Category Archives: Assessment

Pandemic, Physiology, Physical Therapy, Psychology, Purpose, Professor Fink, Practical Exams, and Proficiency!

Pandemic

To say that the COVID-19 pandemic has affected education would be an understatement.  Physical distancing measures that were introduced across the world to reduce community spread of SARS-CoV-2 (the COVID-19 pathogen), necessitated a cessation or reduction of in-person instruction, and the introduction of what has come to be known as “emergency remote education”(1, 2).  Emergency remote education or teaching (ERE or ERT) is different from remote or online education in that, it is not planned and optional, but rather, a response to an educational emergency (3).

Physiology for Physical Therapy Students

Against the backdrop of the COVID-19 pandemic, as I was trying to keep my primary research program on regenerative and rehabilitative muscle biology moving forward (4), engaging with the scientific community on repurposing FDA-approved drugs for COVID-19 (5, 6), and working on the Biomaterials, Pharmacology, and Muscle Biology courses that I teach each year; I was requested to take on a new responsibility.  The new responsibility was to serve as the course master and sole instructor for a 3-credit, 15-week course on Physiology and Pathophysiology for Professional Year One (PY1) Doctor of Physical Therapy (DPT) students.  I had foreseen taking on this responsibility a couple of years down the road, but COVID-19 contingencies required that I start teaching the course in January 2021.  I had always believed that within the Physical Therapy curriculum, Anatomy, Physiology and Neuroscience, were courses that could only be taught by people who were specialists – i.e. you had to be born for it and should have received a level of training needed to become a master of Shaolin Kung Fu (7).  With less than a year to prepare for my Physiology and Pathophysiology course, and with the acknowledgment that I was not trained in the martial art of Physiology instruction, I looked for inspiration.  The Peter Parker Principle from Spider-Man came to mind – “With great power comes great responsibility” (8).  Unfortunately, I realized that there was no corollary that said “With great responsibility comes great power”.  Self-doubt, anxious thoughts, and frank fear of failure abounded.

Psychology and Purpose

Call it coincidence, grace, or anything in between; at the time when I started preparing to teach Physiology and Pathophysiology, I had been working with a psychological counselor who was helping me process my grief following my father’s passing a couple of months before COVID-19 was declared a pandemic.  In addition to processing my grief, through counseling, I had also started learning more about myself and how to process anxious thoughts, such as the fear of failing in my new superhero role of teaching Physiology and Pathophysiology to Physical Therapy students.  Learning how to effectively use my “wise mind” (an optimal intersection of the “emotional mind” and “reasonable mind”), writing out the possible “worst outcomes” and “likely outcomes”, practicing “self-compassion”, increasing distress tolerance, working on emotional regulation, and most importantly embracing “radical acceptance” of the things I cannot change, helped me work through the anxiety induced by my new teaching responsibility.  This does not mean that my anxiety vanished, it just means that I was more aware of it, acknowledged it, and worked my way through it to get to what I was supposed to do.  I also learned through counseling that purpose drives motivation.  I realized that my anxiety over teaching Physiology was related to the value I placed on the teaching and learning of Physiology in Physical Therapy and other health professions.  Being a Physical Therapist and Physiologist who is committed to promoting movement-centered healthcare, I found motivation in the prospect of training Physical Therapists to serve as health educators with the ultimate goal of improving human movement.  Therefore, the idea of developing a course that would give my students a solid foundation in the Physiology and Pathophysiology of Human Movement began to excite me more than intimidate me.  The aspects of my personality that inspired me to publish a paper on the possible pathophysiological mechanisms underlying COVID-19 complications (5), stirred in me the passion to train the next generation of Physical Therapists, who through their sound knowledge of Physiology would likely go on to transform healthcare and promote healthier societies through movement (9).

The point about purpose being a positive driver of motivation, mentioned above, has been known to educational psychologists for a while.  When students see that the purpose of learning something is bigger than themselves, they are more motivated to learn (10).  So, rather than setting up my course as a generic medical physiology course, I decided to set it up as a Physiology and Pathophysiology of Human Movement course that is customized for human movement experts in training – i.e. Student Physical Therapists.  I set my course up in four modules – Moving the Body (focused on muscle and nerve), Moving Materials Around the Body (focused on the cardiovascular and pulmonary systems), Fueling Movement (focused on cellular respiration and the ATP story), and Decoding the Genetics of Human Movement (focused on how genetic information is transcribed and translated into proteins that make movement possible).

Professor Fink

For those of you who have not heard of Professor Steven Fink, you should look him up (11).  A Ph.D.-trained Physiologist and former member of the American Physiological Society (APS), Professor Fink has posted over 200 original educational videos on YouTube, covering Anatomy, Physiology, Pharmacology, and other subjects.  I had found his YouTube videos several years ago, while looking for good resources for my Pharmacology course, and never stopped watching them ever since then.  I would watch his videos while exercising, and listen to them during my commute (and sometimes even during my ablutions!).  There were two topics in Physiology that scared me the most – cellular respiration and genetics.  I had learned these topics just well enough to get me through high school, four years of Physical Therapy School, one year of Post-Professional Physical Therapy training, six years of Ph.D. training in a Physiology laboratory, six years as a Postdoctoral Fellow (also in a Physiology laboratory), and several years as an Assistant Professor in Physical Therapy.  However, despite the “few years” I had spent in academia and my 10+ years being a member of the APS, I never felt that I had gained mastery over the basic physiology of cellular respiration and genetics.  So, when I started preparing to teach Physiology, I decided to up my number of views on Professor Fink’s videos on cellular respiration and genetics.  Furthermore, I reached out to Professor Fink and asked him if he would serve as a teaching mentor for my new course and he very kindly agreed.  I am fortunate to be a teacher-scholar in a department and university, which places a high priority on teaching, and supports training in pedagogy and the scholarship of teaching and learning through consultation with experts within and outside the university.  As part of our mentoring relationship, Professor Fink gave feedback on my syllabus, course content, testing materials and pedagogical strategies.  He also introduced me to “Principles of Anatomy and Physiology, 16th Edition, by Gerard J. Tortora, Bryan H. Derrickson, which proved to be a useful resource (ISBN: 978-1-119-66268-6).  Through all these interactions, Professor Fink demonstrated that a person can be a “celebrity professor” and still be a kind and gentle human being.  Having him as my teaching mentor played a significant role in building my confidence as a physiology teacher.  Research shows that academic mentoring is related to favorable outcomes in various domains, which include behavior, attitudes, health, interpersonal relations, motivation, and career (12).

Practical Exams

As the COVID-19 pandemic rolled on through the Winter, Spring/Summer, and Fall semesters of 2020, it became certain that I would have to teach my Physiology and Pathophysiology course in a virtual environment come January 2021.  I had to figure out a way to make sure that the learning objectives of my course would be met despite the challenges posed by teaching and testing in a virtual environment.  Therefore, I came up with the idea of virtual practical exams for each of the four modules in my course.  These practical exams would be set up as a mock discussion between a Physical Therapist and a referring health professional regarding a patient who had been referred for Physical Therapy.  Students would take the exam individually.  On entering the virtual exam room, the student would introduce themselves as a Student Physical Therapist and then request me (the referring healthcare professional) to provide relevant details regarding the patient, in order to customize assessment, goal setting and treatment for the patient.  With the patient’s condition as the backdrop, I would ask the student questions from the course content that was relevant to the patient’s condition.  A clear and precise rubric for the exam would be provided to the students in keeping with the principles of transparency in learning and teaching (13).

Proficiency

As we went through the course, the virtual practical exams proved to be an opportunity to provide individualized attention and both summative and formative feedback to students (14).  As a teacher, it was rewarding to see my Physical Therapy students talk about cellular respiration and gene expression with more confidence and clarity than I could do during my prior 12+ years as a Ph.D.-trained Physiologist.  It was clear to me that my students had found a sense of purpose in the course content that was bigger than themselves – they believed that what they were learning would translate to better care for their patients and would ultimately help create healthier societies through movement.

In the qualitative feedback received through a formal student evaluation of teaching (SET) survey, one student wrote “Absolutely exceptional professor.  Please continue to do what you are doing for future cohorts.  You must keep the verbal practical examinations for this class.  Testing one’s ability to verbally explain how the body functions and how it is dysfunctional is the perfect way to assess if true learning has occurred.”  Sharing similar sentiments, another student wrote “I really enjoyed the format of this class. The virtual exams in this class forced us to really understand the content in a way that we can talk about it, rather than learning to answer a MC question. I hope future students are able to learn as much as I did from this class.”

Closing Remarks

When I meet students for the first time during a course, I tell them that even though I am their teacher, I am first a student.  I let them know that in order to teach, I first need to learn the content well myself.  Pandemic pedagogy in the time of COVID-19-related emergency remote education has reinforced my belief that, the best way to learn something is to teach it.  Thanks to my Physiology and Pathophysiology of Human Movement course, I learned more about myself, about teaching and learning, and of course about cellular respiration and genetics.  Do I now consider myself a master of Physiology instruction?  No!  Am I a more confident physiology teacher?  Yes!  Has writing this article made me reflect more on what worked well and what needs to be fine-tuned for the next iteration of my Physiology and Pathophysiology course?  Yes!

REFERENCES:

  1. Williamson B, Eynon R, Potter J. Pandemic politics, pedagogies and practices: digital technologies and distance education during the coronavirus emergency. Learning, Media and Technology. 2020;45(2):107-14.
  2. Bozkurt A, Jung I, Xiao J, Vladimirschi V, Schuwer R, Egorov G, et al. A global outlook to the interruption of education due to COVID-19 pandemic: Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education. 2020;15(1):1-126.
  3. Hodges C, Moore S, Lockee B, Trust T, Bond A. The difference between emergency remote teaching and online learning. Educause review. 2020;27:1-12.
  4. Begam M, Roche R, Hass JJ, Basel CA, Blackmer JM, Konja JT, et al. The effects of concentric and eccentric training in murine models of dysferlin-associated muscular dystrophy. Muscle Nerve. 2020.
  5. Roche JA, Roche R. A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. FASEB J. 2020;34(6):7265-9.
  6. Joseph R, Renuka R. AN OPEN LETTER TO THE SCIENTIFIC COMMUNITY ON THE POSSIBLE ROLE OF DYSREGULATED BRADYKININ SIGNALING IN COVID-19 RESPIRATORY COMPLICATIONS2020.
  7. Wikipedia contributors. Shaolin Kung Fu – Wikipedia, The Free Encyclopedia 2021 [Available from: https://en.wikipedia.org/w/index.php?title=Shaolin_Kung_Fu&oldid=1026594946.
  8. Wikipedia contributors. With great power comes great responsibility – Wikipedia, The Free Encyclopedia 2021 [Available from: https://en.wikipedia.org/w/index.php?title=With_great_power_comes_great_responsibility&oldid=1028753868.
  9. American Physical Therapy Association (APTA). Transforming Society – American Physical Therapy Association [Available from: https://www.apta.org/transforming-society.
  10. Yeager DS, Henderson MD, Paunesku D, Walton GM, D’Mello S, Spitzer BJ, et al. Boring but important: a self-transcendent purpose for learning fosters academic self-regulation. Journal of personality and social psychology. 2014;107(4):559.
  11. Fink S. ProfessorFink.com [Available from: https://professorfink.com/.
  12. Eby LT, Allen TD, Evans SC, Ng T, Dubois D. Does Mentoring Matter? A Multidisciplinary Meta-Analysis Comparing Mentored and Non-Mentored Individuals. J Vocat Behav. 2008;72(2):254-67.
  13. Winkelmes M. Transparency in Learning and Teaching: Faculty and students benefit directly from a shared focus on learning and teaching processes. NEA Higher Education Advocate. 2013;30(1):6-9.
  14. Alt D. Teachers’ practices in science learning environments and their use of formative and summative assessment tasks. Learning Environments Research. 2018;21(3):387-406.
Joseph A. Roche, BPT, PhD.  Associate Professor.  Physical Therapy Program.  Eugene Applebaum College of Pharmacy and Health Sciences.  

I am an Associate Professor in the Physical Therapy Program at Wayne State University, located in the heart of “Motor City”, Detroit, Michigan.  My research program is focused on developing regenerative and rehabilitative interventions for muscle loss arising from neuromuscular diseases, trauma and aging.  I have a clinical background in Physical Therapy and have received intensive doctoral and postdoctoral research training in muscle physiology/biology.

https://www.researchgate.net/profile/Joseph-Roche-2

https://scholar.google.com/citations?user=-RCFS6oAAAAJ&hl=en


Down the custom path: Adaptive learning as a tool for instruction and assessment in science education

The spread of COVID-19 via the SARS-CoV-2 virus led colleges and universities around the world to close on-campus instruction for the safety of students, faculty and staff.  This left many instructors, specifically those in the sciences, struggling to find effective methods to present information to students in a manner that both encouraged learning and allowed for assessment of knowledge attainment.  Non-traditional colleges and universities, those that offer most or all of a degree to students in the online environment, were poised to transition easily; continuing to use the tools available in the virtual world to both guide students and assess learning.  As institutions wrestle with the decision to move courses back to the on-campus setting, this blog implores those in higher education, even science education, to consider adaptive learning as a vital component of curriculum.

Prior to my appointment as Lead Faculty at Colorado Technical University, I taught a variety of science courses in on-campus class and laboratory settings.  Both exams and laboratory practica could be cumbersome, both in prep and in grading.  While the questions could be mapped back to unit and/or course learning outcomes, this would require input of each student’s response to each question into a data sheet for analysis.  Even with online administration of exams, assessment methods were limited and instructors like myself were reliant on continuous creation of lectures, worksheets, activities, and online simulations to present course materials.  When it came time to transition to online, students would navigate through a learning management system and open a variety of files, videos, interactive activities, practice sheets, and practice quizzes for one unit in a course.  There had to be a better way to incorporate all the things we know drive student inquiry into one area while allowing assessment of their knowledge, right?  There was.

Enter adaptive learning technology.  Colorado Technical University relies upon Intellipath™ to deliver content to students in the asynchronous classroom in a variety of subjects, including natural sciences, math, engineering, nursing, and health studies.  I entered into teaching and managing faculty as a novice in this tool, and now I want to sing its praises to anyone who will listen. Adaptive learning does just as the title suggests.  It adapts based on the student’s knowledge, adding questions in areas where they need additional practice and allowing those already determined to have a certain understanding of topics to skip on to new materials.  Once these lesson nodes are designed, they can be used over and over again and questions can be delivered in a variety of ways to assess the same outcome. Gone is the need to continuously upload materials as they are all housed within the adaptive learning platform.  Instructors have the ability to see how a student is doing not just in terms of their progress through the unit but also their mastery of a specific topic.  Students have the ability to earn high marks when they demonstrate competency in the subject on their first attempt but are able to improve their score when they didn’t do as well as they had hoped.

The system rolls instruction, interaction, and formative and summative assessments all in together in one data rich place.  Instructors can tailor their outreach and additional instruction to specific students or overall trends within a specific cohort.  Those tasked with the assessment of effectiveness portion of curriculum can pull these data to discern what outcomes are being met.  In modern higher-ed, what students know is important but how we know they know what they know is also a priority.  We have to be able to paint a quantitative picture that our curriculum is effective.

Students are re-evaluating their choices for universities and it is wise of all of us to consider our options for content delivery and knowledge assessment.  I think many educators in colleges or universities have attended at least one meeting at this point to discuss the decline in the number of “traditional” college students and some of us may have even been tasked with figuring out what to do about it.  More and more students are faced with the dilemma of needing to manage being caregivers, members of the workforce, or other life challenges while also attaining a degree.  This is our time to be bold and innovative in the classroom and really personalize a student’s experience.  Will there always be “traditional” college classes?  Only time will tell.  I cannot predict where we will be as educators in a decade but I can say that it will be my goal to evolve to meet the demands of the profession.  Science leads us to advances and adaptations so shouldn’t we be advanced and adaptive in science education?

Dr. Tiffany Halfacre (she/her) earned undergraduate degrees from Berea College (Biology) and Saint Petersburg College (Funeral Services), an MSMS from Morsani College of Medicine at the University of South Florida, and a DHSc from A.T. Still University College of Graduate Health Studies.

She has a varied background as an educator spanning over 10 years.  She has taught courses in general biology, human biology, anatomy, physiology, pharmacology, and health sciences in addition to interdisciplinary work in medical humanities.  She has been involved in course development, programmatic and institutional accreditation, and institutional research and effectiveness.  Her research and service interests include exploring health and nutrition literacy as they relate to geographical and socioeconomic differences. Outside of the classroom, she has been involved in chapel series lectures including one on “Truth in Grief” and was awarded the Excellence in Academic Advising award during her tenure at Carson-Newman University for her work advising pre-health professions students.  Dr. Halfacre currently serves as a Lead Faculty and an Assistant Professor of Health Studies at Colorado Technical University where she not only focuses on faculty preparation and support but also initiatives to retain and encourage success in first year and first generation college students.

Her hobbies include anything outdoors, running, amateur photography, and enjoying various arts, specifically music.

Synchronous and asynchronous experiences in Advanced Exercise Physiology Courses: what teaching tools work best for my students?

Covid-19 caught all of us off guard, but educators were hit particularly hard and uniquely. I already have flipped classroom teaching and active learning, so the transition was not too difficult for me. However, I found myself incorporating many technological innovations. Was I doing too much? Which features were helping my students, and which ones were overwhelming? In this blog, I want to share some of the strategies I used with undergraduate students taking Advanced Exercise Physiology synchronously and asynchronously.

 

Additionally, within this blog, I am sharing the student’s perceptions of these technological innovations. In total, fifty-two students enrolled in different sections of “Advanced Exercise Physiology” culminating undergraduate experience (CUE) were invited to participate in a short survey regarding their learning experiences during this current Spring 2021 semester. A total of thirty-nine (n=39) students completed the confidential survey about whether different technological innovations helped them understand the material and study.

Who completed the survey?

Figure 1: Fifty-two students enrolled either in synchronous or asynchronous undergraduate advanced exercise physiology sections were invited to participate, and thirty-nine (n=39) responses were obtained. Seventy-two percent of the responders were enrolled in the asynchronous section, and 27.78% were enrolled in the synchronous section.

 

 

Video assignment for glucose metabolism

 During pre-COVID-19 times, I would teach using active-learning team-based instruction. For the first team-based assignment, student teams were asked to discuss and explain in easy terms one of the most difficult topics for my students: glucose metabolism. For this activity, I would bring Legos, markers of different colors, magnets, and other toys; and students were asked to use the materials and make a video of the complete oxidation of a glucose molecule. This in-class, graded assignment seem to help students to understand the metabolic pathways.  I modified the project due to distance learning, so each student has to create a video using any material desired to explain in simple words (without chemical formulas). This assignment is based on the constructivism theory of learning. It makes it innovative because the students learned that glucose is a six-carbon molecule that has to be fully “broken down” (oxidated) through different stages. Once they understand the steps, they could “name” each step and each enzyme. Some students used coins, Legos, or wrote down the step while explaining the process verbally. Some examples of the submissions can be seen in the links below:

Example submission glycolysis  one and example complete glucose oxidation.

 Students perception on making a video assignment for glucose metabolism

Figure 2: Students’ responses to the question “Having to make the video of metabolism in assignment two helped me understand glucose metabolism.” 71.43% responded true (it was helpful), and 28.57% responded false (it was not helpful)

 

 

 

Incorporation of Virtual Lab Experiences using Visible Body and Lt Kuracloud platforms.

One of the main concerns for me was to maintain and increase engagement while teaching virtually or remotely. I incorporated the Lt Kuracloud, a platform for interactive assignments, immediate feedback, videos, and physiology laboratory experiences in all my courses. I took advantage of the free trial, and I used it for some assignments. I received unsolicited emails from students expressing how helpful they found these assignments.  I also used Visible Body Anatomy and Physiology, which I used for lectures. I recommended it to students as supplemental material and for self-graded quizzes. Visible Body Anatomy and Physiology is available at no cost to students as our Institution’s library obtained the subscription for all the students.

Students’ perceptions: “How helpful do you find the following features? “

Figure 3: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for assignments in Lt Kuracloud was 79.08/100 (sd= 21), and for Visible Body was 74.74/100 (sd= 24)

 

Old Reliable Discussion Board

I recently completed my training on Quality Matters (QM) certification (1), and so my courses follow the rubrics of QM Higher Education General Standards. Specifically, QM Module 1 suggests using an introductory welcoming video encouraging the students to introduce themselves to the class using a video, a meme, a photo, or text. The best, and probably the only feature on Blackboard to do this is the “Discussion Board.” The discussion board is a great feature that allows students to increase participation. After all, students are the biggest consumers of social media, videos, and memes. The Discussion Board should be the closest FERPA approved version of TikTok or Facebook, right? WRONG! It worked fine for the first thread entitled “welcome,” most of the students responded by typing to answer the questions. Nobody made a voice thread, a meme, or a video. Afterward, I encouraged participation on the discussion board by posting questions and suggesting posting questions on the discussion board. After a few “virtual crickets” on Discussion Board, I quit posting questions there and developed interactive lectures with pop-up quizzes. As expected, Discussion Board was not very popular among my students.

Students’ perceptions: “How helpful do you find the discussion board on Blackboard? “

 Figure 4: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for the discussion board was 43.08/100 (sd= 25).

 Interactive pre-recorded lectures

Pre-recorded lectures are integral components of my synchronous and asynchronous course sections. These are developed using the interactive feature in Camtasia, in which I developed animated lectures. Thus, students are asked to watch the lessons and complete short quizzes that provide immediate feedback. If the concept is mastered, the student continues watching. If not, they are redirected to the lecture or part of the lecture where the concept is explained.

 Students’ perceptions: “How helpful do you find the interactive pre-recorded lectures? “

Figure 5: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for interactive pre-recorded lectures was 79.27/100 (sd= 16.8), and for Visible Body was 81.74/100 (sd= 17.8)

 

Quizlet and Quizlet live game

Like many educators worldwide, I teach my students and support their learning throughout our virtual synchronous meetings. Indeed, this is not easy. One day, as I was finishing my class, I heard screams and laughs! My ten-year-old was having so much fun in his most favorite subject. What is going on? I asked, “it was a close one,” my son said, “I got second place.”  It turned out that he was playing a “Quizlet Game.” Quizlet and Quizlet live have been used by teachers and students to reinforce learned material. I decided to try it, and I created a teacher profile to play games during the remote lectures. Every class, I started a Quizlet game; students use their phones or computers to play a race (team and individual). They play a “race” at the beginning of the class and again at the end of the class. This low-risk activity provides me with important information about misconceptions or concepts that are not mastered yet. Students play again towards the end of the class. This simple activity takes 10 minutes of instruction (5 minutes each “race”). However, it has been proven to be both helpful and fun for the students. Quizlet live was used only in my synchronous classes, but the Quizlet study sets were available to both synchronous and asynchronous sections.

I used this with graduate students enrolled in Human Physiology in the previous semester, and it was a hit! Students loved it, and class after class, this became very competitive. Not only were my students very well prepared for class, but also the competition made it so much fun!

Similar to Quizlet are such programs as Kahoot, Brainscape,  and others that are available for free or very affordable options.

Students’ perceptions: “How helpful do you find Quizlet study sets and Quizlet live? “

Figure 6: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for Quizlet sets was 76.86/100 (sd= 24), and for Quizlet live was 68.31/100 (sd= 28). One limitation is that most responders were students in the asynchronous section who did not participate in Quizlet live games.

 

MS Teams meetings and/or virtual office hours

 I chose Microsoft Teams (MS) for my virtual meetings simply because it is widely adopted at my Institution, and I prefer to keep it simple for students. For my synchronous section, I used a flipped virtual model, in which we meet once per week, and the other day they work on their own on assignments. I did this to avoid screen burnout students in the synchronous section. However, I have been happily surprised with students attending remote classes and the various office hours I provide. Yes, I do provide different office hours; very much this semester, I made every space available on my calendar as extra office hours. I realize that for many, meeting online for “virtual office hours” is more accessible to them (and perhaps less intimidating) than attending office hours in my office, as we did pre-pandemic.

Why did I offer so many office hours? First of all, because I could. Since I can’t conduct research studies with humans during the pandemic, it freed some time I had set aside for data collection to teaching.

Additionally, not driving to and from campus saved me an average of 75 minutes per day, which allowed me to have another office hour option. In reality, I did not use all these hours in meetings with students. Many times nobody needed to meet. However, there were a couple of times in which I’d meet with a student who was struggling. Not with the class or the content. But struggling with life, some students had somebody close to them sick or dying; some lost their job or financial aid, some were working exceptionally long hours as essential workers. For some, isolation was too much. One student, in particular, told me recently, “I do not have any questions today; I just needed some social interaction.” Flexible and various virtual office hours seemed beneficial for students, particularly for those in asynchronous e-learning experiences.

Students’ perceptions: “How helpful do you find the MS Teams meetings and virtual office hours? “

 

Figure 7: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for MS Teams and Virtual Office Hours was 75.86/100 (sd= 21).

 

 

 Conclusions

 Like most higher education instructors, I had to adapt quickly and shift to e-learning due to the pandemic. Fortunately, I had already taught online several times before and introduced several components to my flipped courses. However, I still struggled to find more interactive ways to keep my students engaged. Not only educators have to deal with the mental exhaustion of finding pedagogical tools that work in this new scenario when we have not had the time to produce evidence-based successful approaches to teaching remotely. But also, we are teaching distraught students. From the scarce but rapidly growing literature, we know that “our college students are currently struggling to stay hopeful and positive in the wake of the COVID-19 pandemic” (2). When asked about their feelings during the transition to virtual classes, students reported that they felt “uncertain” (59.5%), “anxious” (50.7%), “nervous” (41.2%), and “sad” (37.2%). (3) We have to teach students that are dealing with a lot of negative emotions and stress. We, educators, are also living with many of those emotions. My goal with this blog was to share some of my experiences teaching virtually and provide some ideas for any physiology educator that may need them.

References

Standards from the Quality Matters Higher Education Rubric, Sixth Edition. Quality Matters. Retrieved from Specific Review Standards from the QM Higher Education Rubric, Sixth Edition

  • Munsell, S. E., O’Malley, L. & Mackey, C. (2020). Coping with COVID. Educational Research: Theory and Practice, 31(3), 101-109.
  • Murphy, L., Eduljee, N. B., Croteau, K. College Student Transition to Synchronous Virtual Classes during the COVID-19 Pandemic in Northeastern United States. Pedagogical Research,5(4), em0078. https://doi.org/10.29333/pr/8485
Dr. Terson de Paleville teaches Advanced Exercise Physiology, Neuromuscular Exercise Physiology, and Human Physiology courses. Her research interests include motor control and exercise-induced neuroplasticity. In particular, Dr. Terson de Paleville has investigated the effects of activity-based therapy on respiratory muscles and trunk motor control after spinal cord injury. Additional research project involves the assessment of the effects of exercise training in elementary and middle school students on balance, visual efficiency, motor proficiency, motor control and behavior in the classroom and at home. Dr. Terson de Paleville is interested in elucidating any links between physical activity and academic skills and performance.

 

What do I really want my students to learn about animal physiology?

Each spring semester my colleague and I teach an undergraduate course in animal physiology that emphasizes primary literature and incorporates multiple evidence-based teaching strategies. Using an integrative and comparative approach, students investigate strategies that vertebrate animals use to meet their energy needs, take up and transport oxygen, and maintain hydration and salt balance, with a special emphasis on how animals have adapted to extreme environments. Our course incorporates a flipped teaching (FT) format (2, 4), where students are assigned readings from the textbook and articles from the primary literature outside of class and class time is spent discussing the material and applying that information to explore physiological mechanisms. Instead of lecturing, class time is focused on interactive learning through group work – teamwork is emphasized throughout the course, with students working in groups both inside and outside of class.  Our course learning goals are:

 

1.       Acquire a fundamental knowledge of “how animals work”

2.       Recognize how prior and new knowledge relate to current/future work

3.       Appreciate the importance of animal physiology

4.       Understand how to collect, integrate, and communicate information

5.      Exercise responsibility and teamwork.

 

When Rice University moved all classes online due to the COVID pandemic in spring 2020, we were at mid-semester. So like most other educators around the United States, we moved our class to Zoom. The transition from face-to-face to online instruction went fairly smoothly. Although we had only two weeks to make this shift, we did not have to frantically record lectures since our class meetings were discussion based. Additionally, students had been working in teams since the beginning of the semester so we had an established community in our classroom. Students still attended class online and were engaged for the most part. That being said, we observed that students did not turn on their cameras unless we asked them to and definitely seemed more hesitant to answer and ask questions in Zoom. Student engagement and participation increased dramatically when we put students in small groups in breakout rooms; here they interacted as a team, just like they did at round tables in the classroom pre-COVID. Student feedback at the end of the semester revealed that most of them felt like class didn’t change that much after moving online – however, they did miss the in-person interactions with us and their classmates, and some activities did not translate well to an online format; they truly appreciated our efforts to adapt our teaching and made some great suggestions for how we could improve the course in the future for online and/or face-to-face teaching.

 

After the semester ended, I finally had some time to reflect upon my teaching pre-COVID and during the pandemic. Over the summer, I spent many hours thinking about the course structure and what we would revise for our next offering of the course. As the COVID pandemic continued to rage throughout the fall semester, my colleague and I decided that we would teach our animal physiology course fully online for the spring 2021 semester. And we just learned that due to a spike in COVID cases after Christmas in the Houston area, classes at Rice will be fully remote at least until mid-February. During the pandemic last spring, throughout the summer and fall, and now with classes starting in just two weeks, one key question has guided me as I work on this course: “What do I really want my students to learn about animal physiology?”

How were we assessing student learning?

During the spring 2020 semester, student learning was assessed in multiple ways including individual exams, group exams, a semester long team project, homework, reading quizzes, reflections, etc. Although these mostly formative assessments and the team project require a great deal of effort and time from the students, exams contributed to 70% of the total grade for the course; the team project accounted for 20% of the grade, and all other assignments (e.g., homework, quizzes, reflections) were worth just 10% of the grade. Although there were short “mini exams” every other week, some students still became stressed and anxious when taking the exams, even though they demonstrated an understanding of course material in class discussions and on homework assignments. Once the pandemic forced us to remote instruction, we did modify the exam format to give them more time to take the exam online than they would have had in the classroom; they had a flexible window so they could choose what time/day to take the exam; and the final exam was “open resources.” And we dropped a third exam based on a research article since we lost about two weeks of instruction. We were not overly concerned about cheating since all of our exam questions are short answer format and typically require application and/or synthesis of foundational knowledge to answer the questions (i.e., you can’t just Google the answer).

Overall, student performance on the exams did not change much from pre-COVID to during the pandemic. Still, this weighting of assignments seemed imbalanced to me, with too much emphasis on student performance on exams. I started thinking about how I could shift the weighting of assignments to better reflect student achievement of learning goals. For example, the semester long team project, where students create a fictional animal (1) and showcase their animal during the last week of classes, requires students to understand integration of body systems as well as explain how the systems work together (or don’t) and recognize tradeoffs and physiological constraints. Shouldn’t this creative outlet that requires the highest level of Bloom’s taxonomy count as much towards their course grade as exams? What about all of the other work they do inside and outside of class?

 How did I intentionally redesign my course with strategies to promote student success?

Never having taught a course online before the spring 2020 semester and not being sure how to help students cope with additional stresses caused by the pandemic, I attended or participated in numerous webinars, such as the National Institute on Scientific Teaching SI Happy Hours (https://www.nisthub.org), the APS Institute on Teaching and Learning Virtual Week (https://www.physiology.org/detail/event/2020/06/22/default-calendar/institute-on-teaching-and-learning?SSO=Y), and the APS Webinar Series – Physiology Educators Community of Practice (https://www.physiology.org/detail/event/2020/07/23/default-calendar/physiology-educators-community-of-practice-webinar-series?SSO=Y). Support and resources from the Rice Center for Teaching Excellence (https://cte.rice.edu/preparing-for-spring-2021#resources) have been invaluable as I redesign my course.

In an article submitted to Inside Higher Ed about helping students in times of trauma (3), Mays Imad said,

As teachers, we don’t simply impart information. We need to cultivate spaces where students are empowered co-create meaning, purpose and knowledge — what I have termed a “learning sanctuary.” In such a sanctuary, the path to learning is cloaked with radical hospitality and paved with hope and moral imagination. And it is our connections, the community of the classroom and our sense of purpose that will illuminate that path.”

How can I create a “learning sanctuary” in my classroom environment? What approaches can I take to minimize stress and maximize engagement for students? Here are some strategies I’ve adopted for this upcoming semester to promote student success as we teach our animal physiology course fully online:

  • Shift weighting for assignment categories to an even distribution – exams are worth only 25%!
  • Further modify the exam format to decrease student anxiety and likelihood of cheating – all exams are open resources!
  • Incorporate new assignments to assess student learning – students write a mini review paper about their favorite vertebrate animal.

 How will I know if my students learned animal physiology?

Our overall course goal is “We aim to have you learn mechanisms by which animals solve day to day problems of staying alive; learn skills, strategies, and ways of thinking that are particularly relevant to the study of physiology; and perhaps most important of all, enjoy learning the marvelous phenomena of the animal world.” Throughout the course we strive to help our students learn, not just memorize a bunch of facts that they will forget as soon as they take an exam. In their final reflection about the course, we ask these questions:

1.       What impact has something you learned had on your own perceptions?

2.       What long-term implications did a specific discovery/piece of information have on you/on society?”

3.       What is one or more specific thing that you learned about animals this semester that you will never forget?

I love reading their reflections where they share what they learned in our course. Here are a few of my favorites from the spring 2020 semester:

  •        …This class totally changed my mindset. I’m glad it was animal examples, with maybe a handful of human connections, rather than human examples with animal connections. I think in my past reflections, I have said repeatedly my favorite part was the animal examples, whether it’s a specific example or the comparative examples. I think my very favorite animal we “did” this semester were the diving seals – every kid who has ever been on swim team always had those competitions to see who could hold their breath the longest and the seals were an interesting callback to that. But even before that, I think I learned new information about how animals lived and worked each and every week of this class. Just ask my friends: every week, I’d be sharing some interesting fact from “animal class,” like the reindeer eyes… I now have learned a lot more about animals and have a greater appreciation for them as they compete to survive in their own circumstances. I can safely say I haven’t been this passionate about animals since I was little, going through my “animals” phase, and am hoping to keep this excitement and stay a lifelong learner about different animals and how special they are!
  •         …My perceptions of the importance and complexity of different organisms in physiology has been strongly shifted by this class. I’ve gained an appreciation of different animal systems as they function in different kinds of vertebrates. While I previously had a more human-centric view of physiology from taking the MCAT, I am glad I was able to broaden my perspective to learn more about the different tricks and systems animals employ to suit themselves to their environments…
  •       …It was cool to see the adaptions that different species of animals have to cope in their environment. Some of them seemed so wild, like being able to change how blood flows through your heart, or lungs collapsing in diving mammals. Even mammalian life on our own planet can seem so alien at times. Most of us are familiar with how the human body works, at least in broad strokes, but there are so many other ways to live…
  •       …when you understand how an animal works. When you understand why they do what they do and why they look the way they look, a lot of fear and misunderstanding melts away. It not only cultivates a sense of amazement but also one of understanding and respect.

Even in the midst of a pandemic, I feel confident that my students not only learned physiology but also gained an appreciation for the importance of studying animal physiology. After taking this course, most if not all of them would agree with me that “Animals are Amazing!” And that is what I really want my students to learn about animal physiology.

NOTE: All protocols were approved by the Institutional Review Board of Rice University (Protocol FY2017-294).

References

1.       Blatch S, Cliff W, Beason-Abmayr B, Halpin P. The Fictional Animal Project: A Tool for Helping Students Integrate Body Systems. Adv Physiol Educ 41: 239-243m 2017; doi: 10.1152/advan.00159.2016.

2.       Gopalan C. Effect of flipped teaching on student performance and perceptions in an Introductory Physiology course. Adv Physiol Educ 43: 28–33, 2019; doi:10.1152/advan.00051.2018.

3.       Imad M. Seven recommendations for helping students thrive in times of trauma. INSIDE HIGHER ED, June 3, 2020; https://www.insidehighered.com/advice/2020/06/03/seven-recommendations-helping-students-thrive-times-trauma.

4.       McLean S, Attardi SM, Faden L, Goldszmidt M. Flipped classrooms and student learning: not just surface gains. Adv Physiol Educ 40, 47-55, 2016; doi:10.1152/advan.00098.2015.

Beth Beason-Abmayr, PhD, is a teaching professor of biosciences at Rice University in Houston, TX, and a faculty fellow of the Rice Center for Teaching Excellence. She has developed multiple course-based undergraduate research experiences and a student-centered integrative animal physiology course. Beason-Abmayr is a longtime judge for the International Genetically Engineered Machine (iGEM) competition and a member of the iGEM Executive Judging Committee. She is a past recipient of the George R. Brown Award for Superior Teaching and the Teaching Award for Excellence in Inquiry-Based Learning at Rice and has published in Advances in Physiology Education and the Journal of Microbiology & Biology Education. A National Academies Education Mentor in the Life Sciences, Beason-Abmayr is chair of the Organizing Committee of the American Physiological Society’s 2022 Institute of Teaching and Learning and is an associate editor for Advances in Physiology Education. She earned her PhD in physiology and biophysics at The University of Alabama at Birmingham.

 

 

 

 

Poster sessions: not just for Experimental Biology

At the University of Minnesota, we teach a large physiology lecture/lab class directed at nursing and other allied health focused students. Around week 12 or 13 of a 14-week semester, we host a lab exercise we call “Project Day.”  In this lab, students choose a learning objective, from one of the class sessions previously during the semester, and develop a way to teach this learning objective to their student peers.  Students can make a poster, a work of art or a model.  They can compose a song, write a poem or record a video.  The sky is the limit as long as the project relates to a course objective, emphasizes physiology rather than anatomy and demonstrates a good faith effort.

After more than 15 years of project days, I have experienced an amazing variety of topics and approaches.  I heard about the cardiac cycle in a song called “It’s how your heart works” sung by the Lady Lub Dubs.  Cookies can be primary and secondary active transport proteins and M & Ms can be Na and K ions.  A beaded bracelet can illustrate the phases of the menstrual cycle. Students can learn about renal physiology by playing a game called “Kidney Land.” Lady Gaga’s song, “Poker Face”, can be turned into a parody about the SRY gene. Pipe cleaners can be converted into contractile apparatus. Beer caps can be calcium ions.  The functions of the autonomic nervous system can be dramatized in a play in which Mr. Sympathetic and Mrs. Parasympathetic are in divorce court because they cannot agree on anything.

Over the years, what I have enjoyed the most were the poster presentations.  A song or a video can be a one-way performance but the posters spark interactions. Students stand by their posters during half the class, the TAs and the faculty circulate around the lab rooms.  At the half way point we call “Switch” and the second half of students present as the first presenters circulate. The beauty of project day is the conversations sparked by all those posters.  Conversations about the difference between negative and positive feedback, the difference between skeletal and smooth muscle, the difference between graded potentials and action potentials and the difference between steroid and peptide hormones.

During Project Day, the lab is brimming with enthusiastic questions.

·         Do both cardiac and skeletal muscles have troponin? 

·         Are gamma motor neurons involved in the stretch reflex?

·         Can you help me understand why norepinephrine stimulates the heart but inhibits the intestines?

·         When does the menstrual cycle go from negative feedback to positive feedback?

·         Why do you need a bigger stimulus during the relative refractory period?

·         Are you telling me that T3 works just like the steroids?  How did I not know that?

As I circulated through the lab, I often asked, “why did you choose this topic?”

Sometimes students would say, “I picked this topic because I already knew it and felt confident about it”.  Through my smile, I felt a twinge of sadness that the student decided to play it safe.  More often, a student would say, “Well because I didn’t understand it and I wanted to.”  Or they might say, “I got this wrong on the last exam and I want to make sure I get it right on the final.”

My next question was, “Do you understand it now?”  A beaming smile would show me their answer.

At the end of the lab, we ask the students to engage in a metacognition exercise.  After viewing the posters and other projects we ask, “Can you list three concepts that are still “muddy” for you?  Are there three concepts that you realize you need to study more for the final?”  We ask the students to write down those three concepts and then we ask them to promise that they will intentionally include those three concepts in their studying for the cumulative final exam.

During the Spring of 2020, we suddenly had to switch gears.  The students submitted videos or PowerPoint slides of their projects.  They were posted on the learning management site and students were invited to view them.  Unfortunately, Project Day was not the same. We were missing a vital component……….the conversation! 

What will we do this semester?  We are going to ask the students to make a poster and take a picture of it or craft a poster from one power point slide to present on Zoom (https://zoom.us/).  The students will be sent to breakout rooms and given the ability to share their posters.  TA will be assigned to break out rooms to coordinate the poster presentations of the students.  We are thinking about groups of 8-10 students.  With 5-minute presentations and 5 minutes of questions for each poster, it should take 40-50 minutes.  We will scramble the groups and have them present again. We will grade based on a simple rubric: did it address a learning objective, did it emphasize physiology, was it a good faith effort.

I can imagine that a poster session in zoom breakout sessions could lend themselves to a number of presentation types.  Students could present on famous physiologists, on their own lab work or on a pathophysiologic application of a physiologic concept.  Instructors could adjust their grading rubrics accordingly to meet their specific learning outcomes.

This activity would not have to be done synchronously either.  Students could record a 5-minute presentation of their poster using a software called Flipgrid (https://info.flipgrid.com/). Students could upload their poster into Flipgrid, record their video and view the videos of others.   This software then permits students to post a video response or question.  Students could post a video, comment on 4 other videos and then return to record follow up videos, answering the questions of their peers about their own projects.  This would make a great final project in a lab or a class. 

Synchronous or asynchronous, the important element is that student poster sessions get students talking. As our friend Mary Pat Wenderoth often says, “The students who are doing the talking are the students who are doing the learning.” 

Lisa Carney Anderson is an Associate Professor and Director of Education in the Department of Integrative Biology and Physiology at the University of Minnesota. She completed her doctoral training in muscle physiology at the University of Minnesota. She directs the first year medical physiology course. She also teaches nurse anesthesia students, dental students and undergraduates. She is the 2012 recipient of the Didactic Instructor of the Year Award from the American Association of Nurse Anesthesia.  She co-authored a physiology workbook called Cells to Systems: Critical thinking exercises in Physiology, Kendall Hunt Press. Dr. Anderson’s teaching interests include encouraging active learning through retrieval and assessment of student reflection.  She serves on APS Teaching Section Steering Committee as Secretary.

Can the Flipped Classroom Method of Teaching Influence Students’ Self-Efficacy?
Chaya Gopalan, PhD, FAPS
Associate Professor
Departments of Applied Health, Primary Care & Health Systems
Southern Illinois University Edwardsville

Self-efficacy is the belief in one’s ability to succeed in a specific situation or accomplish a specific task (Bandura, 1977). Students with high self-efficacy have higher motivation to learn and, therefore, are able to reach higher academic goals (Honicke & Broadbent, 2016). Gender, age, and the field of study are some factors that are known to affect self-efficacy (Huang, 2013). Genetics plays a significant role (Waaktaar & Torgersen, 2013). Certain physiological factors such as perceptions of pain, fatigue, and fear may have a marked, deleterious effect on self-efficacy (Vieira, Salvetti, Damiani, & Pimenta, 2014). In fact, research has shown that self-efficacy can be strengthened by positive experiences, such as mastering a skill, observing others performing a specific task, or by constant encouragement (Vishnumolakala, Southam, Treagust, Mocerino, & Qureshi, 2017). Enhancement of self-efficacy may be achieved by the teachers who serve as role models as well as by the use of supportive teaching methods (Miller, Ramirez, & Murdock, 2017). Such boost in self-efficacy helps students achieve higher academic results.

The flipped classroom method of teaching shifts lectures out of class. These lectures are made available for students to access anytime and from anywhere. Students are given the autonomy to preview the content prior to class where they can spend as much time as it takes to learn the concepts. This approach helps students overcome cognitive overload by a lecture-heavy classroom.  It also enables them to take good notes by accessing lecture content as many times as necessary. Since the lecture is moved out of class, the class time becomes available for deep collaborative activities with support from the teacher as well as through interaction with their peers. Additionally, the flipped teaching method allows exposure to content multiple times such as in the form of lecture videos, practice questions, formative assessments, in-class review, and application of pre-class content. The flipped classroom therefore provides a supportive atmosphere for student learning such as repeated exposure to lecture content, total autonomy to use the constantly available lecture content, peer influence, and support from the decentered teacher. These listed benefits of flipped teaching are projected to strengthen self-efficacy which, in turn, is expected to increase students’ academic performance. However, a systematic approach measuring the effectiveness of flipped teaching on self-efficacy is lacking at present.

References:

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review84(2), 191.

de Moraes Vieira, É. B., de Góes Salvetti, M., Damiani, L. P., & de Mattos Pimenta, C. A. (2014). Self-efficacy and fear avoidance beliefs in chronic low back pain patients: coexistence and associated factors. Pain Management Nursing15(3), 593-602.

Honicke, T., & Broadbent, J. (2016). The influence of academic self-efficacy on academic performance: A systematic review. Educational Research Review17, 63-84.

Huang, C. (2013). Gender differences in academic self-efficacy: A meta-analysis. European journal of psychology of education28(1), 1-35.

Miller, A. D., Ramirez, E. M., & Murdock, T. B. (2017). The influence of teachers’ self-efficacy on perceptions: Perceived teacher competence and respect and student effort and achievement. Teaching and Teacher Education64, 260-269.

Vishnumolakala, V. R., Southam, D. C., Treagust, D. F., Mocerino, M., & Qureshi, S. (2017). Students’ attitudes, self-efficacy and experiences in a modified process-oriented guided inquiry learning undergraduate chemistry classroom. Chemistry Education Research and Practice18(2), 340-352.

Waaktaar, T., & Torgersen, S. (2013). Self-efficacy is mainly genetic, not learned: a multiple-rater twin study on the causal structure of general self-efficacy in young people. Twin Research and Human Genetics16(3), 651-660.

Dr. Chaya Gopalan received her PhD in Physiology from the University of Glasgow, Scotland. Upon completing two years of postdoctoral training at Michigan State University, she started her teaching career at St. Louis Community College. She is currently teaching at Southern Illinois University Edwardsville. Her teaching is in the areas of anatomy, physiology, and pathophysiology at both undergraduate and graduate levels for health science career programs. Dr. Gopalan has been practicing evidence-based teaching where she has tested team-based learning and case-based learning methodologies and most recently, the flipped classroom. She has received several grants to support her research interest.

Student Evaluation of Teaching – The Next 100 Years

Mari K. Hopper, PhD
Sam Houston State University

Student evaluation of teaching (SET) has been utilized and studied for over 100 years. Originally, SET was designed by faculty to gather information from students in order to improve personal teaching methods (Remmers and Guthrie, 1927). Over time, SET became increasingly common. Reports in the literature indicate 29% of institutions of higher education employed this resource in 1973, 68% in 1983,  86% in 1993, and 94.2% in 2010 (Seldin, 1993).

Today, SET is employed almost universally, and has become a routine task for both faculty and students. While deployment of this instrument has increased, impact with faculty has declined. A study published in 2002 indicated only 2-10% of instructors reported major teaching changes based on SET (Nasser & Fresko, 2002). However, results of SET has become increasingly important in making impactful faculty decisions including promotion and tenure, merit pay, and awards. A study by Miller and Seldin (2010), reported that 99.3% Deans use SET in evaluating their faculty (Miller & Seldin, 2014)

The literature offers a rich discussion of issues related to SET including bias, validity, reliability, and accuracy. Although discussions raise concern for current use of SET, institutions continue to rely on SET for multiple purposes. As a consequence, it has become increasingly important that students offer feedback that is informative, actionable, and professional. It would also be helpful to raise student awareness of the scope, implications, and potential impact of SET results. 

To that end, I offer the following suggestions for helping students become motivated and effective evaluators of faculty:

  • Inform students of changes made based on evaluations from last semester/year
  • Share information concerning potential bias (age, primary language, perception of grading leniency, etc.)
  • Inform of full use including departmental and campus wide (administrative decisions, awards, P & T, etc,)
  • Establish a standard of faculty performance for each rating on the Likert scale (in some cases a 3 may be the more desirable indicator)
  • Inform students of professionalism, and the development of professional identity. Ask students to write only what they would share in face-to-face conversation.
  • Ask students to exercise caution and discrimination – avoid discussing factors out of faculty control (class size, time offered, required exams, classroom setting, etc.)
  • If indicating a faculty behavior is unsatisfactory – offer specific reasons
  • When writing that a faculty member display positive attributes – be sure to include written comments of factual items, not just perceptions and personal feelings
  • Give students examples of USEFUL and NOT USEFUL feedback
  • Distinguish between ‘anonymous’ and ‘blinded’ based on your school’s policy

Although technology has made the administration of SET nearly invisible to faculty, it is perhaps time for faculty to re-connect with the original purpose. It is also appropriate for faculty to be involved in the process of developing SET instruments, and screening questions posed to their students. Additionally, it is our responsibility to help students develop proficiency in offering effective evaluation. Faculty have the opportunity, and perhaps a responsibility, to determine the usefulness and impact of SET for the next 100 years.

Please share your ideas about how we might return to the original purpose of SET – to inform our teaching. I would also encourage you to share instructions you give your students just prior to administering SET. 

Mari K. Hopper, PhD, is currently the Associate Dean for Biomedical Sciences at Sam Houston State University Proposed College of Osteopathic Medicine. She received her Ph.D. in Physiology from Kansas State University. She was trained as a physiologist with special interest in maximum capabilities of the cardiorespiratory and muscular systems. Throughout her academic career she has found immense gratification in working with students in the classroom, the research laboratory, and in community service positions. Dr Hopper has consistently used the scholarly approach in her teaching, and earned tenure and multiple awards as a result of her contributions in the area of scholarship of teaching and learning. She has focused on curriculum development and creating curricular materials that challenge adult learners while engaging students to evaluate, synthesize, and apply difficult concepts. At SHSU she will lead the development of the basic science curriculum for the first two years of medical school. Dr Hopper is very active in professional organizations and currently serves as the Chapter Advisory Council Chair for the American Physiological Society, the HAPS Conference Site Selection Committee, and Past-President of the Indiana Physiological Society. Dr Hopper has four grown children and a husband David who is a research scientist.

Fostering an Inclusive Classroom: A Practical Guide

Ah, the summer season has begun! I love this time of year, yes for the sun and the beach and baseball games and long, lazy summer reading, but also because it gets me thinking about new beginnings. I’ve always operated on a school-year calendar mindset, so if you’re like me, you’re probably reflecting on the successes and shortcomings of the past year, preparing for the upcoming fall semester, or maybe even launching into a new summer semester now. As campuses become more diverse, fostering an inclusive learning environment becomes increasingly important, yet the prospect of how to do so can be daunting. So where to start?

First, recognize that there is not just one way to create an inclusive classroom. Often, the most effective tactics you use may be discipline-, regional-, campus-, or classroom-specific. Inclusive teaching is a student-oriented mindset, a way of thinking that challenges you to maximize opportunities for all students to connect with you, the course material, and each other.

Second, being proactive before a semester begins can save you a lot of time, headaches, and conflict down the road. Set aside some dedicated time to critically evaluate your course structure, curriculum, assignments, and language choices before ever interacting with your students. Consider which voices, perspectives, and examples are prominent in your class materials, and ask yourself which ones are missing and why. Try to diversify the mode of content representation (lectures, videos, readings, discussions, hands-on activities, etc.) and/or assessments types (verbal vs. diagrammed, written vs. spoken, group vs. individual, online vs. in-class, etc.). Recognize the limits of your own culture-bound assumptions, and, if possible, ask for feedback from a colleague whose background differs from your own.

Third, know that you don’t have to change everything all at once. If you are developing an entirely new course/preparation, you’ll have less time to commit to these endeavors than you might for a course you’ve taught a few times already. Recognize that incremental steps in the right direction are better than completely overwhelming yourself and your students to the point of ineffectiveness (Trust me, I’ve tried and it isn’t pretty!)

Below, I have included some practical ways to make a classroom more inclusive, but this list is far from comprehensive. As always, feedback is much appreciated!

Part 1: Course Structure and Student Feedback

These strategies require the largest time commitment to design and implement, but they are well worth the effort.

  • Provide opportunities for collaborative learning in the classroom. Active learning activities can better engage diverse students, and this promotes inclusivity by allowing students from diverse backgrounds to interact with one another. Furthermore, heterogeneous groups are usually better problem-solvers than homogeneous ones.
  • Implement a variety of learning activity types in order to reach different kinds of learners. Use poll questions, case studies, think-pair-share, jigsaws, hands-on activities, oral and written assignments, etc.
  • Select texts/readings whose language is gender-neutral or stereotype-free, and if you run across a problem after the fact, point out the text’s shortcomings in class and give students the opportunity to discuss it.
  • Promote a growth mindset. The language you use in the classroom can have a surprising impact on student success, even when you try to be encouraging. How many of us have said to our students before a test, “You all are so smart. I know you can do this!”? It sounds innocent enough, but this language conveys that “being smart” determines success rather than hard work. Students with this fixed mindset are more likely to give up when confronted with a challenge because they don’t think they are smart/good/talented enough to succeed. Therefore, when we encourage our students before an assessment or give them feedback afterwards, we must always address their effort and their work, rather than assigning attributes (positive or negative) to them as people.
  • Convey the same level of confidence in the abilities of all your students. Set high expectations that you believe all students can achieve, emphasizing the importance of hard work and effort. Perhaps the biggest challenge is maintaining high expectations for every student, even those who have performed poorly in the past. However, assuming a student just can’t cut it based on one low exam grade may be as damaging as assuming a student isn’t fit due to their race, gender, background, etc.
  • Be evenhanded in praising your students. Don’t go overboard as it makes students feel like you don’t expect it of them.

Part 2: Combating Implicit Bias

Every one of us harbors biases, including implicit biases that form outside of our conscious awareness. In some cases, our implicit biases may even run counter to our conscious values. This matters in the classroom because implicit bias can trigger self-fulfilling prophecies by changing stereotyped groups’ behaviors to conform to stereotypes, even when the stereotype was initially untrue. Attempting to suppress our biases is likely to be counterproductive, so we must employ other strategies to ensure fairness to all our students.

  • Become aware of your own biases, by assessing them with tools like the Harvard Implicit Association Test (https://implicit.harvard.edu/implicit/takeatest.html) or by self-reflection. Ask yourself: Do I interact with men and women in ways that create double standards? Do I assume that members of one group will need extra help in the classroom – or alternatively, that they will outperform others? Do I undervalue comments made by individuals with a different accent than my own?
  • Learn about cultures different than your own. Read authors with diverse backgrounds. Express a genuine interest in other cultural traditions. Exposure to different groups increases your empathy towards them.
  • Take extra care to evaluate students on individual bases rather than social categorization / group membership. Issues related to group identity may be especially enhanced on college campuses because this is often the first time for students to affirm their identity and/or join single-identity organizations / groups.
  • Recognize the complexity of diversity. No person has just one identity. We all belong to multiple groups, and differences within groups may be as great as those across groups.
  • Promote interactions in the classroom between different social groups. Even if you choose to let students form their own groups in class, mix it up with jigsaw activities, for example.
  • Use counter-stereotypic examples in your lectures, case studies, and exams.
  • Employ fair grading practices, such as clearly-defined rubrics, anonymous grading, grading question by question instead of student by student, and utilize activities with some group points and some individual points.

Part 3: Day-to-Day Classroom Culture

These suggestions fall under the “biggest bang for your buck” category. They don’t require much time to implement, but they can go a long way to making your students feel more welcome in your classroom.

  • Use diverse images, names, examples, analogies, perspectives, and cultural references in your teaching. Keep this in mind when you choose pictures/cartoons for your lectures, prepare in-class or take-home activities, and write quiz/test questions. Ask yourself if the examples you are using are only familiar or relevant to someone with your background. If so, challenge yourself to make it accessible to a wider audience.
  • Pay attention to your terminology and be willing to adjust based on new information. This may be country-, region-, or campus-specific, and it may change over time (e.g. “minority” vs. “historically underrepresented”). When in doubt, be more specific rather than less (e.g. “Korean” instead of “Asian”; “Navajo” instead of “Native American”).
  • Use inclusive and non-gendered language whenever possible (e.g. “significant other/partner” instead of “boyfriend/husband,” “chairperson” instead of “chairman,” “parenting” instead of “mothering”).
  • Make a concerted effort to learn your students’ names AND pronunciations. Even if it takes you a few tries, it is a meaningful way to show your students you care about them as individuals.
  • Highlight the important historical and current contributions to your field made by scientists belonging to underrepresented groups.
  • Limit barriers to learning. You will likely have a list of your own, but here are a few I’ve compiled:
    • Provide lecture materials before class so that students can take notes on them during class.
    • Use a microphone to make sure all students can hear you clearly.
    • Consider using Dyslexie font on your slides to make it easier for dyslexic students to read them.
    • Speak slowly and limit your use of contractions so that non-native-English speakers can understand you more easily.
    • Write bullet points on the board that remain there for the whole class period, including the main points for that lecture, important dates coming up, and key assignments.
    • Be sensitive to students whose first language is not English and don’t punish them unnecessarily for misusing idioms.

As a final parting message, always try to be mindful of your students’ needs, but know that you don’t have everything figured out at the outset. Make time to reevaluate your approach, class materials, and activities to see where improvements can be made. Challenge yourself to continually improve and hone better practices. Listen to your students, and be mindful with the feedback you ask them to give you in mid-semester and/or course evaluations.

For more information, I recommend the following resources:

  1. Davis, BG. “Diversity and Inclusion in the Classroom.” Tools for Teaching (2nd Ed). San Francisco: Jossey-Bass, A Wiley Imprint. p 57 – 71. Print.
  2. Eredics, Nicole. “16 Inclusive Education Blogs You Need to Know About!” The Inclusive Class, 2016 July 27. http://www.theinclusiveclass.com/2016/07/16-inclusive-education-blogs-you-need.html
  3. Handelsman J, Miller S, Pfund C. “Diversity.” Scientific Teaching. New York: W. H. Freeman and Company, 2007. p 65 – 82. Print.
  4. “Instructional Strategies: Inclusive Teaching and Learning.” The University of Texas at Austin Faculty Innovation Center. https://facultyinnovate.utexas.edu/inclusive

Laura Weise Cross is an Assistant Professor of Biology at Millersville University, beginning in the fall of 2019, where she will be teaching courses in Introductory Biology, Anatomy & Physiology, and Nutrition. Laura received a B.S. in Biochemistry from the University of Texas and a Ph.D. in Molecular and Cellular Pathology from the University of North Carolina. She recently completed her post-doctoral training in the Department of Cell Biology & Physiology at the University of New Mexico, where she studied the molecular mechanisms of hypoxia-induced pulmonary hypertension. Laura’s research is especially focused on how hypoxia leads to structural remodeling of the pulmonary vessel wall, which is characterized by excessive vascular smooth muscle cell proliferation and migration. She looks forward to engaging undergraduate students in these projects in her new research lab.

How to motivate students to come prepared for class?

The flipped classroom is a teaching method where the first exposure to the subject occurs in an individual learning space and time and the application of content is practiced in an interactive guided group space. Freeing up class time by shifting traditional lecture outside of class allows the instructor more time for student-centered activities and formative assessments which are beneficial to students. The flipped teaching model has been shown to benefit students as it allows self-pacing, encourages students to become independent learners, and assists them to remain engaged in the classroom. In addition, students can access content anytime and from anywhere. Furthermore, collaborative learning and peer tutoring can be integrated due to freed-up class time with this student-centered approach. Given these benefits, the flipped teaching method has been shown to improve student performance compared to traditional lecture-based teaching. Compared to the flipped classroom, the traditional didactic lecture is considered a passive type of delivery where students may be hesitant to ask questions and may omit key points while trying to write or type notes.

There are two key components in the flipped teaching model: pre-class preparation by students and in-class student-centered activities. Both steps involve formative assessments to hold students accountable. The importance of the pre-class assessment is mainly to encourage students to complete their assignments and therefore, they are better prepared for the in-class application of knowledge. In-class activities involve application of knowledge in a collaborative space with the guidance of the instructor. Although the flipped teaching method is highly structured, students still come to class unprepared.

Retrieval practice is yet another powerful learning tool where learners are expected to recall information after being exposed to the content. Recalling information from memory strengthens information and forgetting is less likely to occur. Retrieval of information strengthens skills through long-term meaningful learning. Repeated retrieval through exercises involving inquiry of information is shown to improve learning.

The use of retrieval strategy in pre-class assessments is expected to increase the chance of students completing their pre-class assignment, which is often a challenge. Students attending class without having any exposure to the pre-class assignment in the flipped classroom will drastically affect their performance in the classroom. In my flipped classroom, a quiz consisting of lower level of Bloom’s taxonomy questions is given over the pre-class assignment where the students are not expected to utilize any resources or notes but to answer questions from their own knowledge. Once this exercise is completed, a review of the quiz and the active learning portion of the class occurs. I use a modified team-based learning activity where the groups begin answering higher order application questions. Again, no resources are accessible during this activity to promote their preparation beforehand. Since it is a group activity, if one student is not prepared, other students may fill this gap. The group typically engages every student and there is a rich conversation of the topic being discussed in class. The classroom becomes a perfect place for collaborative learning and peer tutoring. For rapid feedback to the students, the group answers to application questions are discussed with the instructor prior to the end of the class session.

Student preparation has improved since the incorporation of the flipped teaching model along with retrieval exercises in my teaching, but there are always some students who are not motivated to come prepared to class. It is possible that there are other constraints students may have that we will not be able to fix but will continue to be searching for and developing newer strategies for helping these students maximize their learning.

Dr. Gopalan received her PhD in Physiology from the University of Glasgow, Scotland. After completing two years of postdoctoral training at Michigan State University, she began her teaching endeavor at Maryville University where she taught Advanced Physiology and Pathophysiology courses in the Physical Therapy and Occupational Therapy programs as well as the two-semester sequence of Human Anatomy and Physiology (A&P) courses to Nursing students. She later joined St. Louis Community College where she continued to teach A&P courses. Dr. Gopalan also taught at St. Louis College of Pharmacy prior to her current faculty position at Southern Illinois University Edwardsville where she teaches Advanced Human Physiology and Pathophysiology for the doctoral degrees in the Nurse Anesthetist and Nurse Practitioner programs. Besides teaching, she has an active research agenda in teaching as well as in the endocrine physiology field she was trained in.
Questioning How I Question

For some, “assessment” is sometimes a dirty word, with visions of rubrics, accreditation reports, and piles of data.  Readers of this blog hopefully do not have this vantage point, thanks in part to some great previous posts on this topic and an overall understanding of how assessment is a critical component of best practices in teaching and learning.  Yet, even as a new(ish) faculty member who values assessment, I still struggle with trying to best determine whether my students are learning and to employ effective and efficient (who has time to spare?!) assessment strategies.  Thus, when a professional development opportunity on campus was offered to do a book read of “Fast and Effective Assessment: How to Reduce Your Workload and Improve Student Learning” by Glen Pearsall I quickly said “Yes! Send me my copy!”

 

Prior to the first meeting of my reading group, I dutifully did my homework of reading the first chapter (much like our students often do, the night before…).  Somewhat to my surprise, the book doesn’t start by discussing creating formal assessments or how to effectively grade and provide feedback.  Rather, as Pearsall points out “a lot of the work associated with correction is actually generated long before students put pen to paper. The way you set up and run a learning activity can have a profound effect on how much correction you have to do at the end of it.” The foundation of assessment, according to Pearsall is then questioning technique. 

 

Using questions to promote learning is not a new concept and most, even non-educators, are somewhat familiar with the Socratic Method.  While the simplified version of the Socratic Method is thought of as using pointed questions to elicit greater understanding, more formally, this technique encourages the student to acknowledge their own fallacies and then realize true knowledge through logical deduction[1],[2].  Compared to the conversations of Socrates and Plato 2+ millennia ago, modern classrooms not only include this dialectic discourse but also other instructional methods such as didactic, inquiry, and discovery-based learning (or some version of these strategies that bears a synonymous name).  My classroom is no different — I ask questions all class long, to begin a session (which students answer in writing to prime them into thinking about the material they experienced in preparation for class), to work through material I am presenting (in order to encourage engagement), and in self-directed class activities (both on worksheets and as I roam the room).  However, it was not until reading Pearsall’s first chapter that I stopped to question my questions and reflect on how they contribute to my overall assessment strategy.

 

Considering my questioning technique in the context of assessment was a bit of a reversal in thinking.  Rather than asking my questions to facilitate learning (wouldn’t Socrates be proud!), I could consider my questions providing important feedback on whether students were learning (AKA…Assessment!).  Accordingly, the most effective and efficient questions would be ones that gather more feedback in less time.  Despite more focus on the K-12 classroom, I think many of Pearsall’s suggestions[3] apply to my undergraduate physiology classes too.  A brief summary of some strategies for improving questioning technique, separated by different fundamental questions:

 

 

How do I get more students to participate?

  • We can “warm up” cold calling to encourage participation through activities like think-pair-share, question relays, scaffolding answers, and framing speculation.
  • It is important to give students sufficient thinking time through fostering longer wait and pause times. Pre-cueing and using placeholder or reflective statements can help with this.

How do I elicit evidentiary reasoning from students?

  • “What makes you say that?” and “Why is _____ correct?” encourages students to articulate their reasoning.
  • Checking with others and providing “second drafts” to responses emphasizes the importance of justifying a response.

How do I sequence questions?

  • The right question doesn’t necessarily lead to better learning if it’s asked at the wrong time.
  • Questions should be scaffolded so depth and complexity develops (i.e. detail, category, elaboration, evidence).

How do I best respond to student responses?

  • Pivoting, re-voicing, and cueing students can help unpack incorrect and incomplete answers as well as build and explore correct ones.

How do I deal with addressing interruptions?

  • Celebrating good practices, establishing rules for discussion, making it safe to answer and addressing domineering students can facilitate productive questioning sessions.

 

After reviewing these strategies, I’ve realized a few things.  First, I was already utilizing some of these techniques, perhaps unconsciously, or as a testament to the many effective educators I’ve learned from over the years.  Second, I fall victim to some questioning pitfalls such as not providing enough cueing information and leaving students to try their hand at mind-reading what I’m trying to ask more than I would like.  Third, the benefits of better questioning are real.  Although only anecdotal and over a small sampling period, I have observed that by reframing certain questions, I am better able to determine if students have learned and identify what they may be missing.  As I work to clean up my assessment strategies, I will continue to question my questions, and encourage it in my colleagues as well.

 

1Stoddard, H.A. and O’Dell, D.A. Would Socrates Have Actually Used the Socratic Method for Clinical Teaching? J Gen Intern Med 31(9):1092–6. 2016.

2Oyler, D.R. and Romanelli, F. The Fact of Ignorance Revisiting the Socratic Method as a Tool for Teaching Critical Thinking. Am J of Pharm Ed; 78 (7) Article 144. 2014.

3A free preview of the first chapter of Pearsall’s book is available here.

Anne Crecelius (@DaytonDrC) is an Assistant Professor in the Department of Health and Sport Science at the University of Dayton where she won the Faculty Award in Teaching in 2018.  She teaches Human Physiology, Introduction to Health Professions, and Research in Sport and Health Science. She returned to her undergraduate alma mater to join the faculty after completing her M.S. and Ph.D. studying Cardiovascular Physiology at Colorado State University.  Her research interest is in the integrative control of muscle blood flow.  She is a member of the American Physiological Society (APS), serving on the Teaching Section Steering Committee and will chair the Communications Committee beginning in 2019.  In 2018, she was awarded the ADInstruments Macknight Early Career Innovative Educator Award.