etc. Variety in quizzing strengthens the ability to recall information down the road.
  • Are there still big blocks of text in your lessons? Try turning text into interactive questions! Students can order steps in a process, match terms and definitions, correct false statements into true statements, categorize by function, characteristic, etc.
  • Ask questions and create activities that check knowledge about the most important aspects of the instruction. Use your learning objectives to guide you!

 

Tip 5: Connect & reflect

Ask students to draw out new questions, connections, and conclusions through reflective activities. Actions like summarizing information into words or diagrams help students organize new information into preexisting schema, aiding the conversion of long-term memory [3,4].

 

Some reflective ideas:

  • Teach a new concept to friends or family members.
  • Brainstorm analogies that link new topics to well known ones.
  • Create a mind map or other visual or auditory representation that highlights the main points and connections between concepts.
  • Ask students how they would respond in a series of scenario-based questions.
  • Design a research project or critique a research paper.
  • Brainstorm what questions they still have about the subject, to encourage curiosity and further self-directed learning.

________

Ultimately, even simple tweaks to how you display information will have a big impact on students’ attitude toward and engagement with course materials. To help, download this cool infographic of our lesson design tips to keep handy when designing your lessons!
These design elements are a way to shift from instructor-led lessons to ones where the student is the center of the design and learning experience. If you can spend a small amount of time and effort on lesson design it can greatly enhance student motivation and increase time on task – turning them into the brainy, footsy, mountain-moving achievers they are destined to be.

 

The only question now is…will you succeed?

Yes! You will, indeed!

(98 and ¾ percent guaranteed) [1]

 

References:

[1] Seuss, Dr. (1990). Oh, the places you’ll go! New York: Random House.

[2] Medina, J. (2014). Brain rules: 12 principles for surviving and thriving at work, home and school. Seattle: Pear press.

[3] Brown, P. C., Roediger, H. L., & McDaniel, M. A. (2014). Make it stick: the science of successful learning. Cambridge, MA: The Belknap Press of Harvard University Press.

[4] Malamud, C. (2016, Oct 6). Strategies For Effective Online Instruction: A Conversation with Michelle D Miller. The eLearning Coach Podcast. [Audio podcast] Retrieved from http://theelearningcoach.com/podcasts/36/

[5] Larsen, D. P, Butler, A.C., and Roediger, H. L. (2008). Test-enhanced learning in medical education. Medical Education. 42: 959–966. doi:10.1111/j.1365-2923.2008.03124.x

 

Ellen Crimmins (MS) is an instructional designer and ocean enthusiast. She loves studying how people learn and working with educators to bring their online lessons to life. Away from the computer screen, you can find her exploring nature trails and 50s themed diners with her better thirds (husband and dog).
Sina Walker (MSciComm) is a writer and former natural history filmmaker. She has three little boys so doesn’t have time for many hobbies, but enjoys taking mom-dancing to new levels of awesome.
Marissa Scandlyn (PhD) is a product manager at ADInstruments by day, and a netballer by night. She’s researched new drug treatments for breast cancer and children’s leukemia with her pharmacology background, and was previously the coordinator of ADI’s team of Instructional Designers. Marissa enjoys reading, movie watching, and being mum to the cutest dog in the world, Charlie.
12 years of teaching technology to physiology educators

When I was approached to write a blog for PECOP I thought I could bring a slightly different perspective on classroom technology as I am not a full-time classroom educator.  My primary role for the past dozen years with ADInstruments has been to work with educators who use our products to get the most from their investment in our technology.  This has led to thousands of conversations about use and misuse of technology in the classroom and teaching laboratories.  I would like to share some of my insights here.

Early in my academic career I was tasked with a major overhaul of the introductory Biology curriculum at Louisiana Tech, and incorporating technology was part of this mandate. I have always been a bit of a tech geek, but rarely an early adopter.  I spent quite a bit of time and effort taking a good hard look at technology before implementing it in my classrooms.  I was fortunate enough to participate in T.H.E. QUEST (Technology in Higher Education: Quality Education for Students and Teachers). Technology was just beginning to creep into the classroom in the late nineties. Most courses were traditional, chalk and talk; PowerPoint was still a new thing, and this three-week course taught us how to incorporate this emerging technology appropriately.  PowerPoint worked better for many of us than chalk and talk, but also became a crutch, and many educators failed to use the best parts of this technology and applied it as a panacea.  Now PowerPoint has fallen out of favor and has been deemed to be “Killing Education”(1).  When used improperly, rather than curing a problem, it has backfired and reduced complex concepts to lists and bullet points.

I was fortunate enough to have been on the leading edge for a number of technologies in both my graduate and academic careers.  Anybody remember when thermocyclers were rare and expensive?  Now Open PCR can deliver research quality DNA amplification for around $500.  Other technologies became quickly obsolete; anybody remember Zip drives? Picking the tech that will persist and extend is not an easy task.  Will the Microscope go the way of the zip drive?  For medical education this is already happening (2).  While ADInstruments continues to lead the way with our PowerLab hardware and software packages for education (3); there are plenty of other options available.  Racks of very specialized equipment for recording biological signals can now be replaced with very affordable Arduino based electronics (4,5). As these technologies and their supporting software gets easier to use, almost anyone can collect quality physiological data.

One of the more interesting technologies that is evolving rapidly is the area of content delivery or “teaching and learning” platforms. The most common of these for academia are the Learning Management Systems. These are generally purchased by institutions or institutional systems and “forced” upon the faculty.  I have had to use many different platforms at different institutions. Blackboard, Desire 2 Learn, Moodle, etc. are all powerful tools for managing student’s digital records, and placing content in their “virtual” hands.  Automatic grading of quiz questions, as well as built in plagiarism detection tools can assist educators with large classes and limited time, when implemented properly.  This is the part that requires buy in from the end user and resources from the institution to get the faculty up and running (6).  While powerful, these can be cumbersome and often lack the features that instructors and students who are digitally savvy expect.  Many publisher digital tools integrate with the University LMS’s and are adopted in conjunction with, or more frequently now instead of a printed textbook.  McGraw Hill’s Connect and LearnSmart platforms have been optimized for their e-textbooks and integrate with most LMS’s (7).  Other purpose-built digital tools are coming online that add features that students expect like Bring Your Own Device applications; Top Hat is one of these platforms that can be used with mobile devices in and out of the classroom (8).

 

So what has endured?

In my almost 20 years in higher education classrooms and labs, lots of tools have come and gone.  What endures are passionate educators making the most of the technology available to them.  No technology, whether digital or bench top hardware, will solve a classroom or teaching laboratory problem without the educator.  While these various technologies are powerful enhancements to the student experience, they fall flat without the educator implementing them properly.  It’s not the tech, it’s how the tech is used that makes the difference, and that boils down to the educator building out the course to match the learning objectives they set.

 

 

 

My advice to educators can be summed up in a few simple points: 

  • Leverage the technology you already have.
    • Get fully trained on your LMS and any other digital tools you may already have at your institution. The only investment you will have here is your time and effort.
    • Check the cabinets and closets, there is a lot of just out of date equipment lying around that can be repurposed. Perhaps a software update is all you need to put that old gear back in rotation.
  • Choose technology that matches your course objectives.
    • Small and inexpensive purpose-built tech is becoming readily available, and can be a good way to add some quantitative data to the laboratory experience.
    • Top of the line gear may have many advantages for ease of use and reliability, but is not necessarily the best tool to help your students accomplish the learning objectives you set.
  • Investigate online options to traditional tools.
    • eBooks, OpenStax, and publisher’s online tools can be used by students for a lot less money than traditional texts and in some cases these resources are free.

References:

1) http://pdo.ascd.org/lmscourses/pd11oc109/media/tech_m1_reading_powerpoint.pdf

2) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338491/

3) https://www.adinstruments.com/education

4) http://www.scoop.it/t/healthcare-medicine-innovation)

5) https://backyardbrains.com/

6) http://www.softwareadvice.com/hr/userview/lms-report-2015/

7) http://www.mheducation.com/highered/platforms/connect.html

8) https://tophat.com

 

Wes Colgan III is the Education Project Manager for ADInstruments North America. He works with educators from all over the world to develop laboratory exercises for the life sciences.  He conducts software and hardware workshops across North America, training educators to use the latest tools for data acquisition and analysis. He also teaches the acquisition and analysis portion of the Crawdad/CrawFly courses with the Crawdad group at Cornell. He has been a Faculty for Undergraduate Neuroscience member since 2007, and was named educator of the year for 2014.  Prior to Joining ADInstruments, he was an assistant professor at Louisiana Tech University where he was in charge of the introductory biology lab course series.
Making the most of being a new instructor: Learning that collaborative learning is my silver bullet

When starting my first semester as an associate instructor in graduate school, I felt nervous and anxious, but also excited and privileged. I went to graduate school with the intention of not only performing experiments and learning about physiology and behavior, but also with the strong desire to learn how to teach and mentor students at all stages of their undergraduate careers. Many of my colleagues had very similar reactions to the first few weeks of teaching. I spoke to a few of them about these feelings recently. Here is what they had to say:

“The first week always felt a bit awkward. Students are still getting comfortable with your presence and getting to know you.”

“I felt curious about a new system, nervous about giving the students what they needed out of the class, and excited to lead a class for the first time.”

“I remember not feeling prepared and incredibly nervous! I wish I had known what I know about teaching now, but the nerves haven’t gone away either…I think I’m now able to better apply “what works” as far as classroom techniques.”

In thinking about all of these ideas, what particularly resonated with me was the notion that the nerves haven’t quite gone away, but I too have learned that there are techniques I can now implement in my classroom, helping to hide some of those feelings. I began my graduate career helping to teach an Integrative Human Physiology course, where I was able to teach teams of students in a case-based classroom. In this course, students engaged in collaborative learning (team-based learning) in every class period (something I had not witnessed myself during my education thus far). Collaborative learning is a technique in which students engage in problem solving with their peers, using the different skills and expertise of the group, as well as resources and tools that are available to them [1,2].  Students in this course were put into teams, and members of each team were responsible for their own learning and for assisting in the learning of their teammates. In this kind of classroom environment, the team’s culture and how they interacted with each other were key elements of their success. While a graduate student instructor for this course, I met with the teams regularly to facilitate a discussion, of not only the course material, but also their strategies for working collectively and how to approach their assignments as a team.

What I feel to be the most important part of teaching physiology is that we have to be able to adapt to the changing environment and have the courage to try new techniques. Students learn at their own pace, and each student learns in a slightly different way, therefore it is important to have flexibility in how we teach [1]. What I hadn’t realized until spending time using collaborative learning in my own classroom is that it can be adapted for so many disparate situations. I’ve found that it will work for a diverse range of students, and that with careful thought and planning (though sometimes on the fly), it can work well in a host of teaching situations and for a number of different types of learning styles.

 

A few examples for an introductory course:

  1. Taboo

    1. This game is similar to the actual game, “Taboo,” in which the goal is for students to get their teammates to guess the word at the top of the card. He or she can say any word to try to make the teammates guess, except for the words written below it on the card. The game can be played by a small team of about 3-5 students. It is important to emphasize that teams should discuss the cards after playing them, so they can master the connections.
    2. You can make these cards beforehand, so students can immediately start playing, or you can have the teams make their own cards, which will also help them think of the connections between the words before starting.
  2. Affinity Map

    1. This game has to do with making connections between key words. In many introductory classes, students must master lots of vocabulary, but “mastering” should mean more than just memorizing. This activity gives students the opportunity to discuss how these important terms create an understanding of a concept.
    2. This can be used for many different concepts, but here is an example for the properties of water: Each student in a group receives 3 or 4 post-it notes. Ask each student to write down one property of water. They might draw the molecular symbol, write a fact about the universal solvent, discuss how much of our body is composed of water, hydrogen bonds, etc. It doesn’t really matter what they write, and some will write similar things, but that’s okay. After they have all finished, students will go up to the board and place their post-it notes on the board where everyone can read them. Then the group, together (and out loud), will organize their statements about water, putting them into groups (affinities). They should categorize the affinities, noting what is the same and what is missing and can label the affinities. Some may feel like adding additional post-its to make more connections, and that is okay too.

 And one for the more advanced course:

  1. Case Study

    1. This can be used throughout a semester to help students synthesize many physiological concepts in a single activity with their team. It helps to stimulate discussions about many different concepts rather than a focused discussion on just one concept they may have learned.
    2. Provide a case study to each team of students (they can be all the same or different). Allow the students to work in their teams to analyze and synthesize their case. You can have them write important aspects of the case either on paper or on a large white board (if available). Once students have completed their case study, have teams share their analysis with the whole classroom, providing the opportunity for questions and discussion. You can also have teams make their own case studies for other teams in the class. When students take the time to create their own case studies, they often learn even more!

Throughout all of these activities, I always walk around to make sure students are both on task and making connections.

 

Moving Forward

As I continue in my graduate career and beyond, what is most important is that I try to be flexible enough to see the possibilities that there are in every new classroom. Each classroom that I am in is a little different than the next, so understanding that collaborative learning can help students with a range of concepts, and having the courage to adapt collaborative learning in a way that will work for my classroom has been very helpful (and will continue to be useful). It is almost as if each classroom has its own personality that might change from day to day, so knowing that I have a set of key techniques that I can fine-tune for each classroom is helpful as I continue in my teaching career and can hopefully be helpful in yours!

 

References

[1]       J. Bransford, A. Brown, R. Cocking, How People Learn: Brain, Mind, Experience, and School, National Academy of Sciences, Washington, D.C., 2000.

[2]       D.B. Luckie, J.J. Maleszewski, S.D. Loznak, M. Krha, Infusion of collaborative inquiry throughout a biology curriculum increases student learning: a four-year study of “Teams and Streams”., Adv. Physiol. Educ. 28 (2004) 199–209. doi:10.1152/advan.00025.2004.

 

Kristyn Sylvia received her B.S. in Biology from Stonehill College, and is currently a PhD candidate in the Department of Biology at Indiana University (IU) and a NIH Common Themes in Reproductive Diversity fellow where she studies how the neuroendocrine system interacts with the reproductive and immune systems early in life in Siberian hamsters. She worked as a clinical research associate in Boston, MA, before coming to IU. She is also a graduate student instructor in Biology, where she has taught a number of courses, including Human Integrative Physiology, and she serves on the Animal Behavior Undergraduate Curriculum Committee, where she collects and analyzes data on the major and addresses potential changes to the curriculum as it grows. She also serves on the APS Teaching of Physiology Section Trainee Committee.
Teaching Backwards

 

Generating new ideas and cool learning experiences has always been natural and fun for me. My moments of poignant clarity often came during a swim workout or a walk with my dog as I reflect on my classes. As I visualize this activity, my students are as enthusiastic as I am and are learning. Then, reality returns as I grade the next exam and see that less than half of the class answered the question related to that activity correctly. Accounting for the students who learn despite what I do, I quickly see that I only reached a quarter of my students with this great activity. Why did this happen? What can I do about this?

Well, my life as an instructor changed the day I walked into my first session of University Center for Innovation in Teaching and Education (UCITE) Learning Fellows at Case Western Reserve University.  This program is a semester long session on how learning works where the focus is on evidence-based learning practices and provides an opportunity to discuss successes and failures in teaching with peers.  It was here that I learned about “Backwards Design”1.

What is Backwards Design?

Essentially, it is designing your course with the end in mind. I think of it as “Teaching Backwards” – that is, I visualize my students 5-10 years from now in a conversation with a friend or colleague discussing what they learned from my class. I ask myself these questions:

  1. How do I want them to describe my class? Hansen refers to this as the “Big Idea” or broad objective. An example from one of my classes is provided in Table 1.
  2. What do I want them to be able to tell their friend or colleague that they learned from the class in 5 to 10 years? Hansen has termed this as “Enduring Understanding” (see Table 1).

The next phase is to write learning objectives for each of the enduring understandings (see Table 1). We continue the journey backwards into linking learning objectives to assessment methods and developing the details of each class session. During this process, we must always take into account the student’s prior knowledge (refer to How Learning Works2).

Table 1: Example of Backwards Design Concepts for “Exercise Physiology and Macronutrient Metabolism” class.

Class: Exercise Physiology and Macronutrient Metabolism
Big Idea Enduring Understanding Learning Objective
Exercise-Body Interaction Substrate utilization during exercise depends on type, intensity, and duration of exercise. Students will be able to describe substrate utilization during exercise.
Fatigue during exercise has been associated with low glycogen levels, but scientists are not in agreement as to the underlying cause of fatigue. Students will be able to debate the theories of fatigue.

What did backwards design do for me?

Backwards design provided me focus. It allowed me to step back and ask myself: What are the key take-aways? Does that cool, creative idea I have help to achieve my end game for the course? Is there a better way to do this? Overall, the framework has helped me develop a higher quality course. With that said, I still run into exam questions where I thought I did better at teaching the material than represented by the students’ responses.  So, while there is always room for improvement, this has definitely been a step in the right direction for better learning by my students.

References:

  1. Hansen EJ. Idea Based Learning: A Course Design Process to Promote Conceptual Understanding. Sterling VA: Stylus Publishing, LLC; 2011.
  2. Ambrose SA, Bridges MW, DiPietro M, Lovett M, Norman MK.How Learning Works: 7 Research Based Points for Teaching. San Francisco CA: Jossey-Bass, 2010.

 

Lynn Cialdella-Kam, PhD, MBA, MA, RDN, LD joined CWRU as an Assistant Professor in Nutrition in 2013. At CWRU, she is engaged in undergraduate and graduate teaching, advising, and research. Her research has focused on health complications associated with energy imbalances (i.e. obesity, disordered eating, and intense exercise training). Specifically, she is in interested in understanding how to alterations in dietary intake (i.e., amount, timing, and frequency of intake) and exercise training (i.e., intensity and duration) can attenuate the health consequences of energy imbalance such as inflammation, oxidative stress, insulin resistance, alterations in macronutrient metabolism, and menstrual dysfunction.  She received her PhD in Nutrition from Oregon State University, her Masters in Exercise Physiology from The University of Texas at Austin, and her Master in Business Administration from The University of Chicago Booth School of Business.  She completed her postdoctoral research in sports nutrition at Appalachian State University and is a licensed and registered dietitian nutritionist (RDN).
Diary of an Adventure Junkie – Part Deux:  The Path Diverges

As many scientists within our group look back over their training paths, they see a straight, hard-packed trail, with a few stumbling rocks, that led from graduate school, to a postdoc, to a bench-based, classroom-based or combination faculty position.  This relatively scripted path is one which many have traveled before us and many more will traverse in the future.  Without this path, science as we know it would cease to exist.  We require scientists in the laboratory and in the classroom, educating, influencing, inspiring and guiding the next generation; but what happens when some of those newly-minted scientists want to educate and train and motivate others in new ways?  Meet the proverbial fork in the road…

Over the past year, my road forked and I took the other path…twice.  So, what happens to a bench-trained educator who leaves the classroom for life in the society lane? Semi-adventure takes over and they drive on the shoulder and decide to direct a medical society while staying in the same comfortable location.  Being an executive director for a small society forces you to see education from a whole new perspective.  Questions arise, what are the hot topics, what is interesting, what is required…and who will teach it?  In this paradigm, the teacher becomes the student again, but also shifts into a motivational role, instilling an enthusiasm for teaching, fulfilling that ever-present need to educate.

But then…

The phone rings and it’s my dream job calling.  This job is perfect and halfway across the country, where housing and new schools must be found, in space-limited high-priced high-rises.  Cue the Indiana Jones theme music.  Giddy with the prospect of yet another fork, I swerve back onto the road; ducks in a row I apply, interview, accept the offer and then panic!  The onslaught of changes has thrown me into the ditch, wheels spinning without gaining traction.  Late sleepless nights looking for apartments, reading about schools and worrying about downsizing by half.  This is feeling less like an adventure and more like a nightmare.  And then it happened, my junior adventure junkie said, “I’m ready for this adventure, it’s going to be fun.”  That’s when I re-committed to my belief that adventures are scary, but without them we don’t challenge ourselves, we don’t grow and we don’t change.  So, I said yes we will move and downsize and take on this adventure.  The adventure starts this summer, but the prelude has been fantastic. So, what is the lesson here?  Challenge yourself, jump out of the airplane, take the unpaved path or the unnumbered exit and be confident that you will land in the best possible place.

Jessica C. Taylor is a physiologist, medical educator and adventure seeker.  Previously, a classroom educator, she spent a brief stint as the executive director of the Mississippi Osteopathic Medical Association and is now the Sr. Manager of Higher Education Programs for APS.