Category Archives: Active learning

Engaging students in active learning via protocol development

Physiology, particularly metabolic physiology, covers the fundamentals of biophysics and biochemistry for nutrient absorption, transport, and metabolism. Engaging pre-health students in experimentation may facilitate students’ learning and their in-depth understanding of the mechanisms coordinating homeostatic control. In addition, it may promote critical thinking and problem-solving ability if students are engaged in active learning.

Traditionally, students are provided instructions that detail the stepwise procedures before an experiment or demonstration. Although students are encouraged to ask questions before and during the experiments, an in-depth discussion would not be possible until they understand each step and the underlying principles. This is particularly true nowadays when commercial kits come with stepwise instructions where no explanation can be found of principles behind the procedure. The outcomes may contrast in three ways: (1) students are happy with the perfect data they acquire by following the instructions provided by the manufacturer, but they miss the opportunity to chew on the key principles that are critical for students to develop creative thinking; (2) students are frustrated as they follow the instruction but fail the experiments, without knowing what is wrong and where to start for trouble shooting; and (3) driven by self-motivation, students dig into the details and interact intensively with the instructor to grasp the principles of the procedure. As such, the students can produce reliable data and interpret the procedure and data with confidence, and in addition, they may effectively diagnose operational errors for trouble shooting. Evidently, the 3rd scenario demonstrates an example of active learning, which is desirable but not common in a traditional model of experimentation.

To engage students in active learning, one of the strategies is to remove the ready-to-go procedure from the curricular setting but request the students to submit a working protocol of their own version at the end of an experiment. Instead of a stepwise procedure (i.e., a “recipe”), the students are provided with reading materials that discuss the key principles of the analytical procedures. When students show the competency in the understanding of the principles in a formative assessment (e.g., a 30-min quiz), they are ready to observe the demonstrations step by step, taking notes and asking questions. Based on their notes and inspiration from discussion, each student is requested to develop a protocol of their own version. Depending on how detail-oriented the protocols are, the instructor may approve it or ask students to recall the details and revise their protocols before moving forward. Once students show competency in the protocol development, they are ready to conduct the steps in groups under the instructor’s (or teaching assistant, TA’s) supervision. Assessment on precision and accuracy is the key to examine the competency of students’ operation, which also provides opportunities for students to go back to improve or update their protocols. In the case of unexpected results, the students are encouraged to interpret and justify their results in a physiological setting (e.g., fasting vs. feeding states) unless they choose not to. Regardless, students are asked to go back to recall and review their operation for trouble shooting under the instructor’s (or TA’s) supervision, till they show competency in the experiment with reproducible and biologically meaningful data. Trouble shooting under instructor’s or TA’s supervision and inspiration serves as an efficient platform for students to take the lead in critical thinking and problem solving, which prompts students to go back to improve or update their protocols showing special and practical notes about potential pitfalls and success tips.

Often with delight, students realize how much they have grown at the end of experimentation. However, frustration is not uncommon during the troubleshooting and learning, which has to be overcome through students’ persistence and instructor’s encouragement. Some students might feel like “jumping off a cliff” in the early stage of an experiment where a ready-to follow instruction is not available. Growing in experience and persistence, they become more confident and open to pursue “why” in addition to “what”.

Of note, logistic consideration is critical to ensure active learning by this strategy. A single experiment would take up to 3-fold more time for the instructor and students to work together to reach competency. To this end, the instructor needs to reduce the number of experiments for a semester, and carefully select and design the key experiments to maximally benefit students in terms of skill learning, critical thinking, and problem solving. Furthermore, group size should be kept small (e.g., less than 3 students per group) to maximize interactive learning if independent experimentation by individuals is not an option. Such a requirement can be met either by increasing TA support or reducing class size.

 

 

Zhiyong Cheng is an Assistant Professor of Nutritional Science at the Food Science and Human Nutrition Department, University of Florida’s Institute of Food and Agricultural Sciences (UF/IFAS). Dr. Cheng received his PhD in Analytical Biochemistry from Peking University. After completing his postdoctoral training at the University of Michigan (Ann Arbor) and Harvard Medical School, Dr. Cheng joined Virginia Tech as a faculty member, and recently he relocated to the University of Florida. Dr. Cheng has taught Nutrition and Metabolism, with a focus on substrate absorption, transport, and metabolism. As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively participating in undergraduate and graduate research training.
The Large Lecture: Minor Adjustments, Major Impacts

Large lecture courses are hard, for both students and faculty alike, and while an exhaustive body of Scholarship of Teaching & Learning (SOTL) research boasts benefits of smaller classes (Cuseo, 2007), budgetary and a myriad of other restrictions leave many higher education institutions with few options for reducing class sizes.  Accordingly, many instructors are forced to figure out a way to best serve our students in this unideal setting.

Three years ago, in my first year as a full time faculty member, I found myself teaching one of these large lecture classes.  There were ~250 students, split across two sections, piled into an outdated auditorium.   The setting was intimidating for me, and if one thing was certain, it was that however intimidated I felt, my students felt it even harder (and as an aside, three years later, I still find myself, at times, intimidated by this space).  So, in a high-stakes, pre-requisite course like Anatomy & Physiology that is content-heavy and, by nature, inherently intense, what can be done in a large lecture hall to ease the tension and improve student learning?

When looking to the SOTL research for evidence-based recommendations on student engagement and active learning ideas in high-enrollment courses such as mine, I quickly became overwhelmed with possibilities (not unlike a kid in a candy store).  Before I knew it, finding meaningful ways to reshape my class in the best interest of the student became defeating – how was I supposed to overhaul my course to integrate best-practice pedagogy while still juggling the rest of my faculty responsibilities?

Thankfully, last year a colleague introduced me to a book, Small Teaching: Everyday Lessons from the Science of Learning, by James Lang.  Admittedly – I still have not finished this book (rest assured – I am currently in a book club studying this book, so I WILL finish it!); that being said, Lang’s powerful message about the significance of small changes resonated with me pretty early on in the text.  Minor, thoughtful adjustments to the daily classroom routine are capable of eliciting substantial impacts on student learning.  In other words, I did not need to reinvent the wheel to better serve my students; instead, I set a goal for myself to try out one or two small, reasonable adjustments per semester.  While I am still navigating best-practice teaching and experience a healthy dose of trial-and-error, here is what I have found useful thus far:

 

1. Learning names. This is perhaps the most straightforward, obvious classroom goal, but when you have a large number of students, something as simple as learning student names can quickly slip through the cracks.  Now, I appreciate that implementing this goal takes considerable time and intention, and depending on the structure of your high-enrollment course, it may or may not be feasible.  In my course, for example, it is a two-part series, which means I have the same students for an entire academic year rather than one semester.  Moreover, in addition to lecture, I have all of my students in smaller lab sections.  Accordingly, I have plenty of opportunity to interact with students and pay attention to names.

From a purely anecdotal observation, if and when a student musters up the courage to ask a question in the large auditorium, addressing them by name appears to increase the likelihood of the student asking again.  Moreover, it seems to have an impact on other students in the classroom, too; anecdotally, I have noticed in lectures where I address student questions using student names, the number of different students asking questions appears to increase.  Overall, addressing students by name seems to communicate a message that students in our classrooms are not simply a body in a seat or a number in the system, but they are a member of a learning community.

2. Finding an inclusive platform for voicing questions. Despite reaching a point in the academic year where everyone knows each other by name, some students will never feel comfortable enough raising their hand to ask questions in the big lecture hall. Knowing this, along with the notion that student confusion rarely exist in isolation, this semester I made it a point to explore alternative platforms for asking questions during lecture.  Cue in the Google Doc: this handy, online word-processing tool gave me a platform for monitoring student questions in real time during lecture.  On the logistical end, it is worth noting that I have a TA monitoring our Google Doc during lecture, so that when a stream of questions comes through, common themes in questions are consolidated into one or two questions.  A few times during the lecture, I will check in with our TA and address questions.  It is also worth mentioning that the document has been set up such that student names are linked to their comments; this was implemented as a measure to keep comments appropriate and on track.  So far, this has turned out to be a great platform, not only for students asking lecture questions in real time, but also for facilitating some really great discussion amongst students.

 

3. Holding students accountable for in-class activities.  I quickly realized in my large lecture class that students were generally unmotivated to participate in any in-class activity unless I collected it and assigned points (which, by the way, can be a logistical nightmare with 250 students).  Yet, as I learned in Making it Stick: The Successful Science of Learning, by Brown, Roediger, and McDaniel (a previous book club endeavor of mine), engaging students in activities like 5 minute recall exercises is widely supported as an effective tool for long-term learning and retention.  So, I decided to piggy back off my previous idea of the Q&A Google Doc, and open up an entire classroom folder where, in addition to our Q&A doc, students had daily folders for submitting in-class activities (again, in real time).  As of now, the way that it works is as follows: upon completing the short recall exercise, or other in-class activity, students will snap a photo of their work and upload it to our Google drive.  Then, I choose a piece of student work to display as we review the activity prompt, which has proven to be a great method for maintaining student accountability (I disclosed to the students that I will randomly choose a few days in the semester to award extra credit for those who submitted during class).  Additionally, this provides quick feedback to me (in real time) regarding student comprehension and common misunderstandings; in fact, I will occasionally choose to review a student submission that represents a common mistake to highlight and address a common problem area.

In summary, implementing these small changes has offered realistic approaches to improving my students’ experience and creating community in an otherwise challenging setting: the large lecture.  While I retain other long-term teaching goals that require more of a time commitment, Lang’s sentiment that small ≠ insignificant provides a solid ground for improvement in the present.

References:

Brown, PC, Roediger, HL, and McDaniel, MA (2014). Making it Stick: The Successful Science of Learning.  Cambridge, MA: Harvard University Press.

Cuseo, Joe. (2007). The empirical case against large class size: Adverse effects on the teaching, learning, and retention of first-year students. Journal of Faculty Development: 21.

Lang, James (2016).  Small Teaching: Everyday Lessons from the Science of Learning. San Francisco, CA: Jossey-Bass.

 

Amber Schlater earned her B.S. from the University of Pittsburgh in Biological Sciences, and her M.S. and Ph.D. from Colorado State University in Zoology; she also completed a two-year post-doctoral fellowship at McMaster University.  Currently, Amber is an Assistant Professor in the Biology Department at The College of Saint Scholastica in beautiful Duluth, MN, where she teaches Human Anatomy & Physiology, Super Physiology (a comparative physiology course), and mentors undergraduate research students.  Outside of work, Amber enjoys hiking, biking, camping, canoeing, and doing just about anything she can outside with her family.
It was Just a Bag of Candy, but Now It’s a Lung – Don’t Be Afraid to Improvise When Teaching Physiology

Many of us have been teaching the same course or the same topic in a team-taught course for many years.  I have been teaching the undergraduate Anatomy and Physiology-II (AP-II) course at a community college for four years.  People often ask, “Doesn’t it get old?  Don’t you get bored, teaching the same topic?”  Without hesitation, I answer, “No.” Why?  First, on-going research continually brings new details and insight to nearly every aspect of cell and integrative physiology.  You’re always learning to keep up with the field and modifying lectures to incorporate new concepts.  Second, you truly want your students to learn and enjoy learning and continually seek out ways to teach more effectively.  You try new approaches to improve student learning.  However, the third reason is truly why teaching physiology will never get old or dull.  No two students and no two classes are alike; individual and collective personalities, career goals, academic backgrounds and preparedness, and learning curves vary from class to class.  About half my students have not taken the general biology or chemistry courses typically required for AP-I or AP-II (these are not required by the college).  The unique combination of characteristics in each group of students means that on any given day I will need to create a new makeshift model or a new analogy for a physiological mechanism or structure-function relationship to help students learn.  Thus, even if all physiological research came to complete fruition, the teaching of physiology would still be challenging, interesting, and entertaining.  Many of my peers share this perspective on teaching physiology.

Irrespective of one’s mastery of integrative physiology, as teachers we must be ready and willing to think creatively on our feet to answer questions or clarify points of confusion.  A common mistake in teaching is to interpret the lack of questions to mean our students have mastered the concept we just explained, such as the oxygen-hemoglobin dissociation curve.  Despite the amazing color-coding of green for pH 7.35, red for pH 7.0 and blue for pH 7.5 and perfectly spaced lines drawn on that PowerPoint slide, your Ms./Mr. Congeniality level of enthusiasm, and sincerest intentions – you lost them at “The relationship of oxygen saturation of hemoglobin to the partial pressure of oxygen is curvilinear.”  You know you lost them.  You can see it in their faces.  The facial expression varies: a forehead so furrowed the left and right eyebrows nearly touch, the cringing-in-pain look, the blank almost flat stare, or my favorite – the bug-eyed look of shock.  Unfortunately, it will not always be obvious.  Thus, it is essential we make an effort to become familiar with the class as a group and as individuals, no matter how large the class.  Being familiar with their baseline demeanor and sense of humor is a good start.  (I have students complete ‘Tell Me About Yourself’ cards on the first day of class; these help me a great deal.)  During lecture, we make continual and deliberate eye contact with the students and read their faces as we lecture and talk to them, rather than at them.  In lab we work with and talk to each group of students and even eavesdrop as a means to assess learning.  Time in class or lab is limited, which tempts us to overlook looks of confusion and move on to the next point.  However, when students do not accurately and confidently understand a fundamental concept, they may have even greater difficulty understanding more integrated and complicated mechanisms.  You must recognize non-verbal, as well as subtle verbal cues that students are not following your logic or explanation.  In that immediate moment you must develop and deliver an alternative explanation.  Improvise.

As per Merriam-Webster, to improvise is to compose, recite, play, or sing extemporaneously; to make, invent, or arrange offhand; to fabricate out of what is conveniently on hand.  What do you have on hand right now to create or develop a new explanation or analogy?  Work with what you have within the confines of the classroom.  These resources can be items within arm’s reach, anything you can see or refer to in the classroom.  You can also use stories or anecdotes from your own life.  Reference a TV commercial, TV show, movie, song, or cartoon character that is familiar to both you and your students.  Food, sports, and monetary issues can be great sources for ideas.  I cook and sew, which gives me additional ideas and skills.  Play to your strengths.  Some people are the MacGyvers of teaching; improvisation seems to be a natural born gift.  However, we all have the basic ability to improvise.  You know your topic; you are the expert in the room.  Tap into your creativity and imagination; let your students see your goofy side.  Also, as you improvise and implement familiar, everyday things to model or explain physiological or structure-function relationships you teach your students to think outside the box.  Students learn by example.  My own undergraduate and graduate professors improvised frequently.  My PhD and post-doc advisors were comparative physiologists – true masters of improvised instrumentation.

Improvise now, and improve later.  Some of my improvised explanations and demonstrations have worked; some have fallen flat.  In some cases I have taken the initial improvised teaching tool and improved the prototype and now regularly use the demonstration to teach that physiological concept.  Here are three examples of improvisational analogies I have used for the anatomy of circular folds in the intestine, the opening and closing of valves in the heart, and the role of alveoli in pulmonary gas exchange.  Disclaimer:  These are not perfect analogies and I welcome comments.

Surface area in the small intestine.  Students understand that the surface area of a large flat lab table is greater than the surface area of a flat sheet of notebook paper.  A sheet of paper can be rolled into a tube, and students understand that the surface area of the ‘lumen’ is equal to the surface area of the paper.  In AP-I, students learned that microvilli increase the surface area of the plasma membrane at the apical pole of an epithelial cell, and many teachers use the ‘shag carpet’ analogy for microvilli.  Similarly, they understood how villi increase surface area of the intestinal lumen.  However, some students did not quite understand or cannot envision the structure of circular folds.  As luck would have it, I was wearing that style of knit shirt with extra-long sleeves that extend just to your fingertips.  I fully extended the sleeve and began to explain. “My sleeve is the small intestine – a tube with a flat-surface lumen (my arm is in the lumen) – no circular folds.  This tube is 28 inches long and about 8 inches around.  As I push up my sleeves as far as I can, and the fabric bunches up.  These messy folds that form are like circular folds.  And, now this 6 inch tube with all these circular folds has the same surface area as the 28-inch plain tube.”  (I sew; I know the length of my own arm and am great at eyeballing measurements.)

Heart valves open and close as dictated by the pressure difference across the valve.  This is integral to ventricular filling, ejection of blood into the lung and aorta, and the effect of afterload.  Heart valves are one-way valves.  A few students heard ‘pressure difference’ and were lost.  Other students had trouble understanding how stroke volume would decrease with an increase in afterload.  What can I use in the room?  There’s a big door to the lab, and it has a window.  It opens in one direction – out, because of the doorframe, hinges and door closure mechanism; it only opens, if you push hard enough.  I ran over to the door.  “The lab door is a heart valve.  It’s the mitral valve, the lab is the atrium, and the hallway is the ventricle.  The door only opens into the hall – the mitral valve only opens into the ventricle.  When it closes, it stops once it sits in the frame.”  I asked a student about my size to go outside the room, and push against the door closed – but let me open it; she could see and hear me through the window.  “As long as I push with greater force than she applies to keep it shut, the door or valve will open.”  The student played along and made it challenging, but let me open the door.  ‘Blood flows from the atrium into the ventricle, as long as the valve is open.  But, as soon as the pressure in the ventricle is greater than the pressure in the atrium the valve closes.”  The student forcefully pushed the door shut.  They got it!  Now, afterload …?  Back to the lab door.  “Now the lab door is the aortic valve, the lab is the left ventricle, and the hall is the aorta.  This valve will open and stay open as long as the pressure in the ventricle is greater than the pressure in the aorta.  The longer the valve is open, the greater the volume of blood ejected from the ventricle.  The volume of blood ejected from the ventricle in one beat is the stroke volume.  The pressure that opposes the opening of the aortic valve is afterload.  What happens with afterload?”  I then asked the tallest, strongest student in class to play the role of Afterload; he too got into the role.  “Afterload has now increased!  The pressure that opposes the opening of the valve has increased.  Will I or won’t I have to push harder to open the door – now that afterload has increased?”  The student is very strong; I can barely push the door open.  “I not only have to push harder, but I can’t keep the door or valve open for very long.  Look.  Even though the ventricle pressure is greater, the valve is open for a shorter period – so less blood is ejected and stroke volume decreases.”

Alveoli increase the surface area for gas exchange.  Students see the lungs as 2 large sacs, and the surface area available for gas exchange between air and blood is simply the inner lining of each sac.  However, each lung is made of millions of tiny air sacs or alveoli into which air flows.  How this anatomical arrangement greatly increases surface area for gas exchange is not intuitively obvious.  The overall size of the lung does not increase, so why would the surface area increase?  As luck would have it, it was Halloween.  I had brought a big bonus bag of individually wrapped bite-size candies to class.  “One lung is like this bag.  If we cut open the bag and measure the sheet of plastic, it would be about 18 inches by 12 inches or 216 square inches.  But if we completely fill it with candy, it might hold at least 150 pieces of candy.”  I quickly unwrapped one piece of candy, held up the wrapper, and estimated a single wrapper was 4 square inches.  “If we fill one bag with 150 pieces of candy, we then have 600 square inches of surface area.  Which would provide greater area for gas exchange: one big lung or millions of alveoli?”  I revised this particular improvised explanation using scissors, a ruler and two 11-oz bags of Hershey’s® kisses.  I carefully opened both bags and transferred kisses from one bag to the other, until it was completely full, i.e., 112 kisses, and taped it shut.  I then fully opened up the other bag; it was 10 inches x 8 inches or 80 square inches.  An individual kiss wrapper is 4 square inches; all 112 individual wrappers are 448 square inches.

My improvised analogies are not perfect, but they have served as great teaching tools.  If you can improve upon these, please do.  Share any suggestions you have and lastly, share your improvised explanations and analogies.  Thanks.

Alice Villalobos received her B.S.in biology from Loyola Marymount University and her PhD in comparative physiology from the University of Arizona-College of Medicine.  She has been in the Department of Biology at Blinn College for 4 years where she teaches Anatomy and Physiology II and Introduction to Human Nutrition.  She guest lectures in undergraduate courses at Texas A&M University on the topics of brain barrier physiology and the toxicity of heavy metals.
My First Run at Teaching an Integrated Physiology Course: Lessons Learned

One of the primary factors that attracted me to my current position, a tenure-track Assistant Professor of Biology at a small teaching-intensive liberal arts college, was the fact that my new department gave me the freedom to update and, in the end, completely overhaul the existing Anatomy and Physiology (A&P) curriculum. This position allowed great academic freedom, especially to a new professor, and department support for trying new teaching strategies and activities was, and still is, very high. So as a new entrant into the field of physiology education, and as someone who is interested in pedagogical research, this opportunity and level of freedom excited me.

My predecessor, while a fantastic educator, had built the year-long A&P sequence in the traditional form of one to two weeks on a specific topic (e.g. histology, the skeletal system, or the respiratory system) and an exam every so often that combined the previously covered topics. Both the topics covered and the exams could very much stand on their own, and were more like separate units. This course design was exactly the way I took the A&P course, longer ago than I care to admit, although at a different institution. In fact, most of my college courses were taught this way. And while that may be appropriate for some fields, the more I was reading and learning about teaching A&P the more I was starting to convince myself that I wanted teach A&P in an integrated fashion as soon as I got the chance.

So here I was, the bright-eyed and bushy-tailed newly minted Assistant Professor of Biology, with the academic freedom to teach A&P in the best way that I saw fit. One important thing to note: this course sequence (A&P I and II) is an upper-division junior and senior level course at my college, and class sizes are very small (20-24 students) allowing for maximum time for interaction, questions, and instructor guidance both in lecture and lab. (That latter point is key, but we’ll talk more about that in a minute.)

I entered the 2017-2018 academic year with a brand-new, shiny, exciting, and most importantly, integrated A&P course plan and a lot of enthusiasm. Along the way I took meticulous notes on what worked, what didn’t work, and the areas that needed improvement. Now in the 2018-2019 academic year I’m teaching this integrated course sequence for the second time, all while taking those same meticulous notes and comparing student feedback. Below I’ve compiled what I deem (so far) to be some of the most important lessons that I learned along the way:

 1) Use an integrative textbook.

This I was fortunate to do from the start. While this is an A&P course (not just P), I decided to use Physiology: An Integrated Approach by Dee U. Silverthorn as my primary text. Not only is the book already designed to be used in an integrative fashion, but there is ample introductory material which can be used to remind students of previous course material that they need to know (see lesson #2 below) and there are entire chapters dedicated to the integration of multiple systems (e.g. exercise). The assessment questions in the text are also well organized and progressive in nature and can be assigned as homework for practice or pre-reading assignments. Anatomy information, such as the specifics of the skeletal system and joints, muscles, histology, etc., was supplemented through the use of models and other reference material in hands-on lab activities.

2) Start building and assessing students’ A&P knowledge from the ground up, and build incrementally.

There are two important parts to this lesson: A) previous course knowledge that is applicable to this upper-division A&P course, and B) the new A&P material itself.

In my initial run of the course I made the mistake of starting out at a bit too advanced of a content level. I assumed more knowledge was retained from previous courses by the students than actually was. I learned very quickly that I needed to take a step back, but not too far. Instead of re-teaching introductory chemistry, biology, and physics, I took the opportunity to remind them of the relevant key principles (e.g. law of mass action) and then pointed them to pages in the text or provide additional material where they could review.

I applied this same philosophy as we progressed through new material. Lower-order Bloom’s principles should be assessed and mastered first, before progressing to the higher-order skills for each new section. In my second iteration of the course I implemented low-stakes (completion-based grade) homework assignments to be completed before the class or lab period, which were aimed to get a head-start on the lower-order skills. Then in class we reviewed these questions within the lecture or lab and added on with more advanced questions and/or activities. This format of pre-class homework was very well received by the students, and even though it is more work for them, they said that it encouraged them to keep up with the reading and stay-on track in the class. As the class progressed, I added in more advanced homework problems that integrated material from previous chapters. Obviously, if you are going to teach in an integrated fashion then you will need to assess the students in the same way, but a slow-build up to that level and ample low-stakes practice is key.

3) Create a detailed course outline, and then be prepared to change it.

This lesson holds true for just about any course, but I found it especially true for an integrated A&P course. As an instructor, not only did I need to be well versed in A&P, but I also needed to see the big picture and connect concepts and ideas both during the initial course construction and as the course progressed. I went into the course with an idea of what I wanted (and needed) to cover and during the course students helped guide what topics they struggled with and/or what they wanted to learn more about. So while still sticking to covering the basics of a course, I was still able to dive a bit deeper into other topics (such as exercise) per student interest. This also helped boost motivation for student learning when they feel they have some agency in the material.

Another aspect of the lesson is the addition of what I call “flex days”. Students will find this style of teaching and learning challenging and some will need more time and practice with the material. I found it very helpful to add in a “flex day” within each unit where no new material was covered, but instead time was dedicated to answering questions and additional practice with the concepts. If a full class day can’t be dedicated, even 30 minutes can be put to great use and the students really appreciate the extra time and practice.

 

4) Constantly remind your students of the new course format.

Students will want to revert back to what they are comfortable with and what has worked for them in the past. They will forget that information needs to be retained and applied later in the course. I found that I needed to constantly remind students that their “cram and forget” method will not serve them well in this course. But, simply telling them is not enough, so I allowed for practice problems both in and outside of class that revisited “older” material and prepared them for the unit exams with integrative questions which combined information from different chapters. I even listed the textbook chapters at the end of the question so that they would know where to find the material if needed.

Along with this, I found that tying material back to central themes in physiology (e.g. structure-function, homeostasis, etc.) also helped the students connect material. I am fortunate that the entry level biology courses at this college teach using the Vision and Change terminology, so the basic themes are not new to them, making integration at least on that level a bit more approachable.

 

5) Solicit student feedback.

Students love to be heard and they love to know that their input matters. And in the design of a new course I want to know what is working and what is not. I may think something is working, but the students may think otherwise. Blank notecards are my best friend in this instance. I simply have a stack at the side of the room and students can or cannot fill them out and drop them in a box. I often ask a specific question and solicit their input after an activity or particularly challenging topic. Of course, the second part of this step is actually reading and taking their input seriously. I’ve often made some last minute changes or revisited some material based on anonymous student feedback, which also ties back to lesson #3.

 

6) Be prepared to spend a lot of time with students outside of the classroom.

Some students are great about speaking up in class and asking questions. Other students are more comfortable asking questions outside of class time. And of course, I found that students of both flavors will think that they know a particular concept, and then find out, usually on an exam, that they do not (but that is probably not unique to an integrative course). So, after the first exam I reached out to every student inviting them to meet with me one-on-one. In these meetings we went through not only the details of the exam, but study skills. Every student needed to be reminded and encouraged to study a little bit every day or at least every other day to maximize retention and success. This also helped create an open-door policy with students who needed and wanted more assistance, increasing their comfort level with coming to office hours and asking for help.

 

As you may have inferred, teaching this type of course takes a lot of time. I’ll be honest and say that I wasn’t necessarily mentally or physically prepared for the amount of time it took to design and run this course, especially in my first year of teaching, but I made it work and I learned a lot. During this process I often discussed course ideas with department colleagues and A&P instructors at other universities. I perused valuable online resources (such as LifeSciTRC.org and the PECOP Blog) for inspiration and guidance. I also found that I spent a lot of time reflecting on just about every lecture, activity, and lab to ensure that the content connections were accurate, applicable, and obtainable by the students. And while I know that the course still has a ways to go, I am confident in the solid foundation I have laid for a real integrative A&P course. And, just as I am doing now with its second iteration, each run will be modified and improved as needed to maximize student learning and success, and that is what makes me even more excited!

Now I turn the conversation over to the MANY seasoned educators that read this blog. Do you have experience designing and teaching an integrated A&P course? What advice do you have for those, like me, that are just starting this journey? Please share!

Jennifer Ann Stokes is an Assistant Professor of Biology at Centenary College in Shreveport, LA. She received her PhD in Biomedical Sciences from the University of California, San Diego (UCSD). Following a Postdoctoral Fellowship in respiratory physiology at UCSD, Jennifer spent a year at Beloit College (Beloit, WI) as a Visiting Assistant Professor of Biology to expand her teaching background and pursue a teaching career at a primarily undergraduate university. Now at Centenary College, Jennifer teaches Human Anatomy and Physiology I and II (using an integrative approach), Nutritional Physiology, Medical Terminology, and Psychopharmacology. Jennifer is also actively engaged with undergraduates in basic science research (www.stokeslab.com) and in her free time enjoys cycling, hiking, and yoga.
Teaching for Learning: The Evolution of a Teaching Assistant

An average medical student, like myself, would agree that our first year in medical school is fundamentally different from our last, but not in the ways most of us would expect. Most of us find out that medical school not only teaches us about medicine but it also indirectly teaches us how to learn. But what did it take? What is different now that we didn’t do back in the first year? If it comes to choosing one step of the road, being a teaching assistant could be a turning point for the perception of medical education in the long run, as it offers a glimpse into teaching for someone who is still a student.

At first, tutoring a group of students might seem like a simple task if it is only understood as a role for giving advice about how to get good grades or how to not fail. However, having the opportunity to grade students’ activities and even listen to their questions provides a second chance at trying to solve one’s own obstacles as a medical student. A very interesting element is that most students refuse to utilize innovative ways of teaching or any method that doesn’t involve the passive transmission of content from speaker to audience. There could be many reasons, including insecurity, for this feeling of superficial review of content or laziness, as it happened for me.

There are, in fact, many educational models that attempt to objectively describe the effects of educating and being educated as active processes. Kirkpatrick’s model is a four-stage approach which proposes the evaluation of specific aspects in the general learning outcome instead of the process as a whole (1). It was initially developed for business training and each level addresses elements of the educational outcome, as follows:

  • Level 1- Reaction: How did learners feel about the learning experience? Did they enjoy it?
  • Level 2- Learning: Did learners improve their knowledge and skills?
  • Level 3- Behavior: Are learners doing anything different as a result of training?
  • Level 4- Results: What was the result of training on the business as a whole?

Later, subtypes for level 2 and 4 were added for inter-professional use, allowing its application in broader contexts like medicine, and different versions of it have been endorsed by the Best Evidence in Medical Education Group and the Royal College of Physicians and Surgeons of Canada (1) (2).  A modified model for medical students who have become teachers has also been adapted (3), grading outcomes in phases that very closely reflect the experience of being a teaching assistant. The main difference is the inclusion of attitude changes towards the learning process and the effect on patients as a final outcome for medical education. The need for integration, association and good problem-solving skills are more likely to correspond to levels 3 and 4 of Kirkpatrick’s model because they overcome traditional study methods and call for better ways of approaching and organizing knowledge.

Diagram 1- Modified Kirkpatrick’s model for grading educational outcomes of medical student teachers, adapted from (3)

These modifications at multiple levels allow for personal learning to become a tool for supporting another student’s process. By working as a teaching assistant, I have learned to use other ways of studying and understanding complex topics, as well as strategies to deal with a great amount of information. These methods include active and regular training in memorization, deep analysis of performance in exams and schematization for subjects like Pharmacology, for which I have received some training, too.

I am now aware of the complexity of education based on the little but valuable experience I have acquired until now as a teacher in progress. I have had the privilege to help teach other students based on my own experiences. Therefore, the role of a teaching assistant should be understood as a feedback process for both students and student-teachers with a high impact on educational outcomes, providing a new approach for training with student-teaching as a mainstay in medical curricula.

References

  1. Roland D. Proposal of a linear rather than hierarchical evaluation of educational initiatives: the 7Is framework. Journal of Educational Evaluation for Health Professions. 2015;12:35.
  2. Steinert Y, Mann K, Anderson B, Barnett B, Centeno A, Naismith L et al. A systematic review of faculty development initiatives designed to enhance teaching effectiveness: A 10-year update: BEME Guide No. 40. Medical Teacher. 2016;38(8):769-786.
  3. Hill A, Yu, Wilson, Hawken, Singh, Lemanu. Medical students-as-teachers: a systematic review of peer-assisted teaching during medical school. Advances in Medical Education and Practice. 2011;:157.

The idea for this blog was suggested by Ricardo A. Pena Silva M.D., Ph.D. who provided guidance to Maria Alejandra on the writing of this entry.

María Alejandra is a last year medical student at the Universidad de Los Andes, School of Medicine in Bogota, Colombia, where she is has been a teaching assistant for the physiology and pharmacology courses for second-year medical students. Her academic interests are in medical education, particularly in biomedical sciences.  She is interested in pursuing a medical residency in Anesthesiology. Outside medical school, she likes running and enjoys literature as well as writing on multiple topics of personal interest.
Stress and adaptation to curricular changes

 

 

 

…there was a teacher interested in enhancing the learning process of his students. He wanted to see them develop skills beyond routine memorization. With the support of colleagues and the education team at his university, he succeeded and chose a semi-flipped classroom approach that allowed him to introduce novel curricular changes that did not generate much resistance on the part of the students.

The change was made. The students apparently benefited from the course. They worked in groups and learned cooperatively and collaboratively. Students evaluated peers and learned to improve their own work in the process. They not only learned the topics of the class, but also improved their communication skills.

At some point the institution asked the teacher to teach another course. He happily did so, and based on his experience introduced some of the changes of his semi-flipped classroom into the new course. The students in this course were slightly younger and had not been exposed to education in biomedical sciences. To the teacher’s surprise, the students showed a lot of resistance to change. The sessions moved slowly, the test scores were not all that good, and students did not reach the expected outcomes. It was clear that the teacher and the students were going through a period of considerable stress, while adapting to the new model. Students and teachers worked hard but the results did not improve at the expected rate.

Some time ago this was my experience and as I wandered looking for solutions, I started to question the benefits of active learning and the role of stress in educational practice.

Advantages and challenges of active learning

Evidence says that active learning significantly improves student outcomes (higher grades and lower failure rates) and may also promote critical thinking and high level cognitive skills (1, 2). These are essential components of a curriculum that attempts to promote professionalism. However, it may be quite problematic to introduce active learning in settings in which professors and students are used to traditional/passive learning (2).

Some of the biggest challenges for teachers are the following:

  • To learn about backward design of educational activities
  • To think carefully about the expected accomplishments of students
  • To find an efficient way to evaluate student learning
  • To spend the time finding the best strategies for teaching, guiding, and evaluating students.
  • To recognize their limitations. For example, it is possible that despite their expertise, some teachers cannot answer the students’ questions. This is not necessarily bad; in fact, these circumstances should motivate teachers to seek alternatives to clarify the doubts of students. At this point, teachers become role models of professionals who seek to learn continuously.
  • To learn about innovations and disruptive technologies that can improve the teacher role.

Some of the challenges for students include:

  • Understanding their leading role in the learning process
  • Working hard but efficiently to acquire complex skills
  • Reflecting on the effectiveness of their learning methods (metacognition). Usually reading is not enough to learn, and students should look for ways to actively process the information.
  • Trusting (critically) on the methods made available by the teachers to guide their learning. For example, some tasks may seem simple or too complex, but teachers have the experience to choose the right methodology. A work from our team showed that strategies that seem very simple for the student (clay modeling) have a favorable impact on learning outcomes (3).
  • Seeking timely advice and support from teachers, tutors and mentors.

Working to overcome these challenges may generate a high level of stress on students and teachers. Without emphasizing that stress is a desirable trait, I do find that some disturbance in the traditional learning process and risk taking motivate teachers and students to improve their methods.

Intermediate disturbance hypothesis and stress in education

In the twentieth century, the work of Joseph H. Connell became famous for describing factors associated with the diversity of species in an ecosystem (4). Some of his observations were presented in Charles Duhigg’s book “Smarter Faster Better” which discusses circumstances related to effective teamwork (5). Duhigg reports that Connell, a biologist, found that in corals and forests there might be patches where species diversity increases markedly. Curiously, these patches appear after a disturbance in the ecosystem. For example, trees falling in a forest can facilitate the access of light to surface plants and allow the growth of species that otherwise could not survive (5). Connell’s work suggests that species diversity increases under circumstances that cause intermediate stress in the ecosystem. In situations of low stress, one species can become dominant and eradicate other species, whereas in situations of high stress, even the strongest species may not survive. But if, an intermediate stress where to appear, not very strong and not very weak, the diversity of species in an ecosystem could flourish.

I propose that the hypothesis of the intermediate disturbance can also be applied in education. In traditional learning, an individual (ecosystem) learns to react to the challenges presented and develops a method for passing a course. In situations of low stress, memorization (evaluated at the lower levels of Miller´s pyramid) may be enough to pass a course. In high stress level situations, students may drop out or feel inadequate. However, courses that involve active learning may include moderate challenges (intermediate disturbance). These well-managed challenges can motivate the student to develop more complex skills (diversity of species) that lead to effective learning and a broader professional development.

 

 

 

 

 

 

 

 

 

Figure 1. Intermediate disturbance hypothesis in education.

 

In the book “Problem-based learning, how to gain the most from PBL”, Donald Woods describes the challenges and stresses associated with the incorporation of active learning (PBL) in a curriculum (6). He describes the stages of grief that a student (and I add, a teacher) must go through while adapting to the new system. This adaptation can take months and generally is characterized by the following phases:

  • Shock
  • Denial
  • Strong emotion (including depression, panic and anger)
  • Resistance to change
  • Acceptance and resignation to change
  • Struggle to advance in the process
  • Perception of improvement in the expected performance
  • Incorporation of new habits and skills to professional practice

 

 

 

 

 

 

 

 

 

Figure 2. Performance adjustment after curricular changes. Adapted and modified from (6).

 

Properly managing stress and finding strategies to advance in the process are rewarded by achieving better performance once the students become familiar with the new method of active learning. However, to better adapt to curricular or pedagogical changes, it is important for all the education actors to recognize the importance of deliberate work and to have clear goals. In addition, students and teachers should have access to institutional strategies to promote effective time, and anger and frustration management.

Stress is not ideal, but some stress may motivate students and teachers to reevaluate their methods and ultimately work together for a classroom focused on professional excellence. The critical question is how big is the intermediate disturbance needed to improve learning outcomes. As is commonly concluded in papers, more research is needed to answer this question, and we can learn a lot from the theories and methods from our colleagues in Biology.

References

  1. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et al. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci U S A. 2014;111(23):8410-5.
  2. Michael J. Where’s the evidence that active learning works? Adv Physiol Educ. 2006;30(4):159-67.
  3. Akle V, Pena-Silva RA, Valencia DM, Rincon-Perez CW. Validation of clay modeling as a learning tool for the periventricular structures of the human brain. Anat Sci Educ. 2017.
  4. Connell JH. Diversity in Tropical Rain Forests and Coral Reefs. Science. 1978;199(4335):1302-10.
  5. Duhigg C. Smarter Faster Better: Random House; 2016.
  6. Woods DR. Problem Based Learning: How to gain the most from PBL. 2nd. ed1997.
Ricardo A. Peña-Silva M.D., PhD is an associate professor at the Universidad de los Andes, School of Medicine in Bogota, Colombia, where he is the coordinator of the physiology and pharmacology courses for second-year medical students. He received his doctorate in Pharmacology from The University of Iowa in Iowa City. His research interests are in aging, hypertension, cerebrovascular disease and medical education. He works in incorporation and evaluation of educational technology in biomedical education.

He enjoys spending time with his kids. Outside the office he likes running and riding his bicycle in the Colombian mountains.