Category Archives: Assessment

“Is integrated curriculum disintegrating the holistic approach among smart learners?”

I feel smart learners are becoming surface learners in the integrated curriculum by juggling with only the learning outcomes included in the blueprint without processing the information. They calculate the bare minimum content required just to pass. They are not ready to come out of their comfort zone to progress by acquiring hard-core concepts at the level of application and synthesis. They appear in a module exam and stop relating it to other modules.

Integrated curriculum is being implemented at the cost of lack of ownership by subject specialists. System-based modules lay the foundation of disciplines on Anatomy but not on the themes associated with clinical features like chest pain. When diseases are studied within systems, the integration is itself disintegrated into anatomical boundaries.

Problem-based learning from which students can derive their own learning outcomes to solve the scenario remains the only hope to integrate the systems, as diseases seldom restrict themselves to one system. As assessment drives learning, PBL may be assessed by case-cluster-MCQs and integrated viva by relevant subject specialists. Being a student-centered methodology, adding to the burden of an integrated curriculum involving multiple subjects, PBL is usually neglected by the student body. There is a dire need to innovate PBL and make it interesting by using students as simulated patients and by allowing them into doctor-patient-role-play, whereas the remaining students may be engaged in healthy critique and feedback along with critical thinking, leadership and teamwork to achieve academic as well as social learning. PBL workshops with faculty and students may be beneficial.

The relatively new concept of “patients as educators of students” may be practiced by recruiting actors and real patients carefully through interviews and seeking their consent for history-taking and/or physical examination. Feedback and assessment by simulated patients may contribute to real-patient safety. Their video may be created as a future learning resource. Smart learners need smart teachers to handle them along with their modern curriculum.

Prof. Dr. Samina Malik

HOD Physiology, University College of Medicine and Dentistry, The University of Lahore

PBL Country head for Pakistan, Asia-Pacific Association on PBL in Health Sciences (APA-PHS)

Secretary General, South Asian Association of Physiologists

Masters in Med Edu student at Dundee university, UK

Member APS, Teaching of Physiology section (Member No. 00307332)

Supporting Student Development of Competencies for Health Professions

Like many undergraduate physiology instructors, most of the students I teach are targeting health professional graduate programs after they graduate.  These future physicians, physician assistants, physical therapists, and occupational therapists are interested in the content of my physiology course, as it is often a prerequisite for their applications.  However, in addition to the content of my course, I seek to develop and observe several core competencies that extend beyond subject matter knowledge.  Various health professional organizations have identified a range of competencies they seek in applicants, and most centralized application services ask recommenders to address students’ level of attainment of these competencies.

 

One resource that I have found valuable is the Anatomy of an Applicant guide from the Association of American Medical Colleges which includes the 15 Core Competencies for Entering Medical Students.  These competencies are endorsed by the AAMC Group on Student Affairs (GSA) Committee on Admissions (COA) and help communicate the standards expected of all applicants accepted into medical school.

The competencies are organized into three categories:

Preprofessional Competencies: service orientation, social skills, cultural competence, teamwork, oral communication, ethical responsibility to self and others, reliability and dependability, resilience and adaptability, and capacity for improvement.

Thinking and Reasoning Competencies: critical thinking, quantitative reasoning, scientific inquiry, and written communication.

Science Competencies: living systems and human behavior.

While a physiology course can obviously address science and thinking and reasoning competencies, there are also other opportunities to develop preprofessional competencies in class.  By designing in-class activities in groups, I am able to observe students’ teamwork and oral communication skills.  Oral exams, a technique I employ in my classes also allows me to observe oral communication skills.  Cultural competency can be developed through emphasizing an inclusive classroom and incorporating diverse perspectives into the content included.

Not all of my students are targeting medical school, but there are similar competencies identified in other professions including physician assistant, physical therapy, and across multiple health professions.  In fact, these overlapping competencies can be used as ways to connect students that are pursuing different career paths and highlight the similarities across professions.

One of the challenges of non-science competencies is how to evaluate a students’ achievement.  We are all familiar with standardized exams that can assess the level of science knowledge, or thinking and reasoning capabilities.  Less well-known and discussed are the emerging ways in which other competencies are assessed.  Several programs now require applicants to take the CASPer exam, an open-response situational judgement test.  According to CASPer, the exam assesses: collaboration, communication, empathy, equity, ethics, motivation, problem solving, professionalism, resilience, and self-awareness.  Research has shown predictive validity of CASPer scores and national licensure outcomes which likely supports the increased use of this noncognitive assessment in the application process.  In addition to standardized exams that can be used in application processes, it may be of interest to physiology educators to be aware of assessment tools for specific competencies such as cultural competence and resilience.

Whether one is formally assessing the desired competencies or informally observing them in the classroom and/or laboratory, it is clear that there will continue to be an increased interest in students’ capabilities beyond simply their scientific knowledge.  As educators, it is important to try to support student development in these areas in our classrooms and design activities with this goal in mind.

 

Anne R Crecelius, Associate Professor, University of Dayton

She teaches Human Physiology and a Capstone Research course. She returned to her undergraduate alma mater to join the faculty after completing her M.S. and Ph.D. studying Cardiovascular Physiology at Colorado State University. Her research interest in in the integrative control of blood flow. She is a member of the American Physiological Society (APS) and an inaugural member of the advisory board of the newly established Center for Physiology Education.

Still looking for an ethical way to assess “lifelong learning”

Medical school accreditation process requires that institutions document that medical students develop the skills for “lifelong learning”.  As other standards of the section require that you answer precisely the question that is asked, I found this topic particularly challenging.  “Lifelong” requires that the assessment occurs at the end of life.   Otherwise, you may have been a learner for three-quarters of your life, and this is not lifelong.  One option would be to assess learning capability and then immediately “dispatch” the individual, providing a data point that indeed reflects lifelong learning.  Even as my caffeine titers swing wildly from under- to over-caffeinated, this approach seems unlikely to pass the Institutional Review Board.  In fact, submission of the application may result in my developing a close relationship with individuals with behavioral clinical expertise.

When reaching an impasse, return to the original question. Revisiting the Liaison Committee on Medical Education (LCME) element # 6.3, the title is actually “Self-Directed and Lifelong Learning”.  So, there may be an opening – focus instead on Self-Directed Learning.  The accreditation documents helpfully provide an expanded description

“The faculty of a medical school ensure that the medical curriculum includes self-directed learning experiences that allow medical students to develop the skills of lifelong learning. Self-directed learning involves medical students’ self-assessment of learning needs; independent identification, analysis, and synthesis of relevant information; appraisal of the credibility of information sources; and feedback on these skills from faculty and/or staff.”

Part of the quandary is rooted in the shift of professional education from information acquisition to the development of competencies.  Competencies are much better aligned with professional behaviors, and include aspects of knowledge, skills, and attitudes.  Among the competency domain buckets, self-directed learning is more appropriately identified as a skill and an attitude.

Conversation with a friend (pre-pandemic) indicated that a transposition of the phrase would be useful, and that “directed self-learning” is a more appropriate goal for professional school.  Each institution has a desired set of learning outcomes – the curriculum for the faculty must guide the students so that the skill of independent learning focuses on the knowledge content that must be learned.

The first component in the LCME expanded definition of the element is “…self-assessment of learning needs.”  Assessing this is a challenge – if a learner does identify a gap, you as the facilitator can check off that box.  More challenging is a situation when you recognize a learning need and the learner does not.  To get to check off that box, you have to use open-ended questions to probe the learner’s current state of awareness and lead them on a voyage of self-discovery.  It is indeed a challenge, but the ability to self-identify gaps is an essential characteristic of a professional.  While the journey is a challenge, the creation of the list of learning objectives as an outcome is nice, tangible, and easy to assess.

The second component is more straight-forward “…independent identification, analysis, and synthesis of relevant information.”  Finally, I get to return to my comfort zone – information.   Acquiring information as proof that you know how to acquire information is one logical outcome that is easy to assess.  Assessment of the ability to synthesize that information with other relevant information gets more obscure, and ultimately requires a value judgment.  Overall, still doable.

The third component is “appraisal of the credibility of information sources”.   After establishing a few boundaries (such as “Cite Wikipedia and I will hold you up for public shaming”), learners progressively master when to use texts, professional society position papers, clinical research studies and meta-analyses to obtain the appropriate type and depth of information.  That box is checked.

The concluding component “feedback on these skills”, returns the focus to assessment.   To document this, you have to do an assessment on assessment, or a meta-assessment.  And as evidence both that knowledge alone is not enough and that the ability to appraise the credibility of sources is needed, a Bing search produced over 1 billion web hits for the term “meta-assessment”.  Google Scholar was a little more selective returning only 1,290 results.  None of which I intend to read.

We now live in a world where knowledge gaps are no longer perceived as a problem.  For example, what if I wanted to go to Vermillion South Dakota and did not know how to get there?  The knowledge gap is unimportant as long as I know a successful strategy to remedy that gap.  Apple maps now becomes my new best friend.  Even in 2022, knowledge does still matter.  A keyboarding or spelling error can send (and has sent) travelers in interesting directions.  An individual needs to realize when they are headed in the wrong direction.

So, the “lifelong” adjective remains a non-starter in terms of assessment.  Directed self-learning, however, is a needed goal as we prepare professionals for the challenges that await them.

 

Robert G. Carroll earned his Ph.D. in 1981 from the Graduate School of Biomedical Sciences of the University of Medicine and Dentistry of New Jersey-Newark. Following a 3 year post-doc at University of Mississippi Medical Center in Jackson, he moved to East Carolina University in 1984 as an Assistant Professor of Physiology. He is currently Professor of Physiology at the Brody School of Medicine at East Carolina University and the Associate Dean for Medical Education.

Rob is the past chair the Education Committee for the American Physiological Society, and currently chairs the Education Committee of the International Union of Physiological Sciences. He was editor of the journal “Advances in Physiology Education” from 2008-2013.

Robert G. Carroll, PhD.

Professor of Physiology

Associate Dean for Medical Student Education

Brody School of Medicine at East Carolina University

Greenville NC USA

Do Animals & Aliens belong in a Human Physiology course?

As a human physiology instructor, one of the most frequent comments I get from students is about how hard the course is. In fact, I have started to bring this up right at the beginning of the semester and offer my students many ways to overcome the challenges, including keeping up with the reading and the homework, coming to office hours with questions, forming study groups, etc… There are several reasons why the students struggle with the physiology course. Physiology can be hard for students due to the amount of material and the nature of the subject which requires integrating knowledge from other fields such as anatomy, biochemistry, cell biology, physics, and chemistry. There is also a lot of heterogeneity among the students learning human physiology. They may be biology majors taking physiology as an elective, or those who are preparing for a career in a health profession, and they may be coming from different backgrounds with varying levels of preparation. Some students may start the course with basic biology knowledge and some pre-conceived notions that may even hinder their ability to learn the intricacies of human physiology.

There is a belief among many physiology students that since there is a lot of factual detail then memorization is the way to go. This inevitably leads to memorization fatigue, and confusion when seemingly contradictory material is encountered. Instead of focusing on the overwhelming number of details, a better strategy would be to focus on common themes or core concepts that once learned will allow the formation of a strong foundation. When the students learn core concepts, they do not need to learn all the details of all the systems, just the common themes and this reduces the cognitive load. By having to remember fewer items, the students can work on learning as opposed to memorizing. Focusing on core concepts allows the students to transfer their learning from one body system to another with an understanding of the basics. Core concepts provide a way to raise the level of knowledge of the students, so that long after they have completed the course, they can continue to learn physiology even if they do not remember all the details.

Michael & McFarland (2011) have compiled a list of 15 physiology core concepts based on physiology faculty surveys that describe the most important parts of teaching physiology. It is clear from Michael et al. (2017) that these core concepts are ‘general models’ as they are widely applicable in most areas of physiology. Some of these core concepts include homeostasis, cell membrane, cell-cell communication, flow-down gradients, and interdependence and provide an excellent framework for the teaching of physiology.

The wide applicability of core concepts allows the instructor to generate models involving animals as well as hypothetical aliens. It may be reasonable to assume that learning core concepts will then enable the students to answer questions and solve problems involving animals and aliens. There are some really good reasons for the use of animal and alien models for teaching core concepts as well as for assessment. The use of animals & aliens in teaching and assessment removes any preconceived notions about how the human body works and can hone in on the most important facets of the concepts that we want the students to learn. Animal & alien models in assessment can be an excellent way to test for comprehension of concepts and the ability to transfer the learning from the known system to a novel scenario.

Problem sets with animals & aliens can be used in teaching as well as assessment. Courses on animal physiology or comparative physiology can shine a spotlight on the common themes between animals and humans. Animal models are routinely used in research to study human diseases as well as to test interventions. Teaching modules that incorporate animal physiology like the one from HHMI Biointeractive on dinosaurs’ ability to maintain their body temperature can engage the students to apply principles of physiology to understanding how dinosaurs were able to regulate their body temperature. Tools like the Fictional Animal project (Batch et al. 2017) help students in their systems thinking to identify the most important physiological models to integrate the various body systems and in addition to understanding the interactions between an animal and its environment.

With the increased interest in space exploration and human travel to moon and Mars, physiology questions on aliens can help us learn more about human physiology and how we might adapt to space. Research on extraordinary life forms at the bottom of the oceans and hydrothermal vents that provide us with more ways to imagine life in space while emphasizing similarities with human physiology. Most importantly, bringing animals, fictional or real, and aliens into the classroom can increase student engagement and impact learning and transfer of knowledge.

One way to use non-human examples is by using the framework of Test Question Templates (TQTs; Crowther et al. 2020), in which clearly articulated Learning Objectives (LO) are used to generate questions. Every TQTs based on an LO can be used to create multiple questions, thus reducing the possibility of memorizing answers. The use of TQTs can result in questions that assess student understanding and application of core concepts, expecting students to use higher levels of Bloom’s taxonomy. (Casagrand & Semsar, 2017). The consistent use of TQTs can build an appreciation of physiology concepts leading to better preparation for patient care and real-life medical scenarios.

The appeal of TQTs for students, in addition to learning concepts as opposed to facts, is also that they can envision what questions can be asked based on an LO. TQTs can be used in class as models for generating questions in which the students can also participate. As instructors, we like it when our students answer questions, but it is even better when they ask the questions. So, does it matter to a pre-health student whether a dinosaur was endothermic or ectothermic? And the answer to that is if it helps the student understand how temperature regulation works, it certainly does.

References:

Batch, S.A., et al. 2017 Adv Physiol Educ. 41:2 https://doi.org/10.1152/advan.00159.2016

Casagrand, K. and Semsar, J. (2017). Adv in Physiol Educ. 41: 170-177. 10.1152/advan.00102.2016

Crowther, G. J. et al. (2020). HAPS Educator 24(1):74-81. https://doi.org/10.21692/haps.2020.006

Michael, J. and J. McFarland (2020). Advances in Physiology Education 44: 752-762. https://doi.org/10.1152/advan.00114.2020.

Michael, J. & McFarland, J. (2011) https://doi.org/10.1152/advan.00004.2011

Usha Sankar Ph.D. is a Sr. Lecturer at Fordham University, Bronx, NY and has been teaching human physiology for over 10 years. Usha is very interested in bridging the gap between teaching and learning and is looking to improve her own physiology teaching as she believes learning about the inner workings of the human body is the most fun thing anyone can do. Usha is also involved in conducting air quality research and collaborating with young scholars from middle and high schools about air quality, health impacts, and climate change research. This research combines all her interests including human health, education, and climate change.

Usha Sankar Ph.D.

Senior Lecturer

Dept. of Biological Sciences

Fordham University

441 E Fordham Rd

Bronx, NY 10458

Impactful activities to create a framework to support team-based activities

While the recent pandemic has forced a number of rapid reforms in learning and teaching, the need to rethink how we learn and teach at the tertiary level began well before that. This has been exemplified by increasing interest in topics such as flipped classrooms, authentic assessments, and students as co-contributors. Although one might argue that the idea of flipped classroom is not new, there has been a growing push to create authentic learning experiences and authentic assessments to better prepare our graduates for the next stage of their careers – be it further professional education or employment. To work towards this goal our department recently restructured our final-year physiology courses to create an environment that empowers students to be agents of their own learning. We believe that over their lifetimes of their degrees, the students should transition from learning through knowledge transfer to self-guided agents in their own learning to promote lifelong learning. To achieve this aim, our assessments were restructured to shift the focus and emphasis from tests and exams, to more authentic assessment tasks. Here we will share an example of one such assessment and the guides we provide to help the students succeed.

In one subject Physiology: Adapting to Challenges, the students are required to work in a team on a project to be presented in a mini-student conference at the end of the semester, to mimic a scientific conference. While a team presentation might not be a truly novel idea, a few factors that we have included in the project design make it distinctive from other similar assessments.

In the early years we were concerned that students would shy away from the team project aspect of the subject. We, like many of our colleagues, thought that the students would detest the prospect of group work and thus be put off by a group project as was observed in a study at another Australian University (White et al. 2007). However, when we surveyed our second- and third-year Physiology students, it was interesting to find that approximately 75% of respondents in both second- and third-year preferred working in groups rather than individually, and the majority of the students understand the importance of acquiring teamwork skills. Many raised concerns about working in a group from prior negative experiences, similar to concerns raised in a previous blog post here. This led us to come up with ways to support the students’ success in this team project. Here we will share some of the lessons we have learned along the way.

1) Broad topics with multiple possible directions

The students were presented with a number of broad research topics or questions of physiology, examples of topics include “Tips and tricks to aging well.” Or “Stress: is it always bad?”. While at first these topics might seem like ‘bad’ topics as they do not appear to provide any research direction, this apparent flaw is also the beauty of this design, as the ‘vagueness’ of the topic gives the student groups flexibility and scope to develop and identify their own common interests within the broad field of physiology and is one of the unique aspects of this assessment. As the starting point covers a broad range of potential directions, the team must arrive at a consensus on the ultimate and final direction of the project. This freedom was an intentional design to give students agency and choice in their project. While some teams do find this lack of direction challenging, the majority of the feedback from the students was positive, with 85% of the respondents in an end of semester survey enjoying the flexibility this provides. In fact, some students stated that they have never experienced this type of freedom in taking their learning into their own hands in their university degree and felt empowered by this option. The feedback from academics who help review these presentations was overwhelmingly positive and we have been consistently impressed by the quality and depth of work produced by our undergraduate students.

2) Create groups based on common interest

The groups were created based on the student nominated projects and not randomly assigned. The students are asked to nominate and rank their top three picks of the projects, together with a short description of their reason for picking that project. The student groups are created from their nominations and the rationale for their interest in the project. This creates groups with a common goal and facilitates the group formation process. While diversity in groups is a well-recognized factor in strong groups, it is also important that groups have common goals. A fine balance must be struck between diverse groups and the common goal. Student feedback on this aspect of the assessment was positive as it gave them a choice on what to research on a topic of their choice. Something that they don’t often get a chance to do in other subjects.

3) Nominate a team mate – if you want

Our previous experience in group formation has shown us that being introduced to a group of unfamiliar people can be a stressful experience for some students, especially with the added stress of an associated assessment. We found that many students appreciated the option and opportunity to nominate a team mate. This reduced their social anxiety in the formation phase of the team. While some students did try to ‘cheat’ the system by either nominating multiple people, or in some cases nominating people in a chain, it is up to the academic to decide whether to allow or disallow these cases. It is important to keep in mind a number of other factors such as making sure that no single student in any group is the solo person without a nominated ‘buddy’ to minimize social exclusion, and still maintaining diversity in the group. The observation from the tutors and teaching staff was that this nominated ‘buddy’ system reduced the social anxiety in early group formation and allowed the groups to move forward to the next stage to discuss their direction sooner.

4) Effective ice breaker activities

Most of us would have experienced ice-breaker activities in a workshop or other types of settings and may have cringed at the idea of these activities. However, finding effective ice breaker activities can help overcome the initial social anxiety and allow the students to get to know each other. The key to effective ice breakers is to choose ones that require and assist their communication, whether it is discussing an idea that is not associated with the assessment (e.g. team name) to reduce the stress, or activities where the team members get to learn something about each other, or work towards a common goal that is not assessment associated. The ultimate aim is to get them to start conversing and help ease the more in depth and intense discussions that will follow. Indeed, in a survey of our students following the ice-breaker activity, the students noted that the ice-breaker activities were cliche but did benefit by increasing comfort with team members by the end of the activity and thus could see the benefit of the activity.

5) Team contract

Following the ice breaker activity, the student teams are asked to discuss and sign a team contract. The team contract provides a framework for the students to discuss and outline their expectations within the team. It includes basic information such as contact information. There are also general procedural discussions such as location for sharing documents, the best means of communication within the team, the preferred method for everyone. The students are advised to set up a team chat that everyone can access. This was an extra layer of challenge in the online learning space as some messaging tools may not be available in some geographical locations.

As the team progresses through the contract, the discussion topics get progressively deeper. The team is asked to discuss their goals and expectations of the project and of each other. They are encouraged to discuss the frequency and duration of meetings outside of scheduled class times; to include discussion of people work responsibilities so they can be considerate of others in setting alternative meeting times; preparation for meetings; note taking in meetings. Finally, the team is asked to discuss how they will deal with conflicts in their group, including topics such as assigning specific tasks, or unmet expectations. The students are provided with scenarios on potential conflicts that they might face and given the time to work through the scenarios as a team. Thus, the team contract guides the teams in a structured and scaffolded discussion about some of the challenging situations they may face.

For the majority of students, this is the first time they have encountered this type of document and it was a daunting task to begin with. However, many students also found the structure of the document with the guided discussion points helpful in navigating some of the more tricky questions.

6) Peer-review and feedback

The student teams undergo two rounds of peer review over the course of 8 weeks. The first peer-review is a required (hurdle) task but is not included in the assessment. This peer review takes place 3 weeks after the groups are formed. The first peer-review is entirely a formative feedback for each member so they have the opportunity for self-reflection and to receive anonymous feedback from their team. This feedback provides the students with an opportunity to adjust any problem behaviors before the final peer review at the end of the project. It also provides the academics with an opportunity to identify any group dynamic issues before it gets too late!

The second peer-review occurs after the final presentation and is counted towards the student grade. The average of the grade they receive from their team mates is used for the grade. In each peer review, the students are asked to assess their team members in a number of criteria:

  • Initiative / self – motivation / motivates others
  • Communication
  • Accountability & sense of responsibility
  • Timeliness and preparation
  • Contribution to the team work & Commitment to the team success
  • Respect & Adaptability

Another key factor is that the peer-review score may be used to adjust the team presentation grade if the student receives a low grade from their team. This increases the student accountability to their team. This also provides the team members a means to hold their team mates to account and minimizes the impact of ‘freeloading’ in the team project. Student feedback on this aspect confirms that peer review is a good way to encourage individual accountability and contribution to the team project with 83% of the respondents in our end of semester survey agreeing to that statement.

We used the tool Feedback Fruit for the peer-review process and it has been a smooth process as this is integrated into our learning management system (Canvas) and the groups synch and import automatically. This reduces the workload tremendously! Before Feedback Fruit become available we tried the same process with Qualtrics. However, this required much more background work to set up the groups for the peer-review process.

We have now run this assessment or similar variations of it, for 5 years, over this time we have made a number of tweaks and adjustments to improve the student learning experiences. Here we have shared some of the lessons we have learned along our journey that we hope readers will find useful. We believe that with some careful sign posts and guard rails we have created a positive and enjoyable learning experience for the students. Not only has this made for an enjoyable learning experience and environment for the students, the workshops have become a highlight of our weeks as we watch the student projects develop and grow. This is reflected in the overall feedback from students, tutors, and assessing academics. Most pleasing is perhaps the student feedback that many found this to be an enjoyable and highly memorable experience and was a highlight of their university journey and they may have learned some interesting facts about physiology that they will take with them as they continue their life journeys.

Angelina is a senior lecturer and the Physiology discipline coordinator in the Department of Anatomy and Physiology in the Faculty of Medicine, Dentistry and Health Sciences, at the University of Melbourne. Her current learning and teaching focus is on practical-based in practical classes, using technology to engage learners in large cohorts in Physiology, and in integrating employability skills within the science and biomedicine curriculum.

Dr Angelina Y Fong PhD GCUT | Senior Lecturer

Physiology Discipline Coordinator

Department of Anatomy and Physiology

School of Biomedical Sciences

Faculty of Medicine, Dentistry and Health Sciences
The University of Melbourne, Victoria, Australia

White, F., Lloyd, H., & Goldfried, G. (2007). Evaluating student perceptions of group work and group assessment. Sydney University Press

 

Assessing Students’ Learning — Not Their Googling Skills! — in an Online Physiology Course

As of March 2020, when the SARS-COV-2 pandemic sent teachers and students home to figure out online instruction and learning, I had been teaching high school biology/AP biology for 27 years and anatomy & physiology at the two local community colleges for 7 years. Since I had been practicing flipped coursework for years, I knew that my biggest challenge would be how to fairly assess my students and their learning. This challenge would be compounded by an at-home virtual testing environment without any proctoring.

As I pondered the best approach to my assessment challenge, I was naturally drawn to the College Board’s 2012-13 redesign of the AP (Advanced Placement) Biology curriculum and examination. In the redesign, the AP curriculum focuses on four “Big Ideas” or broad themes covering a number of subtopics/concepts that are further broken down into learning objectives for students. The examination focuses on measuring student learning and skills using what the College Board (AP Higher Education, 2012-2013) calls an “evidence-centered-design approach that parallels the curriculum’s understanding-by-design approach.” The examination consists of a mix of multiple-choice and short-answer/free-response questions. I know from my many years of grading student AP essays/short answers that, when students turn to Google for their answers, they often fail. Students will frequently regurgitate the rubrics for grading the prompts rather than dissecting and answering the question. Subsequently, the students fail to demonstrate their own learning or understanding of the material. This is unfortunate as it is also a missed opportunity for feedback, correction and/or remediation.

In designing a new accelerated online physiology course, I really wanted the course assessments to mimic the AP Biology style of assessments. I wanted them not only to be aligned with course objectives, but to require students to think about and demonstrate the skills and concepts they were learning. I was skeptical, but hopeful I could also find an approach in which I would not have to rewrite the entire examination from scratch each term. In my search for related pedagogies, I ran across an article in the May 2020 HAPS Educator, “Testing in the Age of Active Learning: Test Question Templates Help to Align Activities and Assessments,” and recognized the name of one of the authors, Dr. Greg Crowther (Everett Community College, Everett, WA) from a previous association. I reached out to Greg and requested some more details about Test Question Templates (TQTs). What I found was a pedagogical gold mine!

The TQTs are based on somewhat general learning objectives, much like the four Big Ideas of the AP Biology exam. Students often ignore these learning objectives because they don’t know what they mean or how they will be assessed, but TQTs are formatted as input-output statements that tell the student exactly what they will be assessed on. Two examples (“Example A” and “Example B”) are provided for the students, followed by a prompt encouraging students to create their own test question following the template format.

The timing of my find was perfect for incorporating TQTs into the design of the new course. Since I am totally online, I took the time to video each TQT. On video, I present the input-output statement for each TQT and present Example A, along with approaches to answering the question or solving the problem. My TQT videos are attached to a weekly discussion board in the course management system, where students are then encouraged to work on solving Example B and creating a third example. I frequently visit the discussion board and provide feedback and guidance as needed throughout the week.

Below is an example of a TQT input-output statement and examples given to students ahead of the examination in the discussion board and used to model the examination question:

TQT 3.1. Given the chemical structure or chemical formula of an ion or molecule (chemical structure or text description), list the most likely mechanism(s) by which it crosses cell membranes.

  • Example A: See structure below left. By which process(es) is this molecule most likely to cross cell membranes? Explain your reasoning. [add chemical structure of a molecule like urea]
  • Example B: See structure below right. By which process(es) is this molecule most likely to cross cell membranes? Explain your reasoning. [add image of a peptide like insulin]
  • Example C: Make up an example (think of an ion or molecule that you’ve heard of) and ask your classmates!

In the previous unit, students had been instructed on chemical structures/formulas and bonding properties. In this unit, students are asked to extend and apply their understanding of chemical structures, bonding properties (polar, nonpolar, ionic) with their new knowledge of cell membrane structure (phospholipid) and cell transport mechanisms (passive or active).

Examinations are carefully aligned with the objectives, formative assessments and exact input-output statements given to students in the TQTs. The examination contains 10-11 short answer questions and approximately 25-30 multiple choice questions. I have added a statement on the examination for students to sign, reminding them not to use any outside resources (people, notes, internet….) along with the consequences for doing so. Students are reminded to use what they are learning in the course to answer and solve exam problems/questions. I explain to students how I will know if they don’t follow the rules.

I will admit that the new course has gotten off to a rough start. For reasons I can only guess at, more than half my students are procrastinating until the last minute to start assignments (lecture, reading, lab, formative assessments, TQTs…). This approach is not consistent with my suggestions to space out their learning, practice, or repetition of concepts that we know is so important to learning and applying the information to new situations.

Not surprisingly, students who participated during the week and spaced-out lecture segments, formative assessments and TQTs did much better on the examination than those who did not. Those who chose alternative approaches to the course material often googled their way through the examination and failed miserably. Using Google, they could identify a molecule, how it is made, and where it is found, but they couldn’t answer the questions asked.

It has taken several examinations to convince many of the students that physiology is not simply about googling or memorizing facts, but about developing critical thinking skills and a higher-order understanding of the material that will persist beyond the course. More students are now actively preparing, studying and asking more complex questions throughout the week than previously (as evidenced by the course management system analytics and student contact). Many have shown improvement not only on their overall exam scores, but in their demonstrations of reasoning on assignments and exams.

After the initial rough weeks of getting students on board, students are now reaching out via email to report progress in their learning, growth, and ability to connect the material to their work as CNAs and Medical Assistants.  For example, one young man in the course writes, “As we’ve progressed onward to future chapters I feel like my knowledge is increasing gradually and I personally feel that like I CAN do this, it has been a struggle I’m not going to lie and say it was a breeze but, I feel like I’m truly getting a ton of knowledge from these chapters, I’ve found much interest on the systems we’ve been studying especially with the TQT examples and formative questions that you help me with your feedback.” Another young lady states, “I am sorry I am not doing well. I have never been forced to study before and though the TQTs are hard I am finding that I am learning a lot and am really interested in learning more. I am glad I didn’t give up.”

In summary, both the AP Biology redesign assessment questions and the TQTs have allowed me to better assess my students’ knowledge and skills. These approaches have also given me insight into student misconceptions and helped me provide feedback, remediation, and other support as needed. I can easily write (or rewrite) questions based on the TQT input/output statements without having to rewrite entire examinations each term. Students are learning that simply googling will not let them ace the exams; instead, they are learning to more carefully read the questions and answer the questions based on their own understanding.

“ACKNOWLEDGMENTS: The author thanks Greg Crowther for help implementing TQTs and for feedback on this blog post.”

References:

  1. AP Higher Education (2012-2013). AP Course and Exam Redesign. https://aphighered.collegeboard.org/courses-exams/course-exam-redesign
  2. Crowther, G., Wiggins, B., Jenkins, L. HAPS Educator (May 2020). “Testing in the Age of Active Learning: Test Question Templates Help to Align Activities and Assessments.”
    Julie Gallagher, professor of anatomy and physiology, has been teaching at Barstow Community College (Barstow, CA) since 2014 and was a high school AP Biology teacher for 27 years at Serrano HS (Phelan, Ca).  Believing in equity and inclusion, Professor Gallagher has built state-of-the-art online anatomy and physiology courses, focused on helping all students succeed.
Looking back and moving forward. The importance of reflective assessment in physiology education.

At the end of the 1986 movie Platoon, the protagonist (Chris Taylor, played by Charlie Sheen) provides a very moving monologue that starts “I think now, looking back, we did not fight the enemy, we fought ourselves. The enemy was in us. The war is over for me now, but it will always be there, the rest of my days.”

When Platoon was first released in theaters I was in high school.  I was enthralled with Platoon, and it has held a very special place in my memories ever since.  The ending monologue has echoed through my mind at the end of almost every semester that I have been a faculty member (albeit with a few changes. No insult or mocking of the movie is intended, this is simply my effort to take a powerful cinematic scene and apply it to my personal situation).  My end of semester monologue goes something like this “I think now, looking, back, I did not teach the students but I taught myself. The student was within me.  The semester is over for me now, but it will always be there, the rest of my days.”  And with that, I begin reflective assessment of my teaching.

For many educators, assessment is a dirty word and a necessary evil.  Hall and Hord (1) reported that faulty experience anxiety about assessment because of a lack of understanding of the process or importance of assessment.  Faculty may also disdain participating in assessment due to concerns about accountability, or due to concerns about accreditation negatively impacting their careers (2). Often, faculty also view assessment reports as things that need to be prepared and submitted to meet requirements imposed on faculty from an administrative office within their institution, or some outside accrediting agency, but think that assessment reports are not really pertinent to the day-to-day work of education (3).  To help overcome hesitancy to fully engage in the assessment process Bahous and Nabhani (4) recommend that institutions hire a full-time assessment officer to work one-on-one with faculty.  All of these are relevant to the formal process of assessment and submitting data and reports to meet institutional or organizational requirements.  When done the right way, these assessment reports can be valuable tools in education.  But what I want to discuss in this blog post is a more informal form of assessment that I think all educators should do, and probably already do, which is reflective assessment.

Students and faculty alike perceive Physiology as a very challenging academic subject (5, 6).  The concepts are difficult, and there is a lot of terminology.  Our understanding of physiology is continually expanding, but yet students often still need to have a firm concept of the basic fundamentals before moving on to more complex and in-depth information.  Physiology is often taught in a system by system approach, yet the systems do not operate independently of one another so at times it may feel like the cart is put before the horse in regards to helping students to understand physiological processes. All of these issues with the difficulty of teaching physiology make reflective assessment an important part of teaching.

Quite simply, no matter how well we taught a class or a concept, as educators we may be able to teach better the next time (7, 8).  Perhaps we can tweak an assignment to make it better fit our needs.  Or perhaps we can provide a new resource to our students, like an appropriate instructional video or a scholarly article. Or maybe it’s time to select a new textbook.  Or maybe we have seen something in Advances in Physiology Education or on the PECOP Blog that we would like to incorporate into our teaching practice.  Whatever the reason, reflective assessment provides an opportunity for us to ask ourselves two very simple, but very important questions about our teaching:

  1. What went well in this class, and what didn’t go as well as planned?
  2. What improvements are we willing to make to this course to improve student learning?

The first question is important for identifying strengths and weaknesses in our courses.  We can ponder what went well, and ask why it went well.  Has it gone well each semester? Or did it go well because of changes we made in our teaching?  Or did it go well because of other changes, such as a change in prerequisite courses?

As we ponder what didn’t go as planned, we can also contemplate why things didn’t go as planned.  I think anyone who has taught through the COVID pandemic can identify lots of unforeseen and unusual disruptions to our courses.  But we can also use reflective assessment to identify ongoing problems that deserve some attention.  Or we can identify problems that have previously not been problems, and make a note to monitor these issues in future courses.

The second question, about what changes are we willing to make, is also extremely important.  Sometimes a problem may be outside of our control such as course scheduling, who teaches the prerequisite course, or other issues.  But if the identified problem is something we can control, such as the timing of the exams, or the exam format, or laboratory exercises, then we need to decide if the problem arises from something we are willing to change and then decide how and what to change.  Can the problem be addressed through the acquisition of new instrumentation?  Can the problem be addressed by changing textbooks?  Some of the problems may be easy to solve, while others might be more difficult.  Some problems might require funding, and so funding sources will need to be identified.  But this is where reflective assessment can really help us to prioritize changes to our teaching.

I ask myself these questions throughout the semester as I grade tests and assignments, but in the midst of a semester there is often not time to really ponder and make changes to my classes.  During the semester I keep a teaching diary to make note of the thoughts that come to me throughout the semester. Then, after final grades are submitted and before the next semester begins there is more time to read through the teaching diary and to reflect and ponder about my teaching.  Often, in this less pressured time between semesters, by reviewing my teaching diary I can take a step back to reflect on problems during the semester and determine if this has been an ongoing issue in my classes or an isolated issue limited to only this one semester.  I often find that what seemed like a problem in the middle of the semester has resolved itself by the end of the semester.

Of course there are many other questions that can be asked as part of reflective assessment (7, 8), and any question can lead to numerous follow up questions.  But I think these two questions (1. What went well in this class, and what didn’t go as well as planned? 2.  What improvements are we willing to make to this course to improve student learning?) form the cornerstone of reflective assessment.  And reflective assessment can then lead to a career long endeavor to engage in action research to improve our teaching skills.

  1. Hall G, Hord S. Implementing change: Patterns, principles, and potholes (5th ed). New York: Pearson, 2019.
  2. Haviland D, Turley S, Shin SH. Changes over time in faculty attitudes, confidence, and understanding as related to program assessment. Iss Teacher Educ. 2: 69-84, 2011.
  3. Welsh JF, Metcalf J. Faculty and administrative support for institutional effectiveness activities. J Higher Educ. 74: 445-68, 2003.
  4. Bahous R, Nabhani M. Faculty Views on Developing and Assessing Learning Outcomes at the Tertiary Level. J General Educ. 64: 294-309, 2015.
  5. Slominski T, Grindberg S, Momsen J. Physiology is hard: a replication study of students’ perceived learning difficulties. Adv Physiol Educ. 43:121-127, 2019.
  6. Colthorpe KL, Abe H, Ainscough L. How do students deal with difficult physiological knowledge? Adv Physiol Educ. 42:555-564, 2018.
  7. Pennington SE. Inquiry into Teaching: Using Reflective Teaching to Improve My Practice. Networks, An Online Journal for Teacher Research 17, 2015. https://doi.org/10.4148/2470-6353.1036
  8. Reflective Teaching Practices. Int J Instruc. 10: 165-184, 2017. NM, Artini LP, Padmadewi NN. Incorporating Self and Peer Assessment in Reflective Teaching Practices. Int J Instruc. 10: 165-184, 2017.
    Dr. Greg Brown is a Professor of Exercise Science in the Department of Kinesiology and Sport Sciences at the University of Nebraska at Kearney where he has been a faculty member since 2004. He is also the Director of the General Studies program at the University of Nebraska at Kearney. He earned a Bachelor of Science in Physical Education (pre-Physical Therapy emphasis) from Utah State University in 1997, a Master of Science in Exercise and Sport Science (Exercise Physiology Emphasis) from Iowa State University in 1999, and a Doctorate of Philosophy in Health and Human Performance (Biological Basis of Health & Human Performance emphasis) from Iowa State University in 2002. He is a Fellow of the American College of Sports Medicine and

     

An Alternative Assessment Approach to be More Inclusive and Inspiring

I want to propose a different grading system that I think is more encouraging to some students and will be particularly useful for supporting diversity in physiology classes and in science general education classes.  Two separate influences converged to give me insight in creating this grading system.

In many of my courses, I value 3 different aspects of student participation and work: their attendance, their homework and their project work. My dilemma was how to grade in such a way that a student had to do all 3 well in order to get an A. If each aspect was weighted equally, then a student could get 100% on two parts, would only need 70% on the third part, which did not suit my purpose (see Figure 1A).  If each part has different weights, then the student can get even less than 70% on the part that has the least weight, only making matters worse.  I then tried to use the geometric mean, taking the cube root of the product of the percentages on the different parts (see Figure 1B).  While that improved things somewhat, it still did not achieve quite what I wanted and it was a bit confusing to the students. Finally, I tried  multiplying the grades in each area; while this was an improvement, if I stayed with the 90%, 80%, 70% cutoffs, this was too harsh a system (see Figure 1C).

The other influence that occurred was that our university started an incentive program to get people to be more active. If a person walked a million steps in 1 year, they would get a pay bonus. In talking to a colleague about this, the colleague pointed out that behavioral economists would argue that the incentive program would be more effective if the university handed out the bonus in January and said, if you do NOT walk at least 1 million steps this year, we will take back the incentive in December; basically, people will work harder not to lose something than to get something they do not yet have (3, 5, 6, 7).

My grading system is to tell the students they have 1,000 points on the first day of class and that 900 points is required for an A.  They lose 25 points for every class absence, they lose 25 points for every homework assignment not done satisfactorily, and up to 300 points if the final project or assessment is not satisfactory, see Figure 1D.  Consider a course that meets 3 times per week for 15 weeks and has homework for each class. If a student misses 5 classes (11%) then they cannot get an A.

If a student has more than 5 unsatisfactory homework assignments, then they cannot get an A.

If they lose more than ⅓ of the points on the project, they cannot get an A.

If they miss 2 classes and have 3 unsatisfactory homework assignments, they cannot get an A.

The conventional system in which a student gets x points for this assignment and y points for that assignment makes some assumptions (1, 9).  One assumption is that the response is additive and independent; there are plenty of phenomena in physiology that we know are synergistic and not additive.  My system is more like requiring a properly functioning heart, lungs and brain in order to consider the organism to be properly functioning, whereas the conventional system would be analogous to weight a properly functioning heart as much more important that properly functioning lungs.

Many students taking science classes suffer from imposter syndrome (4, 8, 10).  By making it clear that the student is starting the class with an A, I hope to make them realize that they do belong.  I reinforce this by saying that I view myself as their coach and I want them to succeed. But as a coach, it doesn’t help them if I do all the practice, they have to put in some work-hence the reward for attendance and homework.  (In classes where I have TAs, I refer to them as assistant coaches-again, to stress that we are there to help them get better and to emphasize that they have to do some work and not just watch us.)   Of course, some students worry that the project is a “gotcha” assignment.  I get around this by using an idea from Mittell (as quoted in 2).  If the project gets a not satisfactory evaluation, the student can revise and resubmit.  I use Mittell’s analogy that in my class “not satisfactory” is like when their parents say, “your room is not satisfactorily cleaned for you to go out” (as quoted in 2).

A business school colleague objected to my grading system because he felt students should earn their grade.  I appreciate and respect that point of view and I think it depends on the student, the class, and the teacher.  My analogy is, for a sports team, before the season starts, is the team undefeated or winless?

There are several reasons why I give credit for attendance:

I encourage discussions and brainstorming in class.  Students not present cannot learn from these interactions.  Furthermore, the rest of the class loses the absent student’s insights and questions which would enrich and diversify the interactions.

I am a bit more interested in developing lifelong habits that will serve the students well than in having them memorize information and theories, in part because some of the accepted information and theories are likely to change over their lifetime. To me, learning to attend class is a bit like learning how to get, and stay, in shape. Part of that is the ability to set aside time to exercise and to do it even on days when one is not in the mood.  For me, process is at least as important as short-term results. So I wanted a grading system that rewarded the behaviors I wanted (9).

A colleague also pointed out that if a student can get an A in a class without being in attendance, then, apparently, class time was not necessary for learning for that student (or, perhaps more accurately, class time was not necessary for passing the exams for that student).

Finally, I have a selfish reason for giving credit for attendance. I think the class works better when most students are there; I certainly find it more rewarding and enjoyable to be in front of a full class than when half of the students do not attend.

As I developed this grading system, it made me reflect again on what were my goals for the course.

Was I more interested in results or process? Taking my coaching analogy, if I were coaching physical fitness or flexibility, was having the student be able to run one mile in under 5 minutes or being able to touch their toes the goal of the semester or was it to help them develop habits, get in better shape than they started, and learn to enjoy the satisfaction of being in shape? For me, the analogous traits are to develop solid learning habits, to learn to critically think, to improve their ability to discuss and brainstorm about concepts and mechanisms, and to learn to enjoy the satisfaction that comes with thinking deeply about a problem.

In reading about other approaches to evaluation, I also realized that my previous approach to grading rewarded those who came into the course with a better background (2).  This did not seem fair to me. I am still struggling with the best way to account for the different skills and levels of the students when they enter the course.  Going back to the physical fitness training analogy, if a student comes into the course being able to run a 5 minute mile and finishes the course running a mile in 4:50 should they get a better grade than a student who entered the course not being able to run a complete mile and finishes the course running a complete mile in 10 minutes? (2)

One small difficulty with the approach is the dissonance of reading a fine assignment and then entering 0 in that grade column. Similarly, some students initially get concerned seeing a 0 in the grade column, so now I remind them when I reveal the grades for the first few evaluations that a 0 means they have done a satisfactory (or better) job.

I have found that the students find this grading system reduces their anxiety and makes them more comfortable in taking creative risks when doing their assignments.  It also makes evaluation an easier process as I am focused on helping the students improve and not on ranking them.

In summary, I hope some readers find that the ideas and questions that prompted me to adopt this grading system may help them reflect on how well their goals for the course match up with how they evaluate and reward students, even if they are not interested in adopting this grading system.

REFERENCES

  1. Elbow P, Ranking, Evaluating, and Liking: Sorting out Three Forms of Judgment. College English 55: 187-206, 1993
  2. Jones JB. Experimenting with Specifications Grading Chronicle of Higher Education, March 23, 2016 https://www.chronicle.com/blogs/profhacker/experimenting-with-specifications-grading/61912 accessed 8/17/2021
  3. Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica. 47:263–91, 1979
  4. McGill BM, Foster MJ, Pruitt AN, Thomas SG, Arsenault ER, Hanschu J, Wahwahsuck K, Cortez E, Zarek K, Loecke TD, Burgin AJ. You are welcome here: A practical guide to diversity, equity, and inclusion for undergraduates embarking on an ecological research experience. Ecol Evol. 11(8):3636-3645, 2021.
  5. Morewedge CK, Giblin CE. Explanations of the endowment effect: an integrative review. Trends Cogn Sci. 19(6):339-48, 2015.
  6. Ogdie, A, Asch, DA. Changing health behaviours in rheumatology: an introduction to behavioural economics. Nat Rev Rheumatol 16, 53–60, 2020.
  7. Patel MS, Asch DA, Rosin R, Small DS, Bellamy SL, Heuer J, Sproat S, Hyson C, Haff N, Lee SM, Wesby L, Hoffer K, Shuttleworth D, Taylor DH, Hilbert V, Zhu J, Yang L, Wang X, Volpp KG. Framing. Financial Incentives to Increase Physical Activity Among Overweight and Obese Adults: A Randomized, Controlled Trial. Ann Intern Med.164(6):385-94. 2016 .
  8. Persky AM. Intellectual Self-doubt and How to Get Out of It. Am J Pharm Educ. 82(2):6990, 2018
  9. Potts, G. A Simple Alternative to Grading . The Journal of the Virginia Community Colleges 15 (1):29-42, 2010.
  10. Winzeler EA. An improbable journey: Creativity helped me make the transition from art to curing malaria. J Biol Chem. 294(2):405-409, 2019.

Figure legend.

Outcomes from different grading systems. In all 4 cases, the course has 3 different areas (e.g., attendance, homework, and project). The percent of the total points possible for each area is determined. The right column (in red) are the percentages obtained in one area and the top row are the percentages obtained in the two other areas. Using the traditional cutoffs of 90%, 80%, for grades, the orange shaded areas would get A’s, the purple shaded areas B’s, and the blue shaded areas C’s.

A). Outcomes from an additive or average grading system.  In this system, one takes the average of the 3 areas. In this case, someone could get as low as 70% in one area and still get an A if they get 100% in the other two areas.

  1. B) Outcomes from a geometric mean grading system. In this system, one takes the cube root of the product of the grade in each of the 3 areas. In this system, getting 80% in one area and 100% in the other two still gets an A, but 70% in one area and 100% in the other two is now a B.
  2. C) Outcomes from a multiplicative system. Here one multiplies the percentages from each area. In this system, there are many fewer A’s.
  3. D) Outcomes from a loss aversion or endowment system. In this system, each student starts with 1,000 points and loses points when they do not satisfactorily complete an assignment in any area.  In this system, a student can only lose 10% of the points in one area and still get an A.  Even if the student gets 100% in two areas and 80% in the third area, they get a B.

    Mark Milanick

    Mark grew up in Novelty, OH and went to high school in Harmony, PA.  He attempted to double major in physics and English literature at Swarthmore, but ended up just majoring in English. He took a year abroad at the University of St. Andrews, taking pure Maths, Pharmacology and Modern Literature. After doing lab rotations with Ed Taylor and Richard Miller, he did his PhD with Bob Gunn in the Biophysics and Theoretical Biology at the University of Chicago.  His postdoctoral training was with Joe Hoffman in physiology at Yale.  He had over 20 years of NIH funding on red blood cell membrane transport and physiology. He particularly enjoys teaching physiology and general education classes, such as Toxins, the Good, the Bad and the Beautiful; Bodily Fluids and their Functions; Filtering Fact from Fiction in TV Crime and Medical Dramas; and the Science of Sex, Drugs, and Rock’n’Roll.

 

Pandemic, Physiology, Physical Therapy, Psychology, Purpose, Professor Fink, Practical Exams, and Proficiency!

Pandemic

To say that the COVID-19 pandemic has affected education would be an understatement.  Physical distancing measures that were introduced across the world to reduce community spread of SARS-CoV-2 (the COVID-19 pathogen), necessitated a cessation or reduction of in-person instruction, and the introduction of what has come to be known as “emergency remote education”(1, 2).  Emergency remote education or teaching (ERE or ERT) is different from remote or online education in that, it is not planned and optional, but rather, a response to an educational emergency (3).

Physiology for Physical Therapy Students

Against the backdrop of the COVID-19 pandemic, as I was trying to keep my primary research program on regenerative and rehabilitative muscle biology moving forward (4), engaging with the scientific community on repurposing FDA-approved drugs for COVID-19 (5, 6), and working on the Biomaterials, Pharmacology, and Muscle Biology courses that I teach each year; I was requested to take on a new responsibility.  The new responsibility was to serve as the course master and sole instructor for a 3-credit, 15-week course on Physiology and Pathophysiology for Professional Year One (PY1) Doctor of Physical Therapy (DPT) students.  I had foreseen taking on this responsibility a couple of years down the road, but COVID-19 contingencies required that I start teaching the course in January 2021.  I had always believed that within the Physical Therapy curriculum, Anatomy, Physiology and Neuroscience, were courses that could only be taught by people who were specialists – i.e. you had to be born for it and should have received a level of training needed to become a master of Shaolin Kung Fu (7).  With less than a year to prepare for my Physiology and Pathophysiology course, and with the acknowledgment that I was not trained in the martial art of Physiology instruction, I looked for inspiration.  The Peter Parker Principle from Spider-Man came to mind – “With great power comes great responsibility” (8).  Unfortunately, I realized that there was no corollary that said “With great responsibility comes great power”.  Self-doubt, anxious thoughts, and frank fear of failure abounded.

Psychology and Purpose

Call it coincidence, grace, or anything in between; at the time when I started preparing to teach Physiology and Pathophysiology, I had been working with a psychological counselor who was helping me process my grief following my father’s passing a couple of months before COVID-19 was declared a pandemic.  In addition to processing my grief, through counseling, I had also started learning more about myself and how to process anxious thoughts, such as the fear of failing in my new superhero role of teaching Physiology and Pathophysiology to Physical Therapy students.  Learning how to effectively use my “wise mind” (an optimal intersection of the “emotional mind” and “reasonable mind”), writing out the possible “worst outcomes” and “likely outcomes”, practicing “self-compassion”, increasing distress tolerance, working on emotional regulation, and most importantly embracing “radical acceptance” of the things I cannot change, helped me work through the anxiety induced by my new teaching responsibility.  This does not mean that my anxiety vanished, it just means that I was more aware of it, acknowledged it, and worked my way through it to get to what I was supposed to do.  I also learned through counseling that purpose drives motivation.  I realized that my anxiety over teaching Physiology was related to the value I placed on the teaching and learning of Physiology in Physical Therapy and other health professions.  Being a Physical Therapist and Physiologist who is committed to promoting movement-centered healthcare, I found motivation in the prospect of training Physical Therapists to serve as health educators with the ultimate goal of improving human movement.  Therefore, the idea of developing a course that would give my students a solid foundation in the Physiology and Pathophysiology of Human Movement began to excite me more than intimidate me.  The aspects of my personality that inspired me to publish a paper on the possible pathophysiological mechanisms underlying COVID-19 complications (5), stirred in me the passion to train the next generation of Physical Therapists, who through their sound knowledge of Physiology would likely go on to transform healthcare and promote healthier societies through movement (9).

The point about purpose being a positive driver of motivation, mentioned above, has been known to educational psychologists for a while.  When students see that the purpose of learning something is bigger than themselves, they are more motivated to learn (10).  So, rather than setting up my course as a generic medical physiology course, I decided to set it up as a Physiology and Pathophysiology of Human Movement course that is customized for human movement experts in training – i.e. Student Physical Therapists.  I set my course up in four modules – Moving the Body (focused on muscle and nerve), Moving Materials Around the Body (focused on the cardiovascular and pulmonary systems), Fueling Movement (focused on cellular respiration and the ATP story), and Decoding the Genetics of Human Movement (focused on how genetic information is transcribed and translated into proteins that make movement possible).

Professor Fink

For those of you who have not heard of Professor Steven Fink, you should look him up (11).  A Ph.D.-trained Physiologist and former member of the American Physiological Society (APS), Professor Fink has posted over 200 original educational videos on YouTube, covering Anatomy, Physiology, Pharmacology, and other subjects.  I had found his YouTube videos several years ago, while looking for good resources for my Pharmacology course, and never stopped watching them ever since then.  I would watch his videos while exercising, and listen to them during my commute (and sometimes even during my ablutions!).  There were two topics in Physiology that scared me the most – cellular respiration and genetics.  I had learned these topics just well enough to get me through high school, four years of Physical Therapy School, one year of Post-Professional Physical Therapy training, six years of Ph.D. training in a Physiology laboratory, six years as a Postdoctoral Fellow (also in a Physiology laboratory), and several years as an Assistant Professor in Physical Therapy.  However, despite the “few years” I had spent in academia and my 10+ years being a member of the APS, I never felt that I had gained mastery over the basic physiology of cellular respiration and genetics.  So, when I started preparing to teach Physiology, I decided to up my number of views on Professor Fink’s videos on cellular respiration and genetics.  Furthermore, I reached out to Professor Fink and asked him if he would serve as a teaching mentor for my new course and he very kindly agreed.  I am fortunate to be a teacher-scholar in a department and university, which places a high priority on teaching, and supports training in pedagogy and the scholarship of teaching and learning through consultation with experts within and outside the university.  As part of our mentoring relationship, Professor Fink gave feedback on my syllabus, course content, testing materials and pedagogical strategies.  He also introduced me to “Principles of Anatomy and Physiology, 16th Edition, by Gerard J. Tortora, Bryan H. Derrickson, which proved to be a useful resource (ISBN: 978-1-119-66268-6).  Through all these interactions, Professor Fink demonstrated that a person can be a “celebrity professor” and still be a kind and gentle human being.  Having him as my teaching mentor played a significant role in building my confidence as a physiology teacher.  Research shows that academic mentoring is related to favorable outcomes in various domains, which include behavior, attitudes, health, interpersonal relations, motivation, and career (12).

Practical Exams

As the COVID-19 pandemic rolled on through the Winter, Spring/Summer, and Fall semesters of 2020, it became certain that I would have to teach my Physiology and Pathophysiology course in a virtual environment come January 2021.  I had to figure out a way to make sure that the learning objectives of my course would be met despite the challenges posed by teaching and testing in a virtual environment.  Therefore, I came up with the idea of virtual practical exams for each of the four modules in my course.  These practical exams would be set up as a mock discussion between a Physical Therapist and a referring health professional regarding a patient who had been referred for Physical Therapy.  Students would take the exam individually.  On entering the virtual exam room, the student would introduce themselves as a Student Physical Therapist and then request me (the referring healthcare professional) to provide relevant details regarding the patient, in order to customize assessment, goal setting and treatment for the patient.  With the patient’s condition as the backdrop, I would ask the student questions from the course content that was relevant to the patient’s condition.  A clear and precise rubric for the exam would be provided to the students in keeping with the principles of transparency in learning and teaching (13).

Proficiency

As we went through the course, the virtual practical exams proved to be an opportunity to provide individualized attention and both summative and formative feedback to students (14).  As a teacher, it was rewarding to see my Physical Therapy students talk about cellular respiration and gene expression with more confidence and clarity than I could do during my prior 12+ years as a Ph.D.-trained Physiologist.  It was clear to me that my students had found a sense of purpose in the course content that was bigger than themselves – they believed that what they were learning would translate to better care for their patients and would ultimately help create healthier societies through movement.

In the qualitative feedback received through a formal student evaluation of teaching (SET) survey, one student wrote “Absolutely exceptional professor.  Please continue to do what you are doing for future cohorts.  You must keep the verbal practical examinations for this class.  Testing one’s ability to verbally explain how the body functions and how it is dysfunctional is the perfect way to assess if true learning has occurred.”  Sharing similar sentiments, another student wrote “I really enjoyed the format of this class. The virtual exams in this class forced us to really understand the content in a way that we can talk about it, rather than learning to answer a MC question. I hope future students are able to learn as much as I did from this class.”

Closing Remarks

When I meet students for the first time during a course, I tell them that even though I am their teacher, I am first a student.  I let them know that in order to teach, I first need to learn the content well myself.  Pandemic pedagogy in the time of COVID-19-related emergency remote education has reinforced my belief that, the best way to learn something is to teach it.  Thanks to my Physiology and Pathophysiology of Human Movement course, I learned more about myself, about teaching and learning, and of course about cellular respiration and genetics.  Do I now consider myself a master of Physiology instruction?  No!  Am I a more confident physiology teacher?  Yes!  Has writing this article made me reflect more on what worked well and what needs to be fine-tuned for the next iteration of my Physiology and Pathophysiology course?  Yes!

REFERENCES:

  1. Williamson B, Eynon R, Potter J. Pandemic politics, pedagogies and practices: digital technologies and distance education during the coronavirus emergency. Learning, Media and Technology. 2020;45(2):107-14.
  2. Bozkurt A, Jung I, Xiao J, Vladimirschi V, Schuwer R, Egorov G, et al. A global outlook to the interruption of education due to COVID-19 pandemic: Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education. 2020;15(1):1-126.
  3. Hodges C, Moore S, Lockee B, Trust T, Bond A. The difference between emergency remote teaching and online learning. Educause review. 2020;27:1-12.
  4. Begam M, Roche R, Hass JJ, Basel CA, Blackmer JM, Konja JT, et al. The effects of concentric and eccentric training in murine models of dysferlin-associated muscular dystrophy. Muscle Nerve. 2020.
  5. Roche JA, Roche R. A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. FASEB J. 2020;34(6):7265-9.
  6. Joseph R, Renuka R. AN OPEN LETTER TO THE SCIENTIFIC COMMUNITY ON THE POSSIBLE ROLE OF DYSREGULATED BRADYKININ SIGNALING IN COVID-19 RESPIRATORY COMPLICATIONS2020.
  7. Wikipedia contributors. Shaolin Kung Fu – Wikipedia, The Free Encyclopedia 2021 [Available from: https://en.wikipedia.org/w/index.php?title=Shaolin_Kung_Fu&oldid=1026594946.
  8. Wikipedia contributors. With great power comes great responsibility – Wikipedia, The Free Encyclopedia 2021 [Available from: https://en.wikipedia.org/w/index.php?title=With_great_power_comes_great_responsibility&oldid=1028753868.
  9. American Physical Therapy Association (APTA). Transforming Society – American Physical Therapy Association [Available from: https://www.apta.org/transforming-society.
  10. Yeager DS, Henderson MD, Paunesku D, Walton GM, D’Mello S, Spitzer BJ, et al. Boring but important: a self-transcendent purpose for learning fosters academic self-regulation. Journal of personality and social psychology. 2014;107(4):559.
  11. Fink S. ProfessorFink.com [Available from: https://professorfink.com/.
  12. Eby LT, Allen TD, Evans SC, Ng T, Dubois D. Does Mentoring Matter? A Multidisciplinary Meta-Analysis Comparing Mentored and Non-Mentored Individuals. J Vocat Behav. 2008;72(2):254-67.
  13. Winkelmes M. Transparency in Learning and Teaching: Faculty and students benefit directly from a shared focus on learning and teaching processes. NEA Higher Education Advocate. 2013;30(1):6-9.
  14. Alt D. Teachers’ practices in science learning environments and their use of formative and summative assessment tasks. Learning Environments Research. 2018;21(3):387-406.
Joseph A. Roche, BPT, PhD.  Associate Professor.  Physical Therapy Program.  Eugene Applebaum College of Pharmacy and Health Sciences.  

I am an Associate Professor in the Physical Therapy Program at Wayne State University, located in the heart of “Motor City”, Detroit, Michigan.  My research program is focused on developing regenerative and rehabilitative interventions for muscle loss arising from neuromuscular diseases, trauma and aging.  I have a clinical background in Physical Therapy and have received intensive doctoral and postdoctoral research training in muscle physiology/biology.

https://www.researchgate.net/profile/Joseph-Roche-2

https://scholar.google.com/citations?user=-RCFS6oAAAAJ&hl=en


Down the custom path: Adaptive learning as a tool for instruction and assessment in science education

The spread of COVID-19 via the SARS-CoV-2 virus led colleges and universities around the world to close on-campus instruction for the safety of students, faculty and staff.  This left many instructors, specifically those in the sciences, struggling to find effective methods to present information to students in a manner that both encouraged learning and allowed for assessment of knowledge attainment.  Non-traditional colleges and universities, those that offer most or all of a degree to students in the online environment, were poised to transition easily; continuing to use the tools available in the virtual world to both guide students and assess learning.  As institutions wrestle with the decision to move courses back to the on-campus setting, this blog implores those in higher education, even science education, to consider adaptive learning as a vital component of curriculum.

Prior to my appointment as Lead Faculty at Colorado Technical University, I taught a variety of science courses in on-campus class and laboratory settings.  Both exams and laboratory practica could be cumbersome, both in prep and in grading.  While the questions could be mapped back to unit and/or course learning outcomes, this would require input of each student’s response to each question into a data sheet for analysis.  Even with online administration of exams, assessment methods were limited and instructors like myself were reliant on continuous creation of lectures, worksheets, activities, and online simulations to present course materials.  When it came time to transition to online, students would navigate through a learning management system and open a variety of files, videos, interactive activities, practice sheets, and practice quizzes for one unit in a course.  There had to be a better way to incorporate all the things we know drive student inquiry into one area while allowing assessment of their knowledge, right?  There was.

Enter adaptive learning technology.  Colorado Technical University relies upon Intellipath™ to deliver content to students in the asynchronous classroom in a variety of subjects, including natural sciences, math, engineering, nursing, and health studies.  I entered into teaching and managing faculty as a novice in this tool, and now I want to sing its praises to anyone who will listen. Adaptive learning does just as the title suggests.  It adapts based on the student’s knowledge, adding questions in areas where they need additional practice and allowing those already determined to have a certain understanding of topics to skip on to new materials.  Once these lesson nodes are designed, they can be used over and over again and questions can be delivered in a variety of ways to assess the same outcome. Gone is the need to continuously upload materials as they are all housed within the adaptive learning platform.  Instructors have the ability to see how a student is doing not just in terms of their progress through the unit but also their mastery of a specific topic.  Students have the ability to earn high marks when they demonstrate competency in the subject on their first attempt but are able to improve their score when they didn’t do as well as they had hoped.

The system rolls instruction, interaction, and formative and summative assessments all in together in one data rich place.  Instructors can tailor their outreach and additional instruction to specific students or overall trends within a specific cohort.  Those tasked with the assessment of effectiveness portion of curriculum can pull these data to discern what outcomes are being met.  In modern higher-ed, what students know is important but how we know they know what they know is also a priority.  We have to be able to paint a quantitative picture that our curriculum is effective.

Students are re-evaluating their choices for universities and it is wise of all of us to consider our options for content delivery and knowledge assessment.  I think many educators in colleges or universities have attended at least one meeting at this point to discuss the decline in the number of “traditional” college students and some of us may have even been tasked with figuring out what to do about it.  More and more students are faced with the dilemma of needing to manage being caregivers, members of the workforce, or other life challenges while also attaining a degree.  This is our time to be bold and innovative in the classroom and really personalize a student’s experience.  Will there always be “traditional” college classes?  Only time will tell.  I cannot predict where we will be as educators in a decade but I can say that it will be my goal to evolve to meet the demands of the profession.  Science leads us to advances and adaptations so shouldn’t we be advanced and adaptive in science education?

Dr. Tiffany Halfacre (she/her) earned undergraduate degrees from Berea College (Biology) and Saint Petersburg College (Funeral Services), an MSMS from Morsani College of Medicine at the University of South Florida, and a DHSc from A.T. Still University College of Graduate Health Studies.

She has a varied background as an educator spanning over 10 years.  She has taught courses in general biology, human biology, anatomy, physiology, pharmacology, and health sciences in addition to interdisciplinary work in medical humanities.  She has been involved in course development, programmatic and institutional accreditation, and institutional research and effectiveness.  Her research and service interests include exploring health and nutrition literacy as they relate to geographical and socioeconomic differences. Outside of the classroom, she has been involved in chapel series lectures including one on “Truth in Grief” and was awarded the Excellence in Academic Advising award during her tenure at Carson-Newman University for her work advising pre-health professions students.  Dr. Halfacre currently serves as a Lead Faculty and an Assistant Professor of Health Studies at Colorado Technical University where she not only focuses on faculty preparation and support but also initiatives to retain and encourage success in first year and first generation college students.

Her hobbies include anything outdoors, running, amateur photography, and enjoying various arts, specifically music.