Category Archives: Active learning

Spring 2020*: The asterisk denotes community made all the difference.

Spring 2020 is often denoted with an asterisk.  The asterisk means different things to different people.  For many people it means, “Things will never be the same.”  COVID-19 has changed the venues from which we teach, but not our commitment to continually improve our teaching.  We have adapted our lectures, labs, and office hours to online platforms to keep students and ourselves safe.  I am no seer, but once classes moved online in mid-March I knew this would be a long haul from which I must learn and never forget.  After submitting final grades, I asked myself, “What have you learned?  Which practices will you continue to implement to create a better learning environment for students irrespective of world health status or platform?”  My asterisk on Spring 2020 is community.

For Spring 2020 I was assigned three sections of an upper level exercise nutrition course and one section of basic exercise physiology.  Each was a critical course.  Kinesiology majors must pass exercise physiology before any other upper level kinesiology course; this was a new course for me.  The exercise nutrition course, which I taught the prior semester, includes an in-class presentation with a hefty point value; it also is the departmental assessment tool for communication skills.  Over the last several years the level of stress and anxiety among undergraduate students in my physiology courses has been progressively increasing, nearly choking their joy of learning.  Colleagues in other fields observe similar trends.  The majority of students taking physiology courses seek careers in health professions.  Given the competitive nature of the respective training programs, students are driven to earn that A.  Add to that the worry of paying for tuition, rent, food, books, computers, and transportation and complicated academic and social transitions from high school to college.  Their family expectations loom over them.  Some students are full-time students, but also full-time parents.  For first-generation college students these circumstances may bear even greater weight.  Thus, while preparing for Spring 2020 I decided to approach that semester with greater compassion for students.  This led to my forming a community of learners in each class a priority.  Ultimately, this helped me better meet the needs of my students during that first phase of the pandemic.

Webster defines compassion as “sympathetic consciousness of others’ distress together with a desire to alleviate it.”  In preparing for Spring 2020, I identified aspects of each course that presented major challenges for students and represented sources of stress, anxiety, frustration, and discouragement.  I hoped to address those challenges and thereby, alleviate a source of stress.  Most exercise physiology students had not taken biology or basic physiology; thus, I had to teach them basic cell biology and basic physiology so they could better understand the significance of acute responses to exercise.  Based on my past experience teaching the exercise nutrition course, students needed more confidence speaking in public.  Furthermore, any given student might have known just two or three other students by name and were hesitant to speak in general.  I had to help them feel more at ease so they could talk and think out loud among their peer group.  We each want to belong to a community.  We value our individuality, but we are social beings.  Students must feel accepted and comfortable in class, so they can ask and answer questions within a small group or entire class.  A critical component of learning is not answering a question, but verbally defending that answer and exchanging ideas with others.  Many are afraid to answer incorrectly in front of others.  The classroom must be a safe place.  As the teacher, I am responsible for creating a sense of community.  While I did a great job getting to know my students’ names, faces and fun facts, I wasn’t helping students know each other.  For both courses I decided to include more activities that required students to talk directly to each other and become accustomed to speaking out loud.  With 20-25 students per class, it was feasible.  I would sacrifice class time and not be able to cover as much material.  So be it.  Students would master the fundamentals, learn to apply the knowledge, and have a shot at enjoying learning and becoming life-long learners.  Coming to class and learning might even become a reprieve from other stressors. 

How could I create community among unacquainted 20+ students?  Provide opportunity to interact as a class or in pairs or groups as often as possible.  I had to be persistent, kind, and patient.  The first day of classes I explained my intention was that students become familiar with each other, so that they were comfortable asking and answering questions and contributing to discussions.  This would facilitate learning and help me better gauge their understanding.  This also might help them find a study partner or even make a new friend.  I told them I made it a point to learn everyone’s name as soon as possible and would call on each student numerous times.  I made it clear that I know when people are shy; I promised to be kind and not call on them until they were ready.  Each day I arrived as early as possible and cheerfully greeted each student by their preferred name and asked open ended questions, e.g., ‘How are your other classes going?”  At least once a week, students worked in pairs to complete worksheets or quizzes; we would reconvene as a class and I would call on different pairs to answer.  I called on different pairs each time, so every group had chance to speak.  I encouraged them to work with different classmates for different in-class activities.  Initially, there was resistance, but I consistently commended them for their efforts.  Gradually, more students would proactively raise their hands to be called on, and it could get pretty loud.   

On the first day of the nutrition classes I also announced the presentation assignment and that we’d get started on it the 1st week of classes by forming pairs and by becoming accustomed to talking in front of the class.  To let them know that dread of public speaking is shared by all, I confessed to feeling nervous before every lecture; however, I love teaching and channel that nervous energy to keep the lectures upbeat.  I explained they might never get over the nervousness of public speaking, but they can learn nothing is wrong, being nervous is expected; it will become easier.  The trick is to start small.  So, at the start of every class period, one or two students would be asked to stand up, introduce themselves, and tell the class what they found most interesting from the last lecture.  The other students would give the presenter their undivided attention.  For shy students, I spoke directly but quietly to them before class and suggested that they could focus on me while they spoke.  After each introduction I cheerfully thanked students as positive re-enforcement.  These introductions also served to highlight what was covered in the last class.  Because each nutrition course class met 3 times a week for 50-minute sessions, students interacted frequently.  For the exercise physiology course, students worked in pairs to complete a ‘1-2-3 plus 1’ worksheet with questions on three key concepts from the previous lecture and one question on new material in the upcoming lecture.  They worked on questions for 5 minutes, and then I would call on different pairs to answer questions and explain sticking points for about 10 minutes.  It also was the transition into that day’s new material.  This class met twice per week for 80 minutes each session; thus, plenty of time remained even after the 15-minute Q&A.  They were grasping the integration of cellular mechanisms at the cellular and systems levels.  The time and effort to plan and execute these activities was well worth it.  Students were learning and enjoying class, as well as getting to know each other.  By late February communities had formed.  Each class had a friendly and inclusive feeling, and attendance was nearly perfect.  Even shy students began echoing my greetings or waving and smiling at classmates arriving to class.  Individual classes had their own running jokes.   

The week before Spring Break universities were discussing whether or not students would return to campuses after the break.  COVID-19 was here.  The Thursday and Friday before Spring Break were the last days I met with students in person.  I confirmed the rumors.  Students would not return to campus after the break, and all courses would be entirely online.  I clarified that I would present lectures ‘live’ at the regularly scheduled class times.  I opened the floor to discussion.  If I knew their concerns, I’d have a better chance at maintaining the sense of community.  Students were completely honest.  Seniors were sad, because graduation would be cancelled.  Students were hoping they could keep their jobs here in town to pay rent.  Athletes on scholarships worried that if the season were canceled they’d lose funding.  Others would be learning from their parents’ homes, which had no Internet access.  The most common concern was whether they would be as successful learning online.  They were worried about the lack of accountability.  One student feared he’d stop attending lectures and miss assignments; one reason he came to class was that I called him by name and talked to him every day.  Another student doubted I’d have any personality when giving online lectures; I took this as a challenge.  Students in the nutrition classes were worried about presentations, which were taking shape and now had to be presented somehow.  They were scared.  Now, I was scared for them – but had the wherewithal to not say that out loud.  One student outright asked, ‘Is this even gonna’ work?!”  I admitted it would be a challenge, in part because I had never taught an online class, and this was my first pandemic!  They laughed nervously.  What a relief to hear them laugh!  Then, I remembered my goal to practice compassion and let that guide me.  I calmly stated the following, “This is not an ideal situation, but we will make it work, and I mean WE.  I will do my best to not make this situation any more difficult than it has to be.  I will communicate with you regularly, so read my emails.  If you have any problems or questions you must let me know immediately, so to give me a better chance to help you.  It will be ok.”  That this was the last time I would see my students in person.  It was a sad day.

I took my students’ concerns into account and still made my priority community.  If I could maintain that sense of community, they would be more likely to login to lecture and learn. I kept it as simple, direct, and familiar as possible.  I already had been posting all lecture notes and materials on the university’s learning management system (LMS) and using the drop box for homework submissions.  Thus, I opted to use the real-time video conferencing tool in the LMS to deliver, record and save lectures and hold office hours.  An ounce of prevention is worth a pound of cure.  I established the practice of sending each individual class a weekly email on Sunday afternoon that listed the week’s lecture topics, specific links to each lecture and office hours, due dates for quizzes, upcoming exams, announcements, and miscellaneous reminders.  The very first email included step by step instruction for logging into the LMS video conferencing tool (which had been proofread and tested by a colleague), and I attached the revised syllabus.  I kept these emails as upbeat as possible.  On the class website, I also posted important announcements, along with links to the live and recorded lectures.  I kept the class website uncluttered and organized to make it easy for students to find what they needed.  In the middle of a pandemic, it was absolutely essential to keep my promise to my students and myself and not to make learning or teaching online any more difficult than necessary. 

I continued teaching the fundamentals and worked to maintain that sense of community.  I opened and logged into the virtual lecture room 10-15 minutes before lecture started and would allow students to do the same.  I would still greet them as they entered, asked them to turn on the video at least once, so I could see their faces and make sure they were doing ok.  They would also greet each other.  I encouraged them to ask questions or comment directly using their mics or in the chat message feature.  As I lectured, I kept track of questions and answers to my questions; I would address students by name just as I had in person.  They learned quickly that they could use the chat feature to communicate with each other, sometimes not about physiology or nutrition.  I didn’t mind.  I also knew they missed being on campus and seeing classmates and friends, and they were isolated.  For the exercise physiology course, we continued the practice of starting each lecture period with the 1-2-3 plus 1 worksheet and still spend about 15 minutes on that activity; the students really valued this activity.  Because the practice proved to facilitate learning, I posted these questions on the class website, but also emailed the class a copy the day before to be sure they had a copy – a 5-minute task to keep them engaged and coming to class.  For the nutrition class, I offered an extra credit assignment, ‘Who is this?’  For one class, I had a list of 10 walk-up songs from different students; students had to name the artist and tell me the full name of the student who claimed that as their ‘walk-up’ song.  Another class had to name the student learning online the farthest distance from campus and name the student whose birthplace was farthest from campus; they also had to list the exact city, state or country and distance in miles.  The third class had to list the first and last names of all graduating seniors in the class and their career goals.  For extra points, they all participated.  It was meant to encourage them to stay connected and think about something else. 

We had a share of glitches and mishaps, but my students stepped up to the plate.  The lack of equal access to the Internet could not be more painfully obvious.  One exercise physiology student informed me that his only access to the Internet was his cell phone.  He took the initiative to asked whether I would accept images of hand-written 1-2-3 worksheets sent to me by email.  He never missed an assignment and made arrangements to borrow a friend’s laptop for exams.  A nutrition student, I will call Brett was learning from home in a small town about 2 hours from the nearest ‘real’ town; his family home had no Internet and a poor mobile phone signal.  He emailed to explain that once his dad got paid he would buy the equipment and he would be online soon.  He was concerned about missed quizzes and the respective points and missed lectures.  What do you say to that?  When you know you have all the power, you must use that power to do good and not make anyone’s life harder than it has to be.  I re-opened quizzes and sent him links to the recorded lectures; he wasted no time catching up.  Then there was the matter of the nutrition presentations.  Another lifeline.  Students continued to work together, sending presentation files to each other and to me.  Students taught themselves to use Zoom, Google Slides, and the LMS video conference feature.  No one complained.  Multiple pairs wanted to present during the same session, so they could be an audience, lend moral support, and ask questions.  The presentations were impressive.  Students were so enthusiastic.  However, my favorite presentation was by Brett and ‘Josh’; they presented via the LMS conference feature.  Brett’s Internet cut out completely on second slide; he tried to reconnect to no avail.  I remained calm; they remained calm.  They decided Brett would call Josh; Josh would hold his cell phone to the mic on his computer so I could hear Brett narrate his part of the talk.  Teamwork!  Let your students inspire you.

I left time at the end of each lecture to offer encouraging words and reminders to stay safe and take care of themselves.  I also would state that I looked forward our next meeting.  As the semester was winding down end-of-lecture discussions and questions become more serious.  Across all classes the basic questions were similar.  “Will I graduate on time?  How will this impact my career plans?  Do you think this will be over by the Fall?  Do you think they’ll have a cure soon?”  There was no sugar coating this.  I would validate their concerns and offer my honest opinion in a kind-hearted manner.  My last virtual lecture was on a Friday in May.  I decided to name each graduating senior, so the class could congratulate and applaud for them.  A student asked me to give a commencement speech.  She was serious.  I remembered what my gut told me back in mid-March, and so I began.  “I cannot tell you how proud of how hard each of you has worked and how well you worked together.  Life is hard.  It’s ok to be scared.  You have risen to the occasion.  Keep rising.  Learn all you can from this situation.  You are meant to do great things, however subtle or grand.  You will fall and make mistakes.  You will need help along the way and must help others on their journey.  It has been a privilege to work with you.  I will think of you often and wish you well.”  Spring 2020*  *Helping my students form a community, an inclusive safe place to learn, think out loud, be wrong, correct mistakes, and help each other.  That is the practice I will continue to implement to create a better learning environment for students irrespective of world health status or platform. 

Alice Villalobos, Ph.D., is an assistant professor in the Department of Medical Education at the Texas Tech Health Sciences Center in Lubbock, Texas.  She received her B.S.in biology from Loyola Marymount University and her Ph.D. in comparative physiology from the University of Arizona-College of Medicine.  Her research interests are the comparative aspects of the physiology and stress biology of organic solute transport by choroid plexus.  She has taught undergraduate and graduate courses in integrative systems physiology, nutrition and toxicology.  However, her most enjoyable teaching experience has been teaching first-graders about the heart and lungs!  Her educational interests focus on tools to enhance learning of challenging concepts in physiology for students at all levels.  She has been actively involved in social and educational programs to recruit and retain first-generation college students and underrepresented minorities in STEM. 
Building bridges: Medical physiology teaching in China
Ryan Downey, Ph.D.
Assistant Professor
Co-Director, Graduate Physiology Program
Team Leader, Special Master’s Program in Physiology


Department Pharmacology and Physiology
Georgetown University Medical Center
Washington, D.C.

The Chinese Society of Pathophysiology hosted the 2019 Human Functional Experiment Teaching Seminar and the Second Human Physiology Experimental Teaching Training Course 25-27 October. Across two and a half days, educators from across China met at Jinzhou Medical University in the province of Liaoning to discuss and workshop the latest ideas in active learning and interactive teaching techniques. In many ways, especially in terms of the esteem in which this meeting is held by its attendees, this meeting was not dissimilar from the APS Institute on Teaching and Learning, which will hold its next biennial meeting this coming June in Minneapolis. For the 2019 meeting, the organizers decided to invite an international speaker, which is how I found myself on a plane headed to China. As part of my visit, not only did I get to attend the workshop hosted at Jinzhou Medical University, but also I was hosted by several of the meeting organizers at their home institutions to see their facilities. In this writeup, I will reflect on some of the observations that I made during the many different conversations that I had with the educators participating in the meeting.

The most common question that I got from my hosts was, “What kinds of technology do you use in your classrooms and labs and how do you use them?” What surprised me the most about this question wasn’t the actual question itself, but the perception that many of the educators at the meeting held that they were lagging behind in the implementation of using technologies as   teaching and learning tools. The large majority of teaching spaces that I visited were equipped with much the same technology as any classroom or lecture hall that I would find in an American university: computers, projectors, large-screen LCD displays, and power at every seat to accommodate student personal electronic devices. While there was the occasional technological oddity, such as a computer here or there that was still running Windows XP, the technology available to these educators was very much on par with the technology I would expect at any modern university, which is why I was surprised that the educators had the perception that they were behind in implementing different technologies. In my conversations with them, I discussed the use of audience response systems like iClicker and PollEverywhere as well as interactive elements like gamification through websites such as Kahoot!, but my emphasis in these conversations was exactly the same as I have with educators at home: we need to make sure that there is a sound pedagogical basis for any engagement we use with our students and that the technology doesn’t matter. I can use 3×5 colored  index cards to create an audience response system that functions as well as (or sometimes even better!) than clickers because no one has any problems with the WiFi while using a 3×5 card. The technology facilitates our instruction and should never drive it for the sake of itself.

A common thread of many discussions was the use of internet technologies in teaching. While there is much to be said about the limitations of the ‘Great Firewall’ of China and the amount of government regulation that occurs over their communications, it’s important to note how little these limitations affect the day-to-day activities of the majority of citizens. There are Chinese versions of almost every single internet convenience that we would take for granted that function at least as well as our American versions. Their social media system has grown to the point that many international users are engaging on their platforms. There are food delivery apps and the local taxi services have all signed on to a common routing system (at least in Beijing) that functions in a similar way to Uber or Lyft. In a side-by-side comparison between my phone and one of the other meeting participants, there is near feature parity on every aspect. From an educational standpoint, however, there are some notable differences. The lack of access to Wikipedia is a notable gap in a common open resource that many of us take for granted and there is not yet a Chinese equivalent that rivals the scope or depth that Wikipedia currently offers. Another key area in which internet access is limited is their access to scholarly journals. This lack of accessibility is two-fold, both in the access to journals because of restrictions on internet use as well as the common problem that we are already familiar with of journal articles being locked behind paywalls. The increasing move of journals to open access will remove some of these barriers to scholarly publications, but there are still many limits on the number and types of journal articles that educators and learners are allowed through Chinese internet systems.

The most common request that I received while attending the educators meeting was, “Tell me about the laboratories you use to teach physiology to your medical students.” I think this is the largest difference in teaching philosophy that I observed while in China. The teaching of physiology is heavily based on the use of animal models, where students are still conducting nerve conduction experiments with frogs, autonomic reflex modules with rabbits, and pharmacological studies in rats. These are all classic experiments that many of us would recognize, but that we rarely use anymore. One key area of the workshops were modules designed to replace some of these classic animal experiments with non-invasive human-based modules, such as measuring nerve conduction velocities using EMG. My response that the majority of our physiology teaching is now done through lecture only was met with a certain degree of skepticism from many of them because the use of labs is so prevalent throughout the entire country. Indeed, the dedication of resources such as integrated animal surgical stations runs well into the hundreds of thousands of dollars per laboratory room set up, and to facilitate the entirety of students each year, there are multiple labs set up at each university. As the use of non-invasive human experiments expands, an equal amount of space and resources are being given to setting up new learning spaces with data acquisition systems and computers for this new task. In this area, I think that we have much to gain from our Chinese counterparts as many of the hardest concepts in physiology are more easily elucidated by giving students the space to self-discover in the lab while making physiological measurements to fully master ideas like ECG waves and action potential conduction.

Upon returning home, I have been asked by nearly everyone about my travel experiences, so I think it may be worth a brief mention here as well. I cannot overstate the importance of having a good VPN service setup on all of your electronic devices before traveling. Using a VPN, I had near-normal use of the internet, including Google and social media. My largest problem was actually trying to access local Chinese websites when my internet address looked like I was outside of the country. I have had good experience with NordVPN, but there are several other very good options for VPN service. Carrying toilet paper is a must. There are lots of public restrooms available everywhere in the city, but toilet paper is either not provided or available only using either social media check-ins or mobile payments. For drinking water, I traveled with both a Lifestraw bottle and a Grayl bottle. This gave me options for using local water sources and not having to rely on bottled water. The Lifestraw is far easier to use, but the Grayl bottle has a broader spectrum of things that are filtered out of the water, including viruses and heavy metals, which may be important depending on how far off the tourist track you get while traveling. My final tip is to download the language library for a translator app on your mobile device for offline use so that you can communicate with others on the streets. When interacting with vendors and others not fluent in English, it was common to use an app like Google Translate to type on my device, show them the translated results, and they would do the same in reverse from their mobile device.

One of the themes across the meeting was building bridges — bridges between educators, bridges between universities, bridges across the nation and internationally. I’m glad to have had the opportunity to participate in their meeting and contribute to their conversation on building interactive engagement and human-focused concepts into the teaching of physiology. Overall, the time that I spent talking to other educators was useful and fantastic. Everyone I met and interacted with is enthusiastic and excited about continuing to improve their teaching of physiology. I left the meeting with the same renewed energy that I often feel after returning from our ITL, ready to reinvest in my own teaching here at home.

Ryan Downey is an Assistant Professor in the Department of Pharmacology & Physiology at Georgetown University. As part of those duties, he is the Co-Director for the Master of Science in Physiology and a Team Leader for the Special Master’s Program in Physiology. He teaches cardiovascular and neuroscience in the graduate physiology courses. He received his Ph.D. in Integrative Biology from UT Southwestern Medical Center. His research interests are in the sympathetic control of cardiovascular function during exercise and in improving science pedagogy. When he’s not working, he is a certified scuba instructor and participates in triathlons

Do You Want To Be On TV?

Last summer, some colleagues and I published a paper on how high school students can communicate their understanding of science through songwriting.  This gradually led to a press release from my home institution, and then (months later) a feature article in a local newspaper, and then appearances on Seattle TV stations KING-5 and KOMO-4.

It’s been an interesting little journey.  I haven’t exactly “gone viral” — I haven’t been adding hundreds of new Twitter followers, or anything like that — but even this mild uptick in interest has prompted me to ponder my relationship with the news media. In short, I do enjoy the attention, but I also feel some responsibility to influence the tone and emphases of these stories. In this post, I share a few bits of advice based on my recent experiences, and I invite others to contribute their own tips in the comments section.

(1) Find out how your school/department/committee views media appearances.  In April, I was invited to appear on KING’s mid-morning talk show, which sounded cool, except that the show would be taped during my normal Thursday physiology lecture!  My department chair and my dean encouraged me to do the show, noting that this sort of media exposure is generally good for the school, and so, with their blessing, I got a sub and headed for the studio.

(2) Respect students’ privacy during classroom visits.  After some students were included in a classroom-visit video despite promises to the contrary, I realized that I needed to protect their privacy more strongly. I subsequently established an option by which any camera-shy students could live-stream the lecture until the TV crew left.

(3) Anticipate and explicitly address potential misconceptions about what you’re doing.  I’ve worried that these “singing professor” pieces might portray the students simply as amused audience members rather than as active participants, so, during the classroom visits, I’ve used songs that are conducive to the students singing along and/or analyzing the meaning of the lyrics. (Well, mostly. “Cross-Bridges Over Troubled Water” wasn’t that great for either, but I had already sung “Myofibrils” for KING, and KOMO deserved an exclusive too, right?)

(4) Take advantage of your institution’s public relations expertise.  Everett Community College’s director of public relations offered to help me rehearse for the talk show — and boy am I glad that she did!  Being familiar with the conventions and expectations of TV conversations, Katherine helped me talk much more pithily than I normally do. In taking multiple cracks at her practice question about “how did you get started [using music in teaching]?” I eventually pared a meandering 90-second draft answer down to 30 seconds. She also asked me a practice question to which my normal response would be, “Can you clarify what you mean by X?” — and convinced me that in a 4-minute TV conversation, you don’t ask for clarifications, you just make reasonable assumptions and plow ahead with your answers.

(5) Ask your interviewers what they will want to talk about. Like a novice debater, I struggle with extemporaneous speaking; the more I can prepare for specific questions, the better.  Fortunately, my interviewers have been happy to give me a heads-up about possible questions, thus increasing their chances of getting compelling and focused answers.

Readers, what other advice would you add to the above?

Gregory J. Crowther, PhD has a BA in Biology from Williams College, a MA in Science Education from Western Governors University, and a PhD in Physiology & Biophysics from the University of Washington. He teaches anatomy and physiology in the Department of Life Sciences at Everett Community College. His peer-reviewed journal articles on enhancing learning with content-rich music have collectively been cited over 100 times.

Engaging students in active learning via protocol development

Physiology, particularly metabolic physiology, covers the fundamentals of biophysics and biochemistry for nutrient absorption, transport, and metabolism. Engaging pre-health students in experimentation may facilitate students’ learning and their in-depth understanding of the mechanisms coordinating homeostatic control. In addition, it may promote critical thinking and problem-solving ability if students are engaged in active learning.

Traditionally, students are provided instructions that detail the stepwise procedures before an experiment or demonstration. Although students are encouraged to ask questions before and during the experiments, an in-depth discussion would not be possible until they understand each step and the underlying principles. This is particularly true nowadays when commercial kits come with stepwise instructions where no explanation can be found of principles behind the procedure. The outcomes may contrast in three ways: (1) students are happy with the perfect data they acquire by following the instructions provided by the manufacturer, but they miss the opportunity to chew on the key principles that are critical for students to develop creative thinking; (2) students are frustrated as they follow the instruction but fail the experiments, without knowing what is wrong and where to start for trouble shooting; and (3) driven by self-motivation, students dig into the details and interact intensively with the instructor to grasp the principles of the procedure. As such, the students can produce reliable data and interpret the procedure and data with confidence, and in addition, they may effectively diagnose operational errors for trouble shooting. Evidently, the 3rd scenario demonstrates an example of active learning, which is desirable but not common in a traditional model of experimentation.

To engage students in active learning, one of the strategies is to remove the ready-to-go procedure from the curricular setting but request the students to submit a working protocol of their own version at the end of an experiment. Instead of a stepwise procedure (i.e., a “recipe”), the students are provided with reading materials that discuss the key principles of the analytical procedures. When students show the competency in the understanding of the principles in a formative assessment (e.g., a 30-min quiz), they are ready to observe the demonstrations step by step, taking notes and asking questions. Based on their notes and inspiration from discussion, each student is requested to develop a protocol of their own version. Depending on how detail-oriented the protocols are, the instructor may approve it or ask students to recall the details and revise their protocols before moving forward. Once students show competency in the protocol development, they are ready to conduct the steps in groups under the instructor’s (or teaching assistant, TA’s) supervision. Assessment on precision and accuracy is the key to examine the competency of students’ operation, which also provides opportunities for students to go back to improve or update their protocols. In the case of unexpected results, the students are encouraged to interpret and justify their results in a physiological setting (e.g., fasting vs. feeding states) unless they choose not to. Regardless, students are asked to go back to recall and review their operation for trouble shooting under the instructor’s (or TA’s) supervision, till they show competency in the experiment with reproducible and biologically meaningful data. Trouble shooting under instructor’s or TA’s supervision and inspiration serves as an efficient platform for students to take the lead in critical thinking and problem solving, which prompts students to go back to improve or update their protocols showing special and practical notes about potential pitfalls and success tips.

Often with delight, students realize how much they have grown at the end of experimentation. However, frustration is not uncommon during the troubleshooting and learning, which has to be overcome through students’ persistence and instructor’s encouragement. Some students might feel like “jumping off a cliff” in the early stage of an experiment where a ready-to follow instruction is not available. Growing in experience and persistence, they become more confident and open to pursue “why” in addition to “what”.

Of note, logistic consideration is critical to ensure active learning by this strategy. A single experiment would take up to 3-fold more time for the instructor and students to work together to reach competency. To this end, the instructor needs to reduce the number of experiments for a semester, and carefully select and design the key experiments to maximally benefit students in terms of skill learning, critical thinking, and problem solving. Furthermore, group size should be kept small (e.g., less than 3 students per group) to maximize interactive learning if independent experimentation by individuals is not an option. Such a requirement can be met either by increasing TA support or reducing class size.

 

 

Zhiyong Cheng is an Assistant Professor of Nutritional Science at the Food Science and Human Nutrition Department, University of Florida’s Institute of Food and Agricultural Sciences (UF/IFAS). Dr. Cheng received his PhD in Analytical Biochemistry from Peking University. After completing his postdoctoral training at the University of Michigan (Ann Arbor) and Harvard Medical School, Dr. Cheng joined Virginia Tech as a faculty member, and recently he relocated to the University of Florida. Dr. Cheng has taught Nutrition and Metabolism, with a focus on substrate absorption, transport, and metabolism. As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively participating in undergraduate and graduate research training.
The Large Lecture: Minor Adjustments, Major Impacts

Large lecture courses are hard, for both students and faculty alike, and while an exhaustive body of Scholarship of Teaching & Learning (SOTL) research boasts benefits of smaller classes (Cuseo, 2007), budgetary and a myriad of other restrictions leave many higher education institutions with few options for reducing class sizes.  Accordingly, many instructors are forced to figure out a way to best serve our students in this unideal setting.

Three years ago, in my first year as a full time faculty member, I found myself teaching one of these large lecture classes.  There were ~250 students, split across two sections, piled into an outdated auditorium.   The setting was intimidating for me, and if one thing was certain, it was that however intimidated I felt, my students felt it even harder (and as an aside, three years later, I still find myself, at times, intimidated by this space).  So, in a high-stakes, pre-requisite course like Anatomy & Physiology that is content-heavy and, by nature, inherently intense, what can be done in a large lecture hall to ease the tension and improve student learning?

When looking to the SOTL research for evidence-based recommendations on student engagement and active learning ideas in high-enrollment courses such as mine, I quickly became overwhelmed with possibilities (not unlike a kid in a candy store).  Before I knew it, finding meaningful ways to reshape my class in the best interest of the student became defeating – how was I supposed to overhaul my course to integrate best-practice pedagogy while still juggling the rest of my faculty responsibilities?

Thankfully, last year a colleague introduced me to a book, Small Teaching: Everyday Lessons from the Science of Learning, by James Lang.  Admittedly – I still have not finished this book (rest assured – I am currently in a book club studying this book, so I WILL finish it!); that being said, Lang’s powerful message about the significance of small changes resonated with me pretty early on in the text.  Minor, thoughtful adjustments to the daily classroom routine are capable of eliciting substantial impacts on student learning.  In other words, I did not need to reinvent the wheel to better serve my students; instead, I set a goal for myself to try out one or two small, reasonable adjustments per semester.  While I am still navigating best-practice teaching and experience a healthy dose of trial-and-error, here is what I have found useful thus far:

 

1. Learning names. This is perhaps the most straightforward, obvious classroom goal, but when you have a large number of students, something as simple as learning student names can quickly slip through the cracks.  Now, I appreciate that implementing this goal takes considerable time and intention, and depending on the structure of your high-enrollment course, it may or may not be feasible.  In my course, for example, it is a two-part series, which means I have the same students for an entire academic year rather than one semester.  Moreover, in addition to lecture, I have all of my students in smaller lab sections.  Accordingly, I have plenty of opportunity to interact with students and pay attention to names.

From a purely anecdotal observation, if and when a student musters up the courage to ask a question in the large auditorium, addressing them by name appears to increase the likelihood of the student asking again.  Moreover, it seems to have an impact on other students in the classroom, too; anecdotally, I have noticed in lectures where I address student questions using student names, the number of different students asking questions appears to increase.  Overall, addressing students by name seems to communicate a message that students in our classrooms are not simply a body in a seat or a number in the system, but they are a member of a learning community.

2. Finding an inclusive platform for voicing questions. Despite reaching a point in the academic year where everyone knows each other by name, some students will never feel comfortable enough raising their hand to ask questions in the big lecture hall. Knowing this, along with the notion that student confusion rarely exist in isolation, this semester I made it a point to explore alternative platforms for asking questions during lecture.  Cue in the Google Doc: this handy, online word-processing tool gave me a platform for monitoring student questions in real time during lecture.  On the logistical end, it is worth noting that I have a TA monitoring our Google Doc during lecture, so that when a stream of questions comes through, common themes in questions are consolidated into one or two questions.  A few times during the lecture, I will check in with our TA and address questions.  It is also worth mentioning that the document has been set up such that student names are linked to their comments; this was implemented as a measure to keep comments appropriate and on track.  So far, this has turned out to be a great platform, not only for students asking lecture questions in real time, but also for facilitating some really great discussion amongst students.

 

3. Holding students accountable for in-class activities.  I quickly realized in my large lecture class that students were generally unmotivated to participate in any in-class activity unless I collected it and assigned points (which, by the way, can be a logistical nightmare with 250 students).  Yet, as I learned in Making it Stick: The Successful Science of Learning, by Brown, Roediger, and McDaniel (a previous book club endeavor of mine), engaging students in activities like 5 minute recall exercises is widely supported as an effective tool for long-term learning and retention.  So, I decided to piggy back off my previous idea of the Q&A Google Doc, and open up an entire classroom folder where, in addition to our Q&A doc, students had daily folders for submitting in-class activities (again, in real time).  As of now, the way that it works is as follows: upon completing the short recall exercise, or other in-class activity, students will snap a photo of their work and upload it to our Google drive.  Then, I choose a piece of student work to display as we review the activity prompt, which has proven to be a great method for maintaining student accountability (I disclosed to the students that I will randomly choose a few days in the semester to award extra credit for those who submitted during class).  Additionally, this provides quick feedback to me (in real time) regarding student comprehension and common misunderstandings; in fact, I will occasionally choose to review a student submission that represents a common mistake to highlight and address a common problem area.

In summary, implementing these small changes has offered realistic approaches to improving my students’ experience and creating community in an otherwise challenging setting: the large lecture.  While I retain other long-term teaching goals that require more of a time commitment, Lang’s sentiment that small ≠ insignificant provides a solid ground for improvement in the present.

References:

Brown, PC, Roediger, HL, and McDaniel, MA (2014). Making it Stick: The Successful Science of Learning.  Cambridge, MA: Harvard University Press.

Cuseo, Joe. (2007). The empirical case against large class size: Adverse effects on the teaching, learning, and retention of first-year students. Journal of Faculty Development: 21.

Lang, James (2016).  Small Teaching: Everyday Lessons from the Science of Learning. San Francisco, CA: Jossey-Bass.

 

Amber Schlater earned her B.S. from the University of Pittsburgh in Biological Sciences, and her M.S. and Ph.D. from Colorado State University in Zoology; she also completed a two-year post-doctoral fellowship at McMaster University.  Currently, Amber is an Assistant Professor in the Biology Department at The College of Saint Scholastica in beautiful Duluth, MN, where she teaches Human Anatomy & Physiology, Super Physiology (a comparative physiology course), and mentors undergraduate research students.  Outside of work, Amber enjoys hiking, biking, camping, canoeing, and doing just about anything she can outside with her family.
It was Just a Bag of Candy, but Now It’s a Lung – Don’t Be Afraid to Improvise When Teaching Physiology

Many of us have been teaching the same course or the same topic in a team-taught course for many years.  I have been teaching the undergraduate Anatomy and Physiology-II (AP-II) course at a community college for four years.  People often ask, “Doesn’t it get old?  Don’t you get bored, teaching the same topic?”  Without hesitation, I answer, “No.” Why?  First, on-going research continually brings new details and insight to nearly every aspect of cell and integrative physiology.  You’re always learning to keep up with the field and modifying lectures to incorporate new concepts.  Second, you truly want your students to learn and enjoy learning and continually seek out ways to teach more effectively.  You try new approaches to improve student learning.  However, the third reason is truly why teaching physiology will never get old or dull.  No two students and no two classes are alike; individual and collective personalities, career goals, academic backgrounds and preparedness, and learning curves vary from class to class.  About half my students have not taken the general biology or chemistry courses typically required for AP-I or AP-II (these are not required by the college).  The unique combination of characteristics in each group of students means that on any given day I will need to create a new makeshift model or a new analogy for a physiological mechanism or structure-function relationship to help students learn.  Thus, even if all physiological research came to complete fruition, the teaching of physiology would still be challenging, interesting, and entertaining.  Many of my peers share this perspective on teaching physiology.

Irrespective of one’s mastery of integrative physiology, as teachers we must be ready and willing to think creatively on our feet to answer questions or clarify points of confusion.  A common mistake in teaching is to interpret the lack of questions to mean our students have mastered the concept we just explained, such as the oxygen-hemoglobin dissociation curve.  Despite the amazing color-coding of green for pH 7.35, red for pH 7.0 and blue for pH 7.5 and perfectly spaced lines drawn on that PowerPoint slide, your Ms./Mr. Congeniality level of enthusiasm, and sincerest intentions – you lost them at “The relationship of oxygen saturation of hemoglobin to the partial pressure of oxygen is curvilinear.”  You know you lost them.  You can see it in their faces.  The facial expression varies: a forehead so furrowed the left and right eyebrows nearly touch, the cringing-in-pain look, the blank almost flat stare, or my favorite – the bug-eyed look of shock.  Unfortunately, it will not always be obvious.  Thus, it is essential we make an effort to become familiar with the class as a group and as individuals, no matter how large the class.  Being familiar with their baseline demeanor and sense of humor is a good start.  (I have students complete ‘Tell Me About Yourself’ cards on the first day of class; these help me a great deal.)  During lecture, we make continual and deliberate eye contact with the students and read their faces as we lecture and talk to them, rather than at them.  In lab we work with and talk to each group of students and even eavesdrop as a means to assess learning.  Time in class or lab is limited, which tempts us to overlook looks of confusion and move on to the next point.  However, when students do not accurately and confidently understand a fundamental concept, they may have even greater difficulty understanding more integrated and complicated mechanisms.  You must recognize non-verbal, as well as subtle verbal cues that students are not following your logic or explanation.  In that immediate moment you must develop and deliver an alternative explanation.  Improvise.

As per Merriam-Webster, to improvise is to compose, recite, play, or sing extemporaneously; to make, invent, or arrange offhand; to fabricate out of what is conveniently on hand.  What do you have on hand right now to create or develop a new explanation or analogy?  Work with what you have within the confines of the classroom.  These resources can be items within arm’s reach, anything you can see or refer to in the classroom.  You can also use stories or anecdotes from your own life.  Reference a TV commercial, TV show, movie, song, or cartoon character that is familiar to both you and your students.  Food, sports, and monetary issues can be great sources for ideas.  I cook and sew, which gives me additional ideas and skills.  Play to your strengths.  Some people are the MacGyvers of teaching; improvisation seems to be a natural born gift.  However, we all have the basic ability to improvise.  You know your topic; you are the expert in the room.  Tap into your creativity and imagination; let your students see your goofy side.  Also, as you improvise and implement familiar, everyday things to model or explain physiological or structure-function relationships you teach your students to think outside the box.  Students learn by example.  My own undergraduate and graduate professors improvised frequently.  My PhD and post-doc advisors were comparative physiologists – true masters of improvised instrumentation.

Improvise now, and improve later.  Some of my improvised explanations and demonstrations have worked; some have fallen flat.  In some cases I have taken the initial improvised teaching tool and improved the prototype and now regularly use the demonstration to teach that physiological concept.  Here are three examples of improvisational analogies I have used for the anatomy of circular folds in the intestine, the opening and closing of valves in the heart, and the role of alveoli in pulmonary gas exchange.  Disclaimer:  These are not perfect analogies and I welcome comments.

Surface area in the small intestine.  Students understand that the surface area of a large flat lab table is greater than the surface area of a flat sheet of notebook paper.  A sheet of paper can be rolled into a tube, and students understand that the surface area of the ‘lumen’ is equal to the surface area of the paper.  In AP-I, students learned that microvilli increase the surface area of the plasma membrane at the apical pole of an epithelial cell, and many teachers use the ‘shag carpet’ analogy for microvilli.  Similarly, they understood how villi increase surface area of the intestinal lumen.  However, some students did not quite understand or cannot envision the structure of circular folds.  As luck would have it, I was wearing that style of knit shirt with extra-long sleeves that extend just to your fingertips.  I fully extended the sleeve and began to explain. “My sleeve is the small intestine – a tube with a flat-surface lumen (my arm is in the lumen) – no circular folds.  This tube is 28 inches long and about 8 inches around.  As I push up my sleeves as far as I can, and the fabric bunches up.  These messy folds that form are like circular folds.  And, now this 6 inch tube with all these circular folds has the same surface area as the 28-inch plain tube.”  (I sew; I know the length of my own arm and am great at eyeballing measurements.)

Heart valves open and close as dictated by the pressure difference across the valve.  This is integral to ventricular filling, ejection of blood into the lung and aorta, and the effect of afterload.  Heart valves are one-way valves.  A few students heard ‘pressure difference’ and were lost.  Other students had trouble understanding how stroke volume would decrease with an increase in afterload.  What can I use in the room?  There’s a big door to the lab, and it has a window.  It opens in one direction – out, because of the doorframe, hinges and door closure mechanism; it only opens, if you push hard enough.  I ran over to the door.  “The lab door is a heart valve.  It’s the mitral valve, the lab is the atrium, and the hallway is the ventricle.  The door only opens into the hall – the mitral valve only opens into the ventricle.  When it closes, it stops once it sits in the frame.”  I asked a student about my size to go outside the room, and push against the door closed – but let me open it; she could see and hear me through the window.  “As long as I push with greater force than she applies to keep it shut, the door or valve will open.”  The student played along and made it challenging, but let me open the door.  ‘Blood flows from the atrium into the ventricle, as long as the valve is open.  But, as soon as the pressure in the ventricle is greater than the pressure in the atrium the valve closes.”  The student forcefully pushed the door shut.  They got it!  Now, afterload …?  Back to the lab door.  “Now the lab door is the aortic valve, the lab is the left ventricle, and the hall is the aorta.  This valve will open and stay open as long as the pressure in the ventricle is greater than the pressure in the aorta.  The longer the valve is open, the greater the volume of blood ejected from the ventricle.  The volume of blood ejected from the ventricle in one beat is the stroke volume.  The pressure that opposes the opening of the aortic valve is afterload.  What happens with afterload?”  I then asked the tallest, strongest student in class to play the role of Afterload; he too got into the role.  “Afterload has now increased!  The pressure that opposes the opening of the valve has increased.  Will I or won’t I have to push harder to open the door – now that afterload has increased?”  The student is very strong; I can barely push the door open.  “I not only have to push harder, but I can’t keep the door or valve open for very long.  Look.  Even though the ventricle pressure is greater, the valve is open for a shorter period – so less blood is ejected and stroke volume decreases.”

Alveoli increase the surface area for gas exchange.  Students see the lungs as 2 large sacs, and the surface area available for gas exchange between air and blood is simply the inner lining of each sac.  However, each lung is made of millions of tiny air sacs or alveoli into which air flows.  How this anatomical arrangement greatly increases surface area for gas exchange is not intuitively obvious.  The overall size of the lung does not increase, so why would the surface area increase?  As luck would have it, it was Halloween.  I had brought a big bonus bag of individually wrapped bite-size candies to class.  “One lung is like this bag.  If we cut open the bag and measure the sheet of plastic, it would be about 18 inches by 12 inches or 216 square inches.  But if we completely fill it with candy, it might hold at least 150 pieces of candy.”  I quickly unwrapped one piece of candy, held up the wrapper, and estimated a single wrapper was 4 square inches.  “If we fill one bag with 150 pieces of candy, we then have 600 square inches of surface area.  Which would provide greater area for gas exchange: one big lung or millions of alveoli?”  I revised this particular improvised explanation using scissors, a ruler and two 11-oz bags of Hershey’s® kisses.  I carefully opened both bags and transferred kisses from one bag to the other, until it was completely full, i.e., 112 kisses, and taped it shut.  I then fully opened up the other bag; it was 10 inches x 8 inches or 80 square inches.  An individual kiss wrapper is 4 square inches; all 112 individual wrappers are 448 square inches.

My improvised analogies are not perfect, but they have served as great teaching tools.  If you can improve upon these, please do.  Share any suggestions you have and lastly, share your improvised explanations and analogies.  Thanks.

Alice Villalobos received her B.S.in biology from Loyola Marymount University and her PhD in comparative physiology from the University of Arizona-College of Medicine.  She has been in the Department of Biology at Blinn College for 4 years where she teaches Anatomy and Physiology II and Introduction to Human Nutrition.  She guest lectures in undergraduate courses at Texas A&M University on the topics of brain barrier physiology and the toxicity of heavy metals.
My First Run at Teaching an Integrated Physiology Course: Lessons Learned

One of the primary factors that attracted me to my current position, a tenure-track Assistant Professor of Biology at a small teaching-intensive liberal arts college, was the fact that my new department gave me the freedom to update and, in the end, completely overhaul the existing Anatomy and Physiology (A&P) curriculum. This position allowed great academic freedom, especially to a new professor, and department support for trying new teaching strategies and activities was, and still is, very high. So as a new entrant into the field of physiology education, and as someone who is interested in pedagogical research, this opportunity and level of freedom excited me.

My predecessor, while a fantastic educator, had built the year-long A&P sequence in the traditional form of one to two weeks on a specific topic (e.g. histology, the skeletal system, or the respiratory system) and an exam every so often that combined the previously covered topics. Both the topics covered and the exams could very much stand on their own, and were more like separate units. This course design was exactly the way I took the A&P course, longer ago than I care to admit, although at a different institution. In fact, most of my college courses were taught this way. And while that may be appropriate for some fields, the more I was reading and learning about teaching A&P the more I was starting to convince myself that I wanted teach A&P in an integrated fashion as soon as I got the chance.

So here I was, the bright-eyed and bushy-tailed newly minted Assistant Professor of Biology, with the academic freedom to teach A&P in the best way that I saw fit. One important thing to note: this course sequence (A&P I and II) is an upper-division junior and senior level course at my college, and class sizes are very small (20-24 students) allowing for maximum time for interaction, questions, and instructor guidance both in lecture and lab. (That latter point is key, but we’ll talk more about that in a minute.)

I entered the 2017-2018 academic year with a brand-new, shiny, exciting, and most importantly, integrated A&P course plan and a lot of enthusiasm. Along the way I took meticulous notes on what worked, what didn’t work, and the areas that needed improvement. Now in the 2018-2019 academic year I’m teaching this integrated course sequence for the second time, all while taking those same meticulous notes and comparing student feedback. Below I’ve compiled what I deem (so far) to be some of the most important lessons that I learned along the way:

 1) Use an integrative textbook.

This I was fortunate to do from the start. While this is an A&P course (not just P), I decided to use Physiology: An Integrated Approach by Dee U. Silverthorn as my primary text. Not only is the book already designed to be used in an integrative fashion, but there is ample introductory material which can be used to remind students of previous course material that they need to know (see lesson #2 below) and there are entire chapters dedicated to the integration of multiple systems (e.g. exercise). The assessment questions in the text are also well organized and progressive in nature and can be assigned as homework for practice or pre-reading assignments. Anatomy information, such as the specifics of the skeletal system and joints, muscles, histology, etc., was supplemented through the use of models and other reference material in hands-on lab activities.

2) Start building and assessing students’ A&P knowledge from the ground up, and build incrementally.

There are two important parts to this lesson: A) previous course knowledge that is applicable to this upper-division A&P course, and B) the new A&P material itself.

In my initial run of the course I made the mistake of starting out at a bit too advanced of a content level. I assumed more knowledge was retained from previous courses by the students than actually was. I learned very quickly that I needed to take a step back, but not too far. Instead of re-teaching introductory chemistry, biology, and physics, I took the opportunity to remind them of the relevant key principles (e.g. law of mass action) and then pointed them to pages in the text or provide additional material where they could review.

I applied this same philosophy as we progressed through new material. Lower-order Bloom’s principles should be assessed and mastered first, before progressing to the higher-order skills for each new section. In my second iteration of the course I implemented low-stakes (completion-based grade) homework assignments to be completed before the class or lab period, which were aimed to get a head-start on the lower-order skills. Then in class we reviewed these questions within the lecture or lab and added on with more advanced questions and/or activities. This format of pre-class homework was very well received by the students, and even though it is more work for them, they said that it encouraged them to keep up with the reading and stay-on track in the class. As the class progressed, I added in more advanced homework problems that integrated material from previous chapters. Obviously, if you are going to teach in an integrated fashion then you will need to assess the students in the same way, but a slow-build up to that level and ample low-stakes practice is key.

3) Create a detailed course outline, and then be prepared to change it.

This lesson holds true for just about any course, but I found it especially true for an integrated A&P course. As an instructor, not only did I need to be well versed in A&P, but I also needed to see the big picture and connect concepts and ideas both during the initial course construction and as the course progressed. I went into the course with an idea of what I wanted (and needed) to cover and during the course students helped guide what topics they struggled with and/or what they wanted to learn more about. So while still sticking to covering the basics of a course, I was still able to dive a bit deeper into other topics (such as exercise) per student interest. This also helped boost motivation for student learning when they feel they have some agency in the material.

Another aspect of the lesson is the addition of what I call “flex days”. Students will find this style of teaching and learning challenging and some will need more time and practice with the material. I found it very helpful to add in a “flex day” within each unit where no new material was covered, but instead time was dedicated to answering questions and additional practice with the concepts. If a full class day can’t be dedicated, even 30 minutes can be put to great use and the students really appreciate the extra time and practice.

 

4) Constantly remind your students of the new course format.

Students will want to revert back to what they are comfortable with and what has worked for them in the past. They will forget that information needs to be retained and applied later in the course. I found that I needed to constantly remind students that their “cram and forget” method will not serve them well in this course. But, simply telling them is not enough, so I allowed for practice problems both in and outside of class that revisited “older” material and prepared them for the unit exams with integrative questions which combined information from different chapters. I even listed the textbook chapters at the end of the question so that they would know where to find the material if needed.

Along with this, I found that tying material back to central themes in physiology (e.g. structure-function, homeostasis, etc.) also helped the students connect material. I am fortunate that the entry level biology courses at this college teach using the Vision and Change terminology, so the basic themes are not new to them, making integration at least on that level a bit more approachable.

 

5) Solicit student feedback.

Students love to be heard and they love to know that their input matters. And in the design of a new course I want to know what is working and what is not. I may think something is working, but the students may think otherwise. Blank notecards are my best friend in this instance. I simply have a stack at the side of the room and students can or cannot fill them out and drop them in a box. I often ask a specific question and solicit their input after an activity or particularly challenging topic. Of course, the second part of this step is actually reading and taking their input seriously. I’ve often made some last minute changes or revisited some material based on anonymous student feedback, which also ties back to lesson #3.

 

6) Be prepared to spend a lot of time with students outside of the classroom.

Some students are great about speaking up in class and asking questions. Other students are more comfortable asking questions outside of class time. And of course, I found that students of both flavors will think that they know a particular concept, and then find out, usually on an exam, that they do not (but that is probably not unique to an integrative course). So, after the first exam I reached out to every student inviting them to meet with me one-on-one. In these meetings we went through not only the details of the exam, but study skills. Every student needed to be reminded and encouraged to study a little bit every day or at least every other day to maximize retention and success. This also helped create an open-door policy with students who needed and wanted more assistance, increasing their comfort level with coming to office hours and asking for help.

 

As you may have inferred, teaching this type of course takes a lot of time. I’ll be honest and say that I wasn’t necessarily mentally or physically prepared for the amount of time it took to design and run this course, especially in my first year of teaching, but I made it work and I learned a lot. During this process I often discussed course ideas with department colleagues and A&P instructors at other universities. I perused valuable online resources (such as LifeSciTRC.org and the PECOP Blog) for inspiration and guidance. I also found that I spent a lot of time reflecting on just about every lecture, activity, and lab to ensure that the content connections were accurate, applicable, and obtainable by the students. And while I know that the course still has a ways to go, I am confident in the solid foundation I have laid for a real integrative A&P course. And, just as I am doing now with its second iteration, each run will be modified and improved as needed to maximize student learning and success, and that is what makes me even more excited!

Now I turn the conversation over to the MANY seasoned educators that read this blog. Do you have experience designing and teaching an integrated A&P course? What advice do you have for those, like me, that are just starting this journey? Please share!

Jennifer Ann Stokes is an Assistant Professor of Biology at Centenary College in Shreveport, LA. She received her PhD in Biomedical Sciences from the University of California, San Diego (UCSD). Following a Postdoctoral Fellowship in respiratory physiology at UCSD, Jennifer spent a year at Beloit College (Beloit, WI) as a Visiting Assistant Professor of Biology to expand her teaching background and pursue a teaching career at a primarily undergraduate university. Now at Centenary College, Jennifer teaches Human Anatomy and Physiology I and II (using an integrative approach), Nutritional Physiology, Medical Terminology, and Psychopharmacology. Jennifer is also actively engaged with undergraduates in basic science research (www.stokeslab.com) and in her free time enjoys cycling, hiking, and yoga.
Teaching for Learning: The Evolution of a Teaching Assistant

An average medical student, like myself, would agree that our first year in medical school is fundamentally different from our last, but not in the ways most of us would expect. Most of us find out that medical school not only teaches us about medicine but it also indirectly teaches us how to learn. But what did it take? What is different now that we didn’t do back in the first year? If it comes to choosing one step of the road, being a teaching assistant could be a turning point for the perception of medical education in the long run, as it offers a glimpse into teaching for someone who is still a student.

At first, tutoring a group of students might seem like a simple task if it is only understood as a role for giving advice about how to get good grades or how to not fail. However, having the opportunity to grade students’ activities and even listen to their questions provides a second chance at trying to solve one’s own obstacles as a medical student. A very interesting element is that most students refuse to utilize innovative ways of teaching or any method that doesn’t involve the passive transmission of content from speaker to audience. There could be many reasons, including insecurity, for this feeling of superficial review of content or laziness, as it happened for me.

There are, in fact, many educational models that attempt to objectively describe the effects of educating and being educated as active processes. Kirkpatrick’s model is a four-stage approach which proposes the evaluation of specific aspects in the general learning outcome instead of the process as a whole (1). It was initially developed for business training and each level addresses elements of the educational outcome, as follows:

  • Level 1- Reaction: How did learners feel about the learning experience? Did they enjoy it?
  • Level 2- Learning: Did learners improve their knowledge and skills?
  • Level 3- Behavior: Are learners doing anything different as a result of training?
  • Level 4- Results: What was the result of training on the business as a whole?

Later, subtypes for level 2 and 4 were added for inter-professional use, allowing its application in broader contexts like medicine, and different versions of it have been endorsed by the Best Evidence in Medical Education Group and the Royal College of Physicians and Surgeons of Canada (1) (2).  A modified model for medical students who have become teachers has also been adapted (3), grading outcomes in phases that very closely reflect the experience of being a teaching assistant. The main difference is the inclusion of attitude changes towards the learning process and the effect on patients as a final outcome for medical education. The need for integration, association and good problem-solving skills are more likely to correspond to levels 3 and 4 of Kirkpatrick’s model because they overcome traditional study methods and call for better ways of approaching and organizing knowledge.

Diagram 1- Modified Kirkpatrick’s model for grading educational outcomes of medical student teachers, adapted from (3)

These modifications at multiple levels allow for personal learning to become a tool for supporting another student’s process. By working as a teaching assistant, I have learned to use other ways of studying and understanding complex topics, as well as strategies to deal with a great amount of information. These methods include active and regular training in memorization, deep analysis of performance in exams and schematization for subjects like Pharmacology, for which I have received some training, too.

I am now aware of the complexity of education based on the little but valuable experience I have acquired until now as a teacher in progress. I have had the privilege to help teach other students based on my own experiences. Therefore, the role of a teaching assistant should be understood as a feedback process for both students and student-teachers with a high impact on educational outcomes, providing a new approach for training with student-teaching as a mainstay in medical curricula.

References

  1. Roland D. Proposal of a linear rather than hierarchical evaluation of educational initiatives: the 7Is framework. Journal of Educational Evaluation for Health Professions. 2015;12:35.
  2. Steinert Y, Mann K, Anderson B, Barnett B, Centeno A, Naismith L et al. A systematic review of faculty development initiatives designed to enhance teaching effectiveness: A 10-year update: BEME Guide No. 40. Medical Teacher. 2016;38(8):769-786.
  3. Hill A, Yu, Wilson, Hawken, Singh, Lemanu. Medical students-as-teachers: a systematic review of peer-assisted teaching during medical school. Advances in Medical Education and Practice. 2011;:157.

The idea for this blog was suggested by Ricardo A. Pena Silva M.D., Ph.D. who provided guidance to Maria Alejandra on the writing of this entry.

María Alejandra is a last year medical student at the Universidad de Los Andes, School of Medicine in Bogota, Colombia, where she is has been a teaching assistant for the physiology and pharmacology courses for second-year medical students. Her academic interests are in medical education, particularly in biomedical sciences.  She is interested in pursuing a medical residency in Anesthesiology. Outside medical school, she likes running and enjoys literature as well as writing on multiple topics of personal interest.
Stress and adaptation to curricular changes

 

 

 

…there was a teacher interested in enhancing the learning process of his students. He wanted to see them develop skills beyond routine memorization. With the support of colleagues and the education team at his university, he succeeded and chose a semi-flipped classroom approach that allowed him to introduce novel curricular changes that did not generate much resistance on the part of the students.

The change was made. The students apparently benefited from the course. They worked in groups and learned cooperatively and collaboratively. Students evaluated peers and learned to improve their own work in the process. They not only learned the topics of the class, but also improved their communication skills.

At some point the institution asked the teacher to teach another course. He happily did so, and based on his experience introduced some of the changes of his semi-flipped classroom into the new course. The students in this course were slightly younger and had not been exposed to education in biomedical sciences. To the teacher’s surprise, the students showed a lot of resistance to change. The sessions moved slowly, the test scores were not all that good, and students did not reach the expected outcomes. It was clear that the teacher and the students were going through a period of considerable stress, while adapting to the new model. Students and teachers worked hard but the results did not improve at the expected rate.

Some time ago this was my experience and as I wandered looking for solutions, I started to question the benefits of active learning and the role of stress in educational practice.

Advantages and challenges of active learning

Evidence says that active learning significantly improves student outcomes (higher grades and lower failure rates) and may also promote critical thinking and high level cognitive skills (1, 2). These are essential components of a curriculum that attempts to promote professionalism. However, it may be quite problematic to introduce active learning in settings in which professors and students are used to traditional/passive learning (2).

Some of the biggest challenges for teachers are the following:

  • To learn about backward design of educational activities
  • To think carefully about the expected accomplishments of students
  • To find an efficient way to evaluate student learning
  • To spend the time finding the best strategies for teaching, guiding, and evaluating students.
  • To recognize their limitations. For example, it is possible that despite their expertise, some teachers cannot answer the students’ questions. This is not necessarily bad; in fact, these circumstances should motivate teachers to seek alternatives to clarify the doubts of students. At this point, teachers become role models of professionals who seek to learn continuously.
  • To learn about innovations and disruptive technologies that can improve the teacher role.

Some of the challenges for students include:

  • Understanding their leading role in the learning process
  • Working hard but efficiently to acquire complex skills
  • Reflecting on the effectiveness of their learning methods (metacognition). Usually reading is not enough to learn, and students should look for ways to actively process the information.
  • Trusting (critically) on the methods made available by the teachers to guide their learning. For example, some tasks may seem simple or too complex, but teachers have the experience to choose the right methodology. A work from our team showed that strategies that seem very simple for the student (clay modeling) have a favorable impact on learning outcomes (3).
  • Seeking timely advice and support from teachers, tutors and mentors.

Working to overcome these challenges may generate a high level of stress on students and teachers. Without emphasizing that stress is a desirable trait, I do find that some disturbance in the traditional learning process and risk taking motivate teachers and students to improve their methods.

Intermediate disturbance hypothesis and stress in education

In the twentieth century, the work of Joseph H. Connell became famous for describing factors associated with the diversity of species in an ecosystem (4). Some of his observations were presented in Charles Duhigg’s book “Smarter Faster Better” which discusses circumstances related to effective teamwork (5). Duhigg reports that Connell, a biologist, found that in corals and forests there might be patches where species diversity increases markedly. Curiously, these patches appear after a disturbance in the ecosystem. For example, trees falling in a forest can facilitate the access of light to surface plants and allow the growth of species that otherwise could not survive (5). Connell’s work suggests that species diversity increases under circumstances that cause intermediate stress in the ecosystem. In situations of low stress, one species can become dominant and eradicate other species, whereas in situations of high stress, even the strongest species may not survive. But if, an intermediate stress where to appear, not very strong and not very weak, the diversity of species in an ecosystem could flourish.

I propose that the hypothesis of the intermediate disturbance can also be applied in education. In traditional learning, an individual (ecosystem) learns to react to the challenges presented and develops a method for passing a course. In situations of low stress, memorization (evaluated at the lower levels of Miller´s pyramid) may be enough to pass a course. In high stress level situations, students may drop out or feel inadequate. However, courses that involve active learning may include moderate challenges (intermediate disturbance). These well-managed challenges can motivate the student to develop more complex skills (diversity of species) that lead to effective learning and a broader professional development.

 

 

 

 

 

 

 

 

 

Figure 1. Intermediate disturbance hypothesis in education.

 

In the book “Problem-based learning, how to gain the most from PBL”, Donald Woods describes the challenges and stresses associated with the incorporation of active learning (PBL) in a curriculum (6). He describes the stages of grief that a student (and I add, a teacher) must go through while adapting to the new system. This adaptation can take months and generally is characterized by the following phases:

  • Shock
  • Denial
  • Strong emotion (including depression, panic and anger)
  • Resistance to change
  • Acceptance and resignation to change
  • Struggle to advance in the process
  • Perception of improvement in the expected performance
  • Incorporation of new habits and skills to professional practice

 

 

 

 

 

 

 

 

 

Figure 2. Performance adjustment after curricular changes. Adapted and modified from (6).

 

Properly managing stress and finding strategies to advance in the process are rewarded by achieving better performance once the students become familiar with the new method of active learning. However, to better adapt to curricular or pedagogical changes, it is important for all the education actors to recognize the importance of deliberate work and to have clear goals. In addition, students and teachers should have access to institutional strategies to promote effective time, and anger and frustration management.

Stress is not ideal, but some stress may motivate students and teachers to reevaluate their methods and ultimately work together for a classroom focused on professional excellence. The critical question is how big is the intermediate disturbance needed to improve learning outcomes. As is commonly concluded in papers, more research is needed to answer this question, and we can learn a lot from the theories and methods from our colleagues in Biology.

References

  1. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et al. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci U S A. 2014;111(23):8410-5.
  2. Michael J. Where’s the evidence that active learning works? Adv Physiol Educ. 2006;30(4):159-67.
  3. Akle V, Pena-Silva RA, Valencia DM, Rincon-Perez CW. Validation of clay modeling as a learning tool for the periventricular structures of the human brain. Anat Sci Educ. 2017.
  4. Connell JH. Diversity in Tropical Rain Forests and Coral Reefs. Science. 1978;199(4335):1302-10.
  5. Duhigg C. Smarter Faster Better: Random House; 2016.
  6. Woods DR. Problem Based Learning: How to gain the most from PBL. 2nd. ed1997.
Ricardo A. Peña-Silva M.D., PhD is an associate professor at the Universidad de los Andes, School of Medicine in Bogota, Colombia, where he is the coordinator of the physiology and pharmacology courses for second-year medical students. He received his doctorate in Pharmacology from The University of Iowa in Iowa City. His research interests are in aging, hypertension, cerebrovascular disease and medical education. He works in incorporation and evaluation of educational technology in biomedical education.

He enjoys spending time with his kids. Outside the office he likes running and riding his bicycle in the Colombian mountains.