Category Archives: Activity

Using Google Jamboard for Collaborative Online Learning in Human Physiology

Active and cooperative learning strategies are useful tools for engaging students in the classroom and improving learning (Allen & Tanner, 2005; García-Almeida & Cabrera-Nuez, 2020; Montrezor, 2021). These learning strategies require students to engage with course content by “seeking new information, organizing it in a way that is meaningful, and having the chance to explain it to others” (Allen & Tanner, 2005, p. 262). Both active and cooperative learning emphasize peer interactions and give students opportunities to demonstrate understanding.

The COVID-19 pandemic provided an opportunity for instructors to practice new pedagogies in face to face, hybrid, and remote learning environments. Prior to the pandemic, I often asked students to use the classroom white boards collaboratively to draw diagrams, processes, and outline concepts. Given limitations on face to face interactions in hybrid and remote classes, I used Google’s Jamboard to recreate this in-class experience for a virtual Human Anatomy & Physiology course. Students were Exercise and Health Science majors and minors. The course was offered in 15, three-hour class periods over a four-week course block in spring 2021. The three-hour class periods necessitated a variety of pedagogies to maintain student engagement.

Jamboard is a virtual white board space that can be used collaboratively by sharing a link with others. Before sharing, the link settings must be adjusted to allow any user with the link to edit the Jamboard. Each board can hold up to 20 different frames, or white board spaces, which can be modified by adding figures, text, drawings, and sticky notes. I began the first day of class demonstrating to students how to use Jamboard. We started with a blank frame and I asked students to add “sticky notes” to the board with thoughts about how they would stay engaged with the course during our three-hour meeting time. Students also practiced using various editing tools such as the pen, textbox, and creating shapes. The students and I both found Jamboard very user friendly and easy to navigate.

In subsequent classes, I created specific Jamboard frames prior to class with the outline of an activity or figures. Some frames were created for the class to contribute to collaboratively, similar to a jigsaw format. For example, a picture of a neuron was added to one frame (Figure 1).

Preassigned student groups worked in Zoom breakout rooms to identify one anatomical location and describe its primary function on the neuron. Each group was assigned a different neuron structure and reported back to the class after their group work. During the cardiovascular physiology unit, student groups were each assigned one component of the cardiac cycle on a Wigger’s diagram. Groups worked in Zoom breakout rooms to identify their component of the cycle and write an explanation on the diagram. Groups also collaboratively completed a chart with each group completing one row or column in the chart (Figure 2). Jamboard was also useful for students to order and label steps in a physiological process. In the skeletal muscle unit, students worked in groups to correctly order the steps of muscle contraction. Each group was assigned one picture on the Jamboard frame, groups placed their picture in the correct order and used a textbox or sticky note to describe the picture.

 

 

 

 

 

For other activities, frames were created once and duplicated for each group with the group number noted at the top of the frame. Frames containing concept map instructions or feedback loop skeletons were duplicated for each group. For example, groups worked in Zoom breakout rooms to design a concept map demonstrating the relationships between cell membrane components (Figure 3) or outline a control system for different responses to deviations for homeostasis. During the homeostatic control system activity, each group was assigned a different control system. Groups reported back to the class as a whole and described their work to the class (Figure 4).

 

At the end of the course, students were surveyed about our Jamboard use. Of 17 students, 11 completed the survey. Overall, students indicated that Jamboard was an effective learning (100%, n=11) and group engagement tool (100%, n=11). In open-ended responses, students indicated that Jamboard was most effective for engaging in collaboration and checks for understanding during class. They especially liked that Jamboard helped create an in class feeling and kept them engaged with their class and their group in an interactive way. Even though groups were often labeled on Jamboard (e.g.- one frame labeled “Group 1 Concept Map” or a diagram with a “1” and arrow pointing to a specific area for identification for Group 1), several students remarked that they liked the anonymity provided by Jamboard and the lower perceived pressure to answer correctly. Students listed labeling diagrams (n=10), creating concept maps (n=7), and drawing physiological processes (n=6) as their favorite Jamboard activities. The students also appreciated that the boards were available after class for review. I posted the Jamboard link to our learning management system (Canvas) and students could return to the boards to review after class. 100% (n=11) of student respondents indicated they went back to the Jamboards two or more times after class to review.

From the instructor perspective, Jamboard provided an easy online collaborative tool for teaching physiology. Jamboard was user-friendly, flexible, and easy to set up before or during class. I found that my students were able to sustain engagement during three hours of remote class. The Jamboard group assignments were not graded, but asking student groups to report back to the class was effective motivation for producing quality group work. Challenges associated with Jamboard were consistent with most online activities including student access to a computer and reliable internet. Students occasionally had issues accessing the board anonymously if they were logged into their personal google accounts.

In moving back to face to learning, the Jamboard activities could be easily done on a whiteboard; however, collaborative drawing and annotating diagrams and charts might still be difficult without appropriate projectors or smartboard technology. Additionally, extra steps involved in taking a picture of the white board and uploading the picture to a course webpage may be barriers to making the collaborative work available after class for review. Jamboard could also be used for out of class individual or group assignments such a pre- or post- class assignments or for brainstorming activities. While the class size in the present example is quite small (17 students), use of Jamboard in these ways would be easily adaptable to larger classes and may improve student engagement in large classes (Essop & Beselaar, 2020)

 

Overall, Jamboard was an effective online collaborative tool for teaching and learning human physiology. Jamboard was user-friendly, easy to prepare before class, and kept students engaged with the class and their groups.

 

 

 

 

 

 

 

References

Allen, D., & Tanner, K. (2005). Infusing Active Learning into the Large-enrollment Biology Class: Seven Strategies, from the Simple to Complex. Cell Biology Education, 4(4), 262–268. https://doi.org/10.1187/cbe.05-08-0113

Essop, M. F., & Beselaar, L. (2020). Student response to a cooperative learning element within a large physiology class setting: Lessons learned. Advances in Physiology Education, 44(3), 269–275. https://doi.org/10.1152/advan.00165.2019

García-Almeida, D. J., & Cabrera-Nuez, M. T. (2020). The influence of knowledge recipients’ proactivity on knowledge construction in cooperative learning experiences. Active Learning in Higher Education, 21(1), 79–92. https://doi.org/10.1177/1469787418754569

Montrezor, L. H. (2021). Lectures and collaborative working improves the performance of medical students. Advances in Physiology Education, 45(1), 18–23. https://doi.org/10.1152/advan.00121.2020

Dr. Mary Stenson earned her B.S. in Biology from Niagara University and her M.S. and Ph.D. in Exercise Physiology from Springfield College. She is an Associate Professor of Exercise Science and Sport Studies at the College of Saint Benedict/Saint John’s University in Saint Joseph, Minnesota. Dr. Stenson teaches exercise physiology, research methods, anatomy & physiology, and health & fitness. Her research focuses on recovery from exercises and improving health of college students. Dr. Stenson mentors several undergraduate research students each year and considers teaching and mentoring the most important and fulfilling parts of her work.
Synchronous and asynchronous experiences in Advanced Exercise Physiology Courses: what teaching tools work best for my students?

Covid-19 caught all of us off guard, but educators were hit particularly hard and uniquely. I already have flipped classroom teaching and active learning, so the transition was not too difficult for me. However, I found myself incorporating many technological innovations. Was I doing too much? Which features were helping my students, and which ones were overwhelming? In this blog, I want to share some of the strategies I used with undergraduate students taking Advanced Exercise Physiology synchronously and asynchronously.

 

Additionally, within this blog, I am sharing the student’s perceptions of these technological innovations. In total, fifty-two students enrolled in different sections of “Advanced Exercise Physiology” culminating undergraduate experience (CUE) were invited to participate in a short survey regarding their learning experiences during this current Spring 2021 semester. A total of thirty-nine (n=39) students completed the confidential survey about whether different technological innovations helped them understand the material and study.

Who completed the survey?

Figure 1: Fifty-two students enrolled either in synchronous or asynchronous undergraduate advanced exercise physiology sections were invited to participate, and thirty-nine (n=39) responses were obtained. Seventy-two percent of the responders were enrolled in the asynchronous section, and 27.78% were enrolled in the synchronous section.

 

 

Video assignment for glucose metabolism

 During pre-COVID-19 times, I would teach using active-learning team-based instruction. For the first team-based assignment, student teams were asked to discuss and explain in easy terms one of the most difficult topics for my students: glucose metabolism. For this activity, I would bring Legos, markers of different colors, magnets, and other toys; and students were asked to use the materials and make a video of the complete oxidation of a glucose molecule. This in-class, graded assignment seem to help students to understand the metabolic pathways.  I modified the project due to distance learning, so each student has to create a video using any material desired to explain in simple words (without chemical formulas). This assignment is based on the constructivism theory of learning. It makes it innovative because the students learned that glucose is a six-carbon molecule that has to be fully “broken down” (oxidated) through different stages. Once they understand the steps, they could “name” each step and each enzyme. Some students used coins, Legos, or wrote down the step while explaining the process verbally. Some examples of the submissions can be seen in the links below:

Example submission glycolysis  one and example complete glucose oxidation.

 Students perception on making a video assignment for glucose metabolism

Figure 2: Students’ responses to the question “Having to make the video of metabolism in assignment two helped me understand glucose metabolism.” 71.43% responded true (it was helpful), and 28.57% responded false (it was not helpful)

 

 

 

Incorporation of Virtual Lab Experiences using Visible Body and Lt Kuracloud platforms.

One of the main concerns for me was to maintain and increase engagement while teaching virtually or remotely. I incorporated the Lt Kuracloud, a platform for interactive assignments, immediate feedback, videos, and physiology laboratory experiences in all my courses. I took advantage of the free trial, and I used it for some assignments. I received unsolicited emails from students expressing how helpful they found these assignments.  I also used Visible Body Anatomy and Physiology, which I used for lectures. I recommended it to students as supplemental material and for self-graded quizzes. Visible Body Anatomy and Physiology is available at no cost to students as our Institution’s library obtained the subscription for all the students.

Students’ perceptions: “How helpful do you find the following features? “

Figure 3: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for assignments in Lt Kuracloud was 79.08/100 (sd= 21), and for Visible Body was 74.74/100 (sd= 24)

 

Old Reliable Discussion Board

I recently completed my training on Quality Matters (QM) certification (1), and so my courses follow the rubrics of QM Higher Education General Standards. Specifically, QM Module 1 suggests using an introductory welcoming video encouraging the students to introduce themselves to the class using a video, a meme, a photo, or text. The best, and probably the only feature on Blackboard to do this is the “Discussion Board.” The discussion board is a great feature that allows students to increase participation. After all, students are the biggest consumers of social media, videos, and memes. The Discussion Board should be the closest FERPA approved version of TikTok or Facebook, right? WRONG! It worked fine for the first thread entitled “welcome,” most of the students responded by typing to answer the questions. Nobody made a voice thread, a meme, or a video. Afterward, I encouraged participation on the discussion board by posting questions and suggesting posting questions on the discussion board. After a few “virtual crickets” on Discussion Board, I quit posting questions there and developed interactive lectures with pop-up quizzes. As expected, Discussion Board was not very popular among my students.

Students’ perceptions: “How helpful do you find the discussion board on Blackboard? “

 Figure 4: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for the discussion board was 43.08/100 (sd= 25).

 Interactive pre-recorded lectures

Pre-recorded lectures are integral components of my synchronous and asynchronous course sections. These are developed using the interactive feature in Camtasia, in which I developed animated lectures. Thus, students are asked to watch the lessons and complete short quizzes that provide immediate feedback. If the concept is mastered, the student continues watching. If not, they are redirected to the lecture or part of the lecture where the concept is explained.

 Students’ perceptions: “How helpful do you find the interactive pre-recorded lectures? “

Figure 5: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for interactive pre-recorded lectures was 79.27/100 (sd= 16.8), and for Visible Body was 81.74/100 (sd= 17.8)

 

Quizlet and Quizlet live game

Like many educators worldwide, I teach my students and support their learning throughout our virtual synchronous meetings. Indeed, this is not easy. One day, as I was finishing my class, I heard screams and laughs! My ten-year-old was having so much fun in his most favorite subject. What is going on? I asked, “it was a close one,” my son said, “I got second place.”  It turned out that he was playing a “Quizlet Game.” Quizlet and Quizlet live have been used by teachers and students to reinforce learned material. I decided to try it, and I created a teacher profile to play games during the remote lectures. Every class, I started a Quizlet game; students use their phones or computers to play a race (team and individual). They play a “race” at the beginning of the class and again at the end of the class. This low-risk activity provides me with important information about misconceptions or concepts that are not mastered yet. Students play again towards the end of the class. This simple activity takes 10 minutes of instruction (5 minutes each “race”). However, it has been proven to be both helpful and fun for the students. Quizlet live was used only in my synchronous classes, but the Quizlet study sets were available to both synchronous and asynchronous sections.

I used this with graduate students enrolled in Human Physiology in the previous semester, and it was a hit! Students loved it, and class after class, this became very competitive. Not only were my students very well prepared for class, but also the competition made it so much fun!

Similar to Quizlet are such programs as Kahoot, Brainscape,  and others that are available for free or very affordable options.

Students’ perceptions: “How helpful do you find Quizlet study sets and Quizlet live? “

Figure 6: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for Quizlet sets was 76.86/100 (sd= 24), and for Quizlet live was 68.31/100 (sd= 28). One limitation is that most responders were students in the asynchronous section who did not participate in Quizlet live games.

 

MS Teams meetings and/or virtual office hours

 I chose Microsoft Teams (MS) for my virtual meetings simply because it is widely adopted at my Institution, and I prefer to keep it simple for students. For my synchronous section, I used a flipped virtual model, in which we meet once per week, and the other day they work on their own on assignments. I did this to avoid screen burnout students in the synchronous section. However, I have been happily surprised with students attending remote classes and the various office hours I provide. Yes, I do provide different office hours; very much this semester, I made every space available on my calendar as extra office hours. I realize that for many, meeting online for “virtual office hours” is more accessible to them (and perhaps less intimidating) than attending office hours in my office, as we did pre-pandemic.

Why did I offer so many office hours? First of all, because I could. Since I can’t conduct research studies with humans during the pandemic, it freed some time I had set aside for data collection to teaching.

Additionally, not driving to and from campus saved me an average of 75 minutes per day, which allowed me to have another office hour option. In reality, I did not use all these hours in meetings with students. Many times nobody needed to meet. However, there were a couple of times in which I’d meet with a student who was struggling. Not with the class or the content. But struggling with life, some students had somebody close to them sick or dying; some lost their job or financial aid, some were working exceptionally long hours as essential workers. For some, isolation was too much. One student, in particular, told me recently, “I do not have any questions today; I just needed some social interaction.” Flexible and various virtual office hours seemed beneficial for students, particularly for those in asynchronous e-learning experiences.

Students’ perceptions: “How helpful do you find the MS Teams meetings and virtual office hours? “

 

Figure 7: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for MS Teams and Virtual Office Hours was 75.86/100 (sd= 21).

 

 

 Conclusions

 Like most higher education instructors, I had to adapt quickly and shift to e-learning due to the pandemic. Fortunately, I had already taught online several times before and introduced several components to my flipped courses. However, I still struggled to find more interactive ways to keep my students engaged. Not only educators have to deal with the mental exhaustion of finding pedagogical tools that work in this new scenario when we have not had the time to produce evidence-based successful approaches to teaching remotely. But also, we are teaching distraught students. From the scarce but rapidly growing literature, we know that “our college students are currently struggling to stay hopeful and positive in the wake of the COVID-19 pandemic” (2). When asked about their feelings during the transition to virtual classes, students reported that they felt “uncertain” (59.5%), “anxious” (50.7%), “nervous” (41.2%), and “sad” (37.2%). (3) We have to teach students that are dealing with a lot of negative emotions and stress. We, educators, are also living with many of those emotions. My goal with this blog was to share some of my experiences teaching virtually and provide some ideas for any physiology educator that may need them.

References

Standards from the Quality Matters Higher Education Rubric, Sixth Edition. Quality Matters. Retrieved from Specific Review Standards from the QM Higher Education Rubric, Sixth Edition

  • Munsell, S. E., O’Malley, L. & Mackey, C. (2020). Coping with COVID. Educational Research: Theory and Practice, 31(3), 101-109.
  • Murphy, L., Eduljee, N. B., Croteau, K. College Student Transition to Synchronous Virtual Classes during the COVID-19 Pandemic in Northeastern United States. Pedagogical Research,5(4), em0078. https://doi.org/10.29333/pr/8485
Dr. Terson de Paleville teaches Advanced Exercise Physiology, Neuromuscular Exercise Physiology, and Human Physiology courses. Her research interests include motor control and exercise-induced neuroplasticity. In particular, Dr. Terson de Paleville has investigated the effects of activity-based therapy on respiratory muscles and trunk motor control after spinal cord injury. Additional research project involves the assessment of the effects of exercise training in elementary and middle school students on balance, visual efficiency, motor proficiency, motor control and behavior in the classroom and at home. Dr. Terson de Paleville is interested in elucidating any links between physical activity and academic skills and performance.

 

Motivating students to make the most of group projects

Implementation of group projects in class represents an important pedagogical strategy to engage students in active learning. Specifically, it may promote collaborative learning, problem-based learning, evidence-based learning, team-based learning, and peer instruction. Students may benefit from group projects in different ways, including but not limited to: (1) practicing teamwork skills (e.g., communication, collaboration, interdependence, and accountability), and (2) building problem-solving skills (e.g., reasoning, critical-thinking, knowledge applying, trouble shooting, and concept constructing). As such, implementation of group projects has been increasingly observed in higher education across disciplines including nutritional and metabolic physiology [1-4].

 

However, not all students favor group projects. The common complaints may arise from time commitments and unequal contributions [2]. Some students may prefer to work alone on assignments in which they can easily take control of the pace and spend less time to earn high scores. This view is true in some sense, but students will miss the benefits of collaborative learning, team-based learning, and peer instruction. In general, it takes more time to accomplish a project as a group than as an individual because time is needed to build an effective team. However, the effects or benefits of group projects on student learning are profound, as mentioned above. To be society or career ready, for instance, students are not evaluated by scores alone but also by soft skills such as teamwork, accountability, adaptability, flexibility, and resilience. In terms of contributions, some students may feel short of chances to express themselves because of dominating group members, while others may complain about free riders who take less responsibility in group projects but earn the same scores [2]. The paradoxes can be addressed by motivating students to actively participate in and make the most of group projects.

 

First, let students enjoy the freedom to select topics of interests for their group projects. Interest can significantly motivate students to make efforts exploring evidence for answers. Nevertheless, the project topics proposed by students are by no means random; instead, the themes should fit in with the course content and learning objectives. In order for a project to overarch the interests of a group of students, the instructor may facilitate setting up the groups based on student interests. In addition, the instructor’s guidance is critical for the project initiation, where adjustments are necessary to customize the project question or theme such that it takes into account every member’s interests and learning objectives.

 

Secondly, balance group size to fulfill key roles. Group size affects group dynamics and the performance. Group oversizing increases the difficulty of engaging each member in the discussion or activities within limited time, which results in free riding and unequal contributions. A group size of 3-5 students is considered reasonable; a group size of 2 students may still work, but it lacks the typical group dynamics of assigning and rotating roles. In a 5-student group, the roles can be assigned as a facilitator (to moderate group discussion), a challenger (to raise counter-arguments and alternative explanations), a recorder (to take notes of group discussion), a reporter (to summarize and report the outcome of group discussion), and a timekeeper (to keep the group on track of time and deadlines). For a smaller group, the facilitator may take an additional role of “timekeeper”, and the challenger or recorder may take an additional role of “reporter”. More importantly, role rotation motivates students to play different roles in a group, which can prevent students from dominating in a group discussion or project and eliminate free riding. Role rotation motivates students to put themselves in others’ shoes, which promotes mutual understanding and trust that foster stronger teamwork. To this end, the instructor may direct students to divide a group project into sub-sections such that the key roles can be played by each member of the group via role rotation.

 

Third, have individual contributions weighed for group project grading. It is common that all members earn the same score for a group project. However, having individual contributions weighed for group project grading will motivate students to maximize their talents and potential in solving problems and executing the project. Practically, let students acknowledge or sign their contributions when they submit the assignment, and accordingly, grading rubrics can be designed such that both individual and collective merits of a group assignment are weighted. For instance, an oral presentation can be easily assessed by the relevance, depth, innovation, readiness, and communication skills for each individual portion, and by the overall hypothesis, rationale, logical flow, presentation transitions, and convincingness for the collective merits. This practice may increase the workload on the instructor and teaching assistants, but it significantly boosts the motivation of students to do the best they can for a group project.

 

Lastly, effectively apply anonymous peer evaluation. Group projects demand a variety of outside class efforts and activities, and a generic evaluation or rating of peer contributions would not suffice. Instead, the anonymous peer rating should be specified in detail such as the responsiveness, promptness, the amount of literature contributed, and the performance in discussion, presenting and challenging different viewpoints, and setting and achieving goals. The itemized rating or guide can keep the peer evaluators on track and evaluation straightforward. In addition, it is critical to provide timely evaluation so that students know how they are doing and what to improve, and so they may take prompt actions to improve later group work. If a group project consists of multiple subsections, an anonymous peer evaluation can be installed for each subsection with the average being taken as the final rating. If there is no subsection in a group project, an anonymous peer evaluation can be installed in halfway and at the conclusion of the project, with the average being taken as the final rating. Timely and multiple peer evaluations motivate students to reflect and find effective ways to work together as a group. By contrast, using a single peer evaluation for the group project only tells students about their performance but does not produce the motivation or opportunities to identify and fix issues for improvement.

 

In summary, implementation of group projects in class may benefit student learning in many ways [1-4]. Here I described some practical strategies that motivate students to fully participate and make the most of group projects. These practices may also address concerns raised by students and instructors about unequal contributions or free riding [2].

 

References and further reading

[1] Benishek LE and Lazzara EH. Teams in a New Era: Some Considerations and Implications. Front. Psychol. 2019, 10, 1006. doi: 10.3389/fpsyg.2019.01006

[2] Chang Y, Brickman P. When Group Work Doesn’t Work: Insights from Students. CBE Life Sci Educ. 2018, 17(3), ar42. doi: 10.1187/cbe.17-09-0199.

[3] Rathner JA, Byrne G. The use of team-based, guided inquiry learning to overcome educational disadvantages in learning human physiology: a structural equation model. Adv Physiol Educ. 2014, 38(3), 221-8. doi: 10.1152/advan.00131.2013.

[4] Schmutz JB, Meier LL, Manser T. How effective is teamwork really? The relationship between teamwork and performance in healthcare teams: a systematic review and meta-analysis. BMJ Open 2019, 9, e028280. doi:10.1136/bmjopen-2018-028280

Dr. Zhiyong Cheng received his PhD in Analytical Biochemistry from Peking University, after which he conducted postdoctoral research at the University of Michigan (Ann Arbor) and Harvard Medical School. Dr. Cheng is now an Assistant Professor of Nutritional Science at the University of Florida. He has taught several undergraduate- and graduate-level courses (lectures and lab) in human nutrition and metabolism (including metabolic physiology). As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively developing and implementing new pedagogical approaches to build students’ critical thinking and problem-solving skills.
“Zoom” into data analysis with JupyterLab
Inimary Toby-Ogundeji, PhD
Assistant Professor
University of Dallas

The use of JupyterLab notebook provides a user-friendly method for learning data analysis.  It is easy to work with and also provides a variety of datasets for direct use and case study data discussions.  One example follow-up task that can be used to extend this data analysis activity is performing logistic regression.  An example approach using Firth’s logistic regression method is provided here (https://bit.ly/31gb7vG).  JupyterLab provides a temporary workspace to accomplish basic tasks in R.  One consideration is that it doesn’t maintain the user’s data and/or work once they close the browser.  Analysis performed in JupyterLab cannot be saved to the virtual platform, however files from the work session can be exported out and saved externally.  For users wanting to have the capabilities of saving work sessions and transferring between JupyterLab sessions in a streamlined manner, they can establish a freely available account.

The activity described in this article highlight a user-friendly method to learn some basic data analysis skills.  It is ideal for students with little to no experience in Biostatistics, Bioinformatics or Data Science.  The article provides an opportunity for students to reflect and practice analysis of data collected from biological experiments within an online learning environment.  The activity is suitable for an instructor led session (using an app with screen sharing capabilities). This article provides basic knowledge about how to use R for simple data analysis using the JupyterLab virtual notebook platform.

The goal of this activity is to familiarize the user with the basic steps for importing a data file, retrieval of file contents and generating a histogram using R within a JupyterLab environment.  The workflow steps to accomplish these tasks are outlined below:

  • Access JupyterLab
  • Access “R”
  • Access datasets
  • Perform summary statistics
  • Data visualization

Workflow Step-by-Step instructions and screenshots from JupyterLab

1. Access JupyterLab
a. Login to JupyterLab here: https://mybinder.org/v2/gh/jupyterlab/jupyterlab-demo/try.jupyter.org?urlpath=lab

Home page of JupyterLab Notebook

2. Access “R”

a) Select the (+) symbol at the top left of the JupyterLab screen;

b) Select R

R Console

3. Access the dataset

a) Select the directory titled: “UPMC_cohort”;

b) Identify the filename “meta.csv”.

c) Type data<-read.csv(“meta.csv”,header=TRUE, stringsAsFactors-FALSE)

d) Click run

e) Type data

f) Click run

Dataset from “meta.csv”

4. Perform summary statistics (on variable Cigarette_Pack_Years)

a) Type str(data)

b) Click run

c) Type data$Cigarette_Pack_Years

d) Click run

e) Type summary (data$Cigarette_Pack_Years)

f) Click run

Datatypes for each variable in dataset
Summary statistics

5. Draw a histogram using the “hist” function

a) Type hist(data$Cigarette_Pack_Years, 100, main=”Use of Cigarette (in years)”, xlab=Cigarette Pack Years”, ylab”Frequency”)

b) Click run

Histogram

References:
JupyterLab- https://jupyterlab.readthedocs.io/en/latest/getting_started/overview.html

R programming- https://www.r-project.org/

Github- https://github.com/initoby/JupyterLab_R_basics/blob/master/PECOP

Dr. Toby holds a PhD in Biomedical Sciences (specialization in Organ Systems Biology) from Ohio State University, College of Medicine. Her postdoctoral training was in Functional Genomics at the FAA-Civil Aerospace Medical Institute in Oklahoma City.  She is currently an Assistant Professor of Biology at University of Dallas.  She teaches several courses including: Human Biology, Bioinformatics and Biostatistics.  She enjoys mentoring undergraduate students and is an active member of The APS. Dr. Toby’s research program at UD is focused on cell signaling consequences that occur at the cellular/molecular interface of lung diseases. She is also leveraging the use of computational methods to assess immune sequencing and other types of high throughput sequencing data as a means to better understand lung diseases.

Involving students in the teaching experience
Karen L. Sweazea, PhD, FAHA
Arizona State University

As faculty, we often find ourselves juggling multiple responsibilities at once. Although many of us are interested in adding hands-on or other activities to our classes, it can be difficult to find the time to develop them. This is where more advanced students who have already taken the class or graduate students can help.

A couple of summers ago I requested the help of an extra teaching assistant in my Animal Physiology course. The role of the position I was requesting was unique as I was not seeking a student to help with grading or proctoring exams. Rather, the role of this student was to help develop in-class activities that would enhance the learning experience of students taking the course.

For each lesson, the special graduate student TA was tasked with finding an existing (ex: https://www.lifescitrc.org/) or creating a new activity that could be implemented in the classroom during the last 10-20 minutes of each session, depending on the complexity of the activity. This enabled me to begin converting the course into a flipped classroom model as students enrolled in the course were responsible for reading the material ahead of time, completing a content comprehension quiz, and coming to class prepared to discuss the content and participate in an activity and/or case study. Special TAs can also assist with developing activities for online courses.

While the benefits of having such a TA for the faculty are clear, this type of experience is also beneficial to both the TA as well as the students enrolled in the course. For the TA, this experience provides an opportunity to develop their own teaching skills through learning to develop short lesson plans and activities as well as receiving feedback from the faculty and students. For the students, this is a great way to build cultural competence into the course as TAs are often closer in age to the students and may better reflect the demographics of the classroom. Cultural competence is defined by the National Education Association as “the ability to successfully teach students who come from a culture of cultures other than our own.” Increasing our cultural competency, therefore, is critical to student success and is something that we can learn to address. Having special TAs is just one way we can build this important skill.

Karen Sweazea is an Associate Professor in the College of Heath Solutions at Arizona State University. Her research specializes in diabetes and cardiovascular disease. She received her PhD in Physiological Sciences from the University of Arizona in 2005 where her research focused on understanding glucose homeostasis and natural insulin resistance in birds. Her postdoctoral research was designed to explore how poor dietary habits promote the development of cardiovascular diseases. 

Dr. Sweazea has over 40 publication and has chaired sessions and spoken on topics related to mentoring at a variety of national and local meetings. She has additionally given over 10 guest lectures and has developed 4 graduate courses on topics related to mentoring and professional development. She has mentored or served on the committees for undergraduate, master’s, and doctoral students and earned an Outstanding Faculty Mentor Award from the Faculty Women’s Association at Arizona State University for her dedication towards mentoring.   

Building a Conceptual Framework to Promote Future Understanding
Diane H. Munzenmaier, PhD
Program Director
Milwaukee School of Engineering

For most of my career, I taught physiology and genetics to medical students and graduate students.  My experiences with many students who had difficulty succeeding in these courses led me to the realization that the way high school and college students learn the biological sciences does not translate to effective physiology learning and understanding at the graduate level.

Medical students, by virtue of their admission to medical school, have, by definition, been successful academically prior to matriculation and have scored well on standardized exams.  They are among the best and brightest that our education system has to offer.  Yet, I have always been amazed at how many medical students truly struggle with physiology.  It is considered by many students to be the most difficult discipline of the basic medical sciences.  Most students come into medical school as expert memorizers but few have the capacity or motivation to learn a discipline that requires integration, pattern recognition, and understanding of complex mechanisms.  My overall conclusion is that high school and college level biological science education does not prepare students to succeed in learning physiology at the graduate level.  Furthermore, I believe if students were prepared to better appreciate and excel in basic physiology at earlier grade levels, the pipeline for graduate education in the physiological sciences would be significantly increased.

Over the past 5 years, it has become a passion of mine to promote a new way of teaching biology and physiology: one that helps students make connections and that lays a conceptual framework that can be enhanced and enriched throughout their educational careers, rather than one that promotes memorization of random facts that are never connected nor retained.  I recently joined the Center for Biomolecular Modeling at the Milwaukee School of Engineering (MSOE CBM) in order to focus on developing materials and activities to promote that type of learning and to provide professional development for K-16 teachers to help them incorporate this type of learning into their classrooms.

One of my first projects was to develop resources to allow students to study the structure-function relationships of a specific protein important in physiology and use that understanding to relate it to relevant physiology/pathophysiology concepts.  The program is called “Modeling A Protein Story” (MAPS) and, so far, I have developed resources for 3 different project themes: aquaporins, globins, and insulin.

The overall concept is for the students to build their understanding slowly and incrementally over time, usually as part of an extracurricular club.  They start by understanding water and its unique properties.  Then they learn about proteins and how they are synthesized and fold into specific 3D conformations in an aqueous environment based largely on their constituent amino acids and how they interact with water.  Eventually they progress to learning about the unique structure of their protein of interest and how it is related to its function.  Once they have developed a solid understanding of that protein, they work in teams to choose a specific protein story that they will develop and model.  This includes finding a structure in the Protein Data Bank, reading the associated research paper to determine what was learned from the structure, designing a model of the structure in Jmol, an online 3D visualization software, and 3D printing a physical model of the protein that helps them tell their story.  Stories can be anything related to the theme that the students find in their research and consider interesting.  For example, student-developed aquaporin stories have ranged from AQP2 in the kidney to AQP4 in the brain to the use of AQP proteins to develop biomimetic membranes for water purification in developing countries.  By choosing projects that students are interested in, they more readily accept the challenge of reading primary research literature and trying to piece together a confusing puzzle into an understandable “story”. 

In the past year, I have used the insulin theme resources and piloted an active learning project-based curriculum at the undergraduate, high school, and middle school levels on insulin structure-function, glucose homeostasis, and diabetes mellitus.  The type of learning environment in which this curriculum was introduced has varied.  Middle school level children participated in the active learning environment as part of a 2-week summer camp.  High school students from an innovative charter school in downtown Milwaukee were introduced to the project-based curriculum as a 9-week seminar course, and the activity was taught to freshman biomolecular engineering students at the Milwaukee School of Engineering as a team project in their first quarter introductory course.

Some of the activities utilized materials that we have developed at the MSOE CBM and were subsequently produced for distribution by our sister company, 3D Molecular Designs.  Others utilize resources that are readily available online such as those available at the Protein Data Bank at their educational site, PDB-101.  Finally, still other resources have been developed by us specifically for this curriculum in order to help the students move between foundational concepts in an attempt to help them make important connections and to assist them in developing their conceptual framework. 

One of the activities that helps them try to make sense of the connection between glucose and insulin is this “cellular landscape” painting by Dr. David Goodsell at Scripps Research Institute and available at PDB-101.

They learn the basic concept that when blood glucose increases after a meal, insulin is released from the pancreas and allows glucose to be taken up and stored by the cells.  But how?  When they are given this landscape and minimal instructions, they must look closely, connect it to what they already know and try to make sense of it.  They work together in a small group and are encouraged to ask questions.  Is this a cell?  If so, where is the plasma membrane and the extracellular/intracellular spaces?  What types of shapes do they see in those spaces?  What is in the membrane?  What are those white dots?  Why is one dot in one of the shapes in the membrane?  Why are there yellow blobs on the outside of the cell but not on the inside?  Eventually they piece together the puzzle of insulin binding to its receptor, leading to trafficking of vesicles contain glucose transporter proteins to the plasma membrane, thereby allowing the influx of glucose into the cell.  By struggling to make detailed observations and connections, a story has been constructed by the students as a logical mechanism they can visualize which is retained much more effectively than if it had been merely memorized.

In other activities they learn how insulin in synthesized, processed, folded, stored, and released by the pancreatic beta cells in response to elevated blood glucose.  They use a kit developed by MSOE CBM that helps them model the process using plastic “toobers” to develop an understanding of how insulin structure is related to its function in regards to the shape and flexibility required for receptor binding but also related to its compact storage in the pancreas as hexamers and the importance of disulfide bonds in stabilizing monomers during secretion and circulation in the blood.  

As the students build their understanding and progress to developing their own “story”, the depth of that story depends on grade level and the amount of time devoted to the project.  Undergraduate students and high school students who have weeks and months to research and develop their story tend to gravitate to current research into protein engineering of insulin analogs that are either rapid-acting or slow-release, developed as type 1 and type 2 diabetes medications, respectively.  The basic concepts behind most of these analogs are based on the structure-function relationships of hexamer formation.  Rapid-acting medications usually include amino acid modifications that disrupt dimer and hexamer formation.  Slow-release medications tend to promote hexamer stability.  Middle school students or high school students with limited time to spend on the project may only focus on the basic properties of insulin itself.  The curriculum is driven by the students, so it is extremely flexible based on their capabilities, time, and motivation.  Students ultimately use their understanding of insulin structure-function to design and 3D-print a physical model that they highlight to show relevant amino acid modifications and other details that will help them to present the story they have developed based on their learning progression and research. 

In conclusion, we have found that this type of open-ended project-based active learning increases learning, retention, and motivation at every educational level  with which we have worked.  Students are initially frustrated in the process because they are not given “the answer” but they eventually learn to be more present, make observations, ask questions, and make connections.  Our hope is that introduction of this type of inquiry-based instruction in K-16 biological sciences education will eventually make the transition to graduate level physiology learning more successful.

Diane Munzenmaier received her PhD in Physiology studying the role of the renin-angiotensin system on skeletal muscle angiogenesis. This was followed by postdoctoral study of the role of astrocytes in stroke-induced cerebral angiogenesis. She joined the faculty of the Department of Physiology at the Medical College of Wisconsin in 1999 and the Human and Molecular Genetics Center in 2008. As Director of Education in the HMGC, Dr. Munzenmaier lectured and developed curriculum for medical and graduate school physiology and genetics courses. She developed an ACGME-accredited medical residency curriculum and Continuing Medical Education (CME) courses for physician education. She also enjoyed performing educational outreach to K-12 classrooms and the lay public. She is passionate about education and career mentoring for students of all levels. Her specific interests in biomedical science education are finding engaging ways to help clarify the link between structure and (dys)function in health and disease.

Can the Flipped Classroom Method of Teaching Influence Students’ Self-Efficacy?
Chaya Gopalan, PhD, FAPS
Associate Professor
Departments of Applied Health, Primary Care & Health Systems
Southern Illinois University Edwardsville

Self-efficacy is the belief in one’s ability to succeed in a specific situation or accomplish a specific task (Bandura, 1977). Students with high self-efficacy have higher motivation to learn and, therefore, are able to reach higher academic goals (Honicke & Broadbent, 2016). Gender, age, and the field of study are some factors that are known to affect self-efficacy (Huang, 2013). Genetics plays a significant role (Waaktaar & Torgersen, 2013). Certain physiological factors such as perceptions of pain, fatigue, and fear may have a marked, deleterious effect on self-efficacy (Vieira, Salvetti, Damiani, & Pimenta, 2014). In fact, research has shown that self-efficacy can be strengthened by positive experiences, such as mastering a skill, observing others performing a specific task, or by constant encouragement (Vishnumolakala, Southam, Treagust, Mocerino, & Qureshi, 2017). Enhancement of self-efficacy may be achieved by the teachers who serve as role models as well as by the use of supportive teaching methods (Miller, Ramirez, & Murdock, 2017). Such boost in self-efficacy helps students achieve higher academic results.

The flipped classroom method of teaching shifts lectures out of class. These lectures are made available for students to access anytime and from anywhere. Students are given the autonomy to preview the content prior to class where they can spend as much time as it takes to learn the concepts. This approach helps students overcome cognitive overload by a lecture-heavy classroom.  It also enables them to take good notes by accessing lecture content as many times as necessary. Since the lecture is moved out of class, the class time becomes available for deep collaborative activities with support from the teacher as well as through interaction with their peers. Additionally, the flipped teaching method allows exposure to content multiple times such as in the form of lecture videos, practice questions, formative assessments, in-class review, and application of pre-class content. The flipped classroom therefore provides a supportive atmosphere for student learning such as repeated exposure to lecture content, total autonomy to use the constantly available lecture content, peer influence, and support from the decentered teacher. These listed benefits of flipped teaching are projected to strengthen self-efficacy which, in turn, is expected to increase students’ academic performance. However, a systematic approach measuring the effectiveness of flipped teaching on self-efficacy is lacking at present.

References:

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review84(2), 191.

de Moraes Vieira, É. B., de Góes Salvetti, M., Damiani, L. P., & de Mattos Pimenta, C. A. (2014). Self-efficacy and fear avoidance beliefs in chronic low back pain patients: coexistence and associated factors. Pain Management Nursing15(3), 593-602.

Honicke, T., & Broadbent, J. (2016). The influence of academic self-efficacy on academic performance: A systematic review. Educational Research Review17, 63-84.

Huang, C. (2013). Gender differences in academic self-efficacy: A meta-analysis. European journal of psychology of education28(1), 1-35.

Miller, A. D., Ramirez, E. M., & Murdock, T. B. (2017). The influence of teachers’ self-efficacy on perceptions: Perceived teacher competence and respect and student effort and achievement. Teaching and Teacher Education64, 260-269.

Vishnumolakala, V. R., Southam, D. C., Treagust, D. F., Mocerino, M., & Qureshi, S. (2017). Students’ attitudes, self-efficacy and experiences in a modified process-oriented guided inquiry learning undergraduate chemistry classroom. Chemistry Education Research and Practice18(2), 340-352.

Waaktaar, T., & Torgersen, S. (2013). Self-efficacy is mainly genetic, not learned: a multiple-rater twin study on the causal structure of general self-efficacy in young people. Twin Research and Human Genetics16(3), 651-660.

Dr. Chaya Gopalan received her PhD in Physiology from the University of Glasgow, Scotland. Upon completing two years of postdoctoral training at Michigan State University, she started her teaching career at St. Louis Community College. She is currently teaching at Southern Illinois University Edwardsville. Her teaching is in the areas of anatomy, physiology, and pathophysiology at both undergraduate and graduate levels for health science career programs. Dr. Gopalan has been practicing evidence-based teaching where she has tested team-based learning and case-based learning methodologies and most recently, the flipped classroom. She has received several grants to support her research interest.

Emerged Idea Led to a Unique Experience in Elephant’s City
Suzan A. Kamel-ElSayed, VMD, MVSc, PhD
Associate Professor, Department of Foundational Medical Studies
Oakland University

In May 2019, the physiology faculty at the Oakland University William Beaumont School of Medicine Department of Foundational Medical Studies received an email from Dr. Rajeshwari, a faculty member in JSS in a Medical College in India.

While Dr. Rajeshwari was visiting her daughter in Michigan, she requested a departmental visit to meet with the physiology faculty. Responding to her inquiry, I set up a meeting with her and my colleagues where Dr. Rajeshwari expressed her willingness to invite the three of us to present in the 6th Annual National Conference of the Association of Physiologists of India that was held from Sept. 11-14, 2019, in Mysuru, Karnataka, India.

The conference theme was: “Fathoming Physiology: An Insight.” My colleague then suggested a symposium titled “Physiology of Virtue,” where I could present the physiology of fasting since I fast every year during the month of Ramadan for my religion of Islam. To be honest, I was surprised and scared at my colleague’s suggestion. Although I fast every year due to the Quranic decree upon all believers, I was not very knowledgeable of what fasting does to one’s body. In addition, I faced the challenge of what I would present since I did not have any of my own research or data related to the field of fasting. Another concern was the cultural aspect in talking about Ramadan in India and how it would be received by the audience. However, willing to face these challenges, I agreed and admired my colleague’s suggestion and went forward in planning for the conference.

After Dr. Rajeshwari sent the formal invitation with the request for us to provide an abstract for the presentation, I started reading literature related to fasting in general. Reading several research articles and reviews, I was lost in where to begin and what to include. I began to ponder many questions: How will I present fasting as a virtue? Should I bring in religious connections? Will I be able to express spiritual aspects from a Muslim’s perspective? I decided that the aim of my presentation would be to describe how a healthy human body adapts to fasting, and the outcomes that practicing fasting has on an individual level and on the society as a whole. In addition, I found that focusing on the month of Ramadan and etiquettes of fasting required from Muslims had many physiological benefits and allowed me to have a real-world example in which fasting is present in the world.

Visiting India and engaging with physiologists from all over India was a really rich experience. The hospitality, generosity and accommodation that were provided was wonderful and much appreciated. The conference’s opening ceremony included a speech from the University Chancellor who is a religious Hindu Monk, along with Vice Chancellors, the organizing chair, and the secretary. In addition, a keynote speech on the physiological and clinical perspectives of stem cell research was presented by an Indian researcher in New Zealand. I was also able to attend the pre-conference workshops “Behavioral and Cognitive Assessment in Rodents” and “Exercise Physiology Testing in the Lab and Field” free of charge.

For my presentation, I included the definition, origin and types of fasting. In addition, I focused on the spiritual and physical changes that occur during Ramadan Intermittent Fasting (RIF). Under two different subtitles, I was able to summarize my findings. In the first subtitle, “Body Changes During RIF,” I listed all the changes that can happen when fasting during Ramadan. These changes include: activation of stress induced pathways, autophagy, metabolic and hormonal changes, energy consumption and body weight, changes in adipose tissue, changes in the fluid homeostasis and changes in cognitive function and circadian rhythm. In the second subtitle, “Spiritual Changes During RIF,” I presented some examples of spiritual changes and what a worshipper can do. These include development of character, compassion, adaptability, clarity of mind, healthy lifestyle and self-reflection. To conclude my presentation, I spoke of the impacts RIF has on the individual, society, and the global community.

In conclusion, not only was this the first time I visited India, but it was also the first time for me to present a talk about a topic that I did not do personal research on. Presenting in Mysuru not only gave me a chance to share my knowledge, but it allowed me to gain personal insight on historical aspects of the city. It was a unique and rich experience that allows me to not hesitate to accept similar opportunities. I encourage that we, as physiology educators, should approach presenting unfamiliar topics to broaden our horizons and enhance our critical thinking while updating ourselves on research topics in the field of physiology and its real-world application.  Physiology education is really valued globally!

Suzan Kamel-ElSayed, VMD, MVSc, PhD, received her bachelor of Veterinary Medicine and Masters of Veterinary Medical Sciences from Assiut University, Egypt. She earned her PhD from Biomedical Sciences Department at School of Medicine in Creighton University, USA. She considers herself a classroom veteran who has taught physiology for more than two decades. She has taught physiology to dental, dental hygiene, medical, nursing, pharmacy and veterinary students in multiple countries including Egypt, Libya and USA. Suzan’s research interests are in bone biology and medical education. She has published several peer reviewed manuscripts and online physiology chapters. Currently, she is an Associate Professor in Department of Foundational Medical Studies in Oakland University William Beaumont School of Medicine (OUWB) where she teaches physiology to medical students in organ system courses. Suzan is a co-director of the Cardiovascular Organ System for first year medical students. Suzan also is a volunteer physiology teacher in the summer programs, Future Physicians Summer Enrichment Program (FPSP) and Detroit Area Pre-College Engineering Program (DAPCEP) Medical Explorers that are offered for middle and high school students. She has completed a Medical Education Certificate (MEC) and Essential Skills in Medical Education (ESME) program through the Association for Medical Education in Europe (AMEE) and Team-Based Learning Collaborative (TBLC) Trainer- Consultant Certification. She is also a member in the OUWB Team-Based Learning (TBL) oversight team. Suzan is an active member in several professional organizations including the American Physiological Society (APS); Michigan Physiological Society (MPS); International Association of Medical Science Educators (IAMSE); Association of American Medical Colleges (AAMC); Team Based Learning Collaborative (TBLC); Egyptian Society of Physiological Sciences and its Application; Egyptian Society of Physiology and American Association of Bone and Mineral Research (ASBMR).

Using Quests to Engage and Elevate Laboratory Learning
Sarah Knight Marvar, PhD
American University

My students, like me, enjoy a challenge. Occasionally this challenge comes in the form of staying on track, using our lab time efficiently to achieve the learning outcomes and staying engaged with the material. There are specific topics that we cover in our undergraduate human anatomy and physiology course, such as the skeletal system, that had become a little dry over time. Classes occasionally included students sitting at desks looking disinterestedly at disarticulated bones glancing at their lab manual and then checking their phones. I felt that the students were not getting enough out of our laboratory time and weren’t nearly as excited as I was to be there!

With other faculty members I recently devised some new laboratory activities that include a series of quests that closely resemble a mental obstacle course, to try to encourage engagement with the material and make our learning more playful and memorable. There may also be some healthy competition along the way.

I teach an undergraduate two semester combined anatomy and physiology course, in which I lead both the lecture and laboratory portions. Students who are enrolled in this course are majoring in Biology, Neuroscience, Public Health and Health Promotions. Many of the enrolled students are destined for graduate school programs such as Medicine, Nursing, Physical Therapy, Physicians Assistant and PhD Programs. An example of the quest format we used recently in a bone laboratory is described here.

The Quests

The laboratory is set up with multiple quest stations that each represent a multi-step task on areas within the overarching laboratory topic. All of the tasks are designed to enable students to achieve the learning outcomes of the laboratory in an engaging way. The quest stations are designed to encourage the students to physically move around the laboratory in order to interact with other students, touch the exhibits, explore case studies, complete illustrations and build models. Each student begins with a quest guide which provides instructions and upon which they take notes, answer questions and complete drawings. Students move at their own pace and work in self-selected pairs or groups of three. They are able to ask for assistance at any stage of a quest from either of two faculty members present.   

Clinical case studies

Because of the students’ interest in patient care, we use clinical case studies as a major component of the obstacle course. X-ray images of a variety of pathological conditions as well as healthy individuals challenged students’ ability to identify anomalies in bone structure and surgery outcomes. The images that we used included a skull of a newborn showing clearly the fontanelles, an example of osteoporosis and joint replacement surgery. Students are required to identify anatomical location of the image as well as any anomalies, pathology or points of interest. Because of the student demographic of this class, many of them are destined to enter healthcare professions, they are particularly interested in this quest and are invested in solving the mystery diagnoses.

The Creative Part

Illustrations

An example of a student’s histological drawing.

The coloring pencils and electric pencil sharpener have come into their own in the laboratory and like Grey’s Anatomy illustrator Henry Vandyke Carter created before them, amazing anatomically accurate drawings are appearing on the page. Histology has been a particularly challenging aspect of our course for students with little previous exposure to sectioned specimens. In an attempt to allow students to really process what they are looking at and reflect on the tissue function I have asked students to draw detailed images of the histological specimens, label cell types and reflect on specific cell functions. This exercise aims to elevate the student’s ability to look closely at histological specimens and gain a better understanding of what they are observing and contemplate specific cell function.

Another quest involves categorizing bones and making illustrations of them, making note of unique identifying features and their functions.

3-D Modeling

Student synovial joint models with notes on function

Reminiscent of scenes from my three year old’s birthday party, I brought out the modeling clay and tried to stifle the reflex instruction to “don’t mix the colors”! Students were tasked with creating a 3-dimensional model of structures such as synovial joints. This is a particularly successful exercise in which students work with colored modeling clay to construct models of joints and label parts of the joint and describe the function of each part. This allows students to consider the relationship between the structure and function and move beyond looking at two-dimensional images from their textbooks and lecture slides. Students submit images of their completed models to the faculty for successful completion of the quest.

Other quest stations that were part of this particular laboratory session included Vertebrae Organizing, Mystery Bone Identification and Bone Growth Mechanisms.

One of the primary things that I learned from this exercise was that designing game-like scenarios in the classroom is far more enjoyable and entertaining for me as well as for the students, a win-win scenario. Overall from the perspective of the teaching faculty, the level of engagement was significantly increased compared with previous iterations of the class. The quality of the work submitted was high and in addition, this quest-based laboratory design is suitable for a wide range of topics and activities. I am currently designing a muscle physiology laboratory in a similar format that will include an electromyogram strength and cheering station as well as a sliding filament muscle contraction student demonstration station. In reflection I feel that my personal quest to find a novel and interesting way for the students to learn about bones was successful. Now onto the next quest……

Sarah Knight Marvar received her BSc in Medical Science and PhD in Renal Physiology from the University of Birmingham, UK. Sarah is currently a Senior Professorial Lecturer and Assistant Laboratory Director in the Biology Department at American University in Washington DC. Sarah teaches undergraduate Anatomy and Physiology, general biology classes as well as a Complex Problems class on genetic modification to non-majors as part of the AU Core program. Sarah’s research interests include using primary research literature as a teaching tool in the classroom, open educational resources and outreach activities.

My Summer Reading: Discussion as a Way of Teaching: Tools and Techniques for Democratic Classrooms 2nd Edition by Stephen D. Brookfield and Stephen Preskill

Jessica L. Fry, PhD
Associate Professor of Biology
Curry College, Milton, MA

Ah Summer – the three months of the year when my To Do list is an aspirational and idealistic mix of research progress, pedagogical reading, curriculum planning, and getting ahead.  Here we are in July, and between hiring, new building construction, uncooperative experiments and familial obligations, I am predictably behind, but my strategic scheduling of this blog as a book review– meaning I have a deadline for both reading and digesting this book handed out at our annual faculty retreat — means that I am guaranteed to get at least one item crossed off my list!

My acceptance of (and planning for) my tendency to procrastinate is an example of the self-awareness Stephen D. Brookfield and Stephen Preskill advocate for teachers in their book “Discussion as a Way of Teaching”.  By planning for the major pitfalls of discussion, as well as the reasons behind why both teachers and students manage discussions poorly, they catalog numerous strategies to increase the odds of realizing the major benefits of discussion in the classroom.  At fifteen years old, this book is hardly dated; some of the discussion formats will be familiar to practitioners of active learning such as snowballing and jigsaw, but the real value in this book for me was the frank discussion of the benefits, drawbacks, and misconceptions about discussion in the classroom that are directly relevant to my current teaching practice.  

My lowest moments as a professor seem to come when my students are more focused on “finding the right answer” than on exploring a topic and fitting it into their conceptual understanding.  Paper discussions can fall flat, with students hastily reciting sentences from the discussion or results sections and any reading questions I may have assigned.  This book firmly makes the case that with proper groundwork and incentive, students can and will develop deliberative conversational skills.  Chapter 3 describes how the principles for discussion can be modeled during lecture, small group work, and formats designed for students to practice the processes of reflection and analysis before engaging in discussions themselves. Chapters 4 and 5 present the nuts and bolts of keeping a discussion going by describing active listening techniques, teacher responses, and group formats that promote rather than suppress discourse, and chapters 9 and 10 illustrate the ways students and teachers talk too much… and too little.  One of the most emphasized concepts in these chapters and threaded throughout the book is allowing silence.  Silence allows for reflection and should not be feared – 26 pages in this book cover silence and importantly, how and why professors and students are compelled to fill it, which can act as a barrier to all students participating in the discussion.   

Preskill and Brookfield emphasize the need for all students to be active listeners and participants in a discussion, even if they never speak a word, because discussion develops the capacity for the clear communication of ideas and meaning.  “Through conversation, students can learn to think and speak metaphorically and to use analogical reasoning…. They can get better at knowing when using specialized terminology is justified and when it is just intellectual posturing” (pg. 32).  What follows is an incredibly powerful discussion on not only honoring and respecting diversity, but a concise well-written explanation of how perceptions of social class and race affect both non-white and non-middle-class students in American college classrooms.  Their explanation of how academia privileges certain patterns of discourse and speech that are not common to all students leading to feelings of impostership should be read by everyone who has ever tone-policed a student or a colleague.  The authors advocate for a democratic approach to speech, allowing students to anonymously report if, for example, another student banging their hand on their desk to emphasize a point seemed too violent, which then allows the group to discuss and if necessary, change the group rules in response to that incident.  The authors note that “A discussion of what constitutes appropriate academic speech is not lightweight or idle.  It cuts to several core issues: how we privilege certain ways of speaking and conveying knowledge and ideas, who has the power to define appropriate forms and patterns of communication, and whose interests these forms and patterns serve” (pg 146).  The idea that academic language can be gatekeeping and alienating to many students is especially important in discussions surrounding retention and persistence in the sciences, where students seeing themselves as scientists is critical (Perez et al. 2014).  Brookfield and Preskill argue that through consistent participation in discussion, students will see themselves as co-creators of knowledge and bring their authentic selves to the community.   

All in all, this book left me inspired and I recommend it for those who imagine the kinds of invigorating discussions we have with colleagues taking place with our students and want to increase the chances it will happen in the classroom.  I want to cut out quotes from my favorite paper’s discussion section and have my students justify or refute the statements made using information from the rest of the paper (pg. 72-73 Getting Discussion Started).  I want my students to reflect on their journey to science and use social media to see themselves reflected in the scientific community (pg. 159-160 Discussing Across Gender Differences), and I want to lay the groundwork for the first discussion I have planned for the class of 2023; Is Water Wet?  All this and the rest of that pesky To Do list with my remaining month of summer. Wish me luck!  

Brookfield, S. D., & Preskill, S. (2005). Discussion as a Way of Teaching: Tools and Techniques for Democratic Classrooms (2nd ed.). San Francisco: Jossey-Bass.

Perez, T., Cromley, J. G., & Kaplan, A. (2014). The role of identity development, values, and costs in college STEM retention. Journal of Educational Psychology. http://doi.org/10.1037/a0034027

Jessica L. Fry Ph.D. is an Associate Professor of Biology at Curry College, a liberal-arts based primarily undergraduate institution in Milton, Massachusetts.  She currently teaches Advanced Physiology, Cell Biology, and Introduction to Molecules and Cells for majors, and How to Get Away with Murder which is a Junior Year Interdisciplinary Course in the General Education Program.  She procrastinates by training her dog, having great discussions with her colleagues, and reading copious amounts of science fiction.