Category Archives: Classroom Content

Challenges of migrating online amid the COVID-19 pandemic
Ida T. Fonkoue, Ph.D.
Post-Doctoral Fellow, Renal Division
Emory University School of Medicine

Ramon A. Fonkoue, Ph.D.
Associate Professor, French and Cultural Studies
Michigan Technological University

The COVID-19 pandemic has led to a total and sudden reshaping of the academic landscape across the country, with hundreds of institutions moving administration entirely online and shifting to online instruction for the remainder of the spring semester or for both spring and summer. This sudden transition with practically no time to prepare has major implications for students and faculty alike, and poses serious challenges to a smooth transition as well as effective online teaching on such a large scale. Out of these challenges, two issues in particular are examined here: 

By Phil Hill, licensed under CC-BY. See URL in references.
  • the disparity in resources and preparedness for effective online teaching 
  • the implications of the migration to virtual classrooms for diversity and inclusion

Disparity in resources and preparedness for effective online teaching

Teaching an online course requires just as much, if not more, time and energy as traditional classroom courses. It also requires specific IT skills to be effective. Some teachers have managed to achieve great success engaging students online. However, many challenges remain for the average teacher. While online teaching has now been embraced by all higher education institutions and the number of classes offered online has seen a steady growth over the years, it should be noted that until now, instructors and students had the choice between brick and mortar classes and virtual ones. Each could then choose based on their personal preferences and/or circumstances. What makes the recent changes so impactful and consequential is that no choice is left to instructors or students, as the move to online classes is a mandate from the higher administration. Whether one is willing, prepared or ready is irrelevant. It is from this perspective that the question of the preparedness to migrate online is worth examining. 

With academic units ordered to move classes online, instructors who had remained indifferent to the growing trend of online teaching have had a difficult reckoning. They have had to hastily move to online delivery, often with a steep learning curve. This challenge has been compounded in some cases by the technology gap for instructors who haven’t kept their IT skills up to date as well as the school’s preparedness to support online teaching. But even instructors who had some familiarity with learning management systems (LMS) and online delivery have faced their share of challenges. We will only mention two sources of these difficulties: 

  • First, students’ expectations in a context of exclusive online teaching are different from when most online classes took place in the summer, and were attractive to students because of convenience and flexibility. With online classes becoming the norm, students in some universities are taking steps to demand that school administrators pay more attention to quality of instruction and maintain high standards to preserve teaching effectiveness. 
  • Second, instructors can no longer use LMS resources just for the flexibility and benefits they afforded, such as in blended classes or flipped classes. Moving everything online thus requires extra work even for LMS enthusiasts.

For students, there have been some interesting lessons. Until now, it was assumed that Generation Z students (raised in the boom of the internet and social media) we have in our classes have tech skills in their DNA and would be well equipped and ready to migrate online. Surprisingly, this hasn’t been the case across the board, and these first weeks have revealed real discrepancies in student IT equipment with varying consequences for online classes. Equipment failure and problems with access to high speed internet emerge as the most serious difficulties on the students’ side. Furthermore, online learning requires independence and often more self-discipline and self-motivation. Most online courses are not taught in real time, and there are often no set times for classes. While this flexibility makes online classes attractive, it can also be a drawback for students who procrastinate and are unable to follow the course pace. If left to themselves, only the most responsible students will preserve their chances of performing well. On this last point, one unexpected issue has been students who have virtually disappeared from their classes since the migration of courses online amid the COVID-19 pandemic. The current transition has thus presented major challenges for teachers and students alike. 

Implications of the migration to virtual classrooms for diversity and inclusion

The second issue we think deserves attention is the way in which educational institutions’ commitment to diversity and inclusion would play out in virtual classes. While they are now among the professed core values of all colleges and universities across the country, implementing diversity and inclusion in an online environment presents a different set of challenges for both instructors and students. In traditional classrooms, the commitment to diversity and inclusion typically translates into the following:

  • A diversity and inclusion statement from the school must be included in the course syllabus.
  • Instructors must remind students a few rules at the beginning of the course, including: recognition that the classroom is an environment where diversity is acknowledged and valued; tolerance of and respect for diversity of views in the classroom.
  • Sensitivity to and respect for diversity (gender, age, sexual orientation, etc.).
  • Students are asked to be courteous and respectful of different opinions.

In moving into a virtual environment, instructors have to think about the challenges of virtual classrooms and their potential impact on diversity and inclusion. For instance, the faceless nature of course participation and asynchronous delivery may make it easier for participants to disregard or neglect diversity and inclusion rules. Teachers need to reflect on ways to ensure that the virtual space of online classes remains an environment that fosters diversity and inclusion. One drawback of online classes is the potential impact of the relative anonymity on social engagement. In a traditional classroom, participants are constrained by the physical presence of their peers in the confined space of the classroom. The closed physical space of the classroom, combined with the instructor’s authority and peer pressure contribute to fostering discipline. Reflecting on the way online teaching impacts the instructor, one faculty noted: “I didn’t realize how much I rely on walking around the room and making eye contact with students to keep them engaged.” As an online teacher, one lacks the ability to connect physically with students, to read emotional cues and body language that might inform about the individuality of a student. Moreover, a good grasp of the diversity in the classroom and of students’ learning abilities is needed to plan instruction, and give each of them the opportunity to learn and succeed.

Drawing from the above considerations, here are some key questions that instructors should consider as they migrate online: What skills do instructors need to properly address diversity and inclusion online? How do instructors include diversity and inclusion requirements in online course design? How to create an inclusive online classroom? How do instructors attend to diverse students’ needs during instruction? How do they monitor behaviors and enforce diversity and inclusion rules during instruction?

While the migration might have been abrupt, instructors need not seek perfection in moving their courses online. As in traditional classes, what matters the most, from the student’s point of view, is constant communication, clear directions and support from their teachers. Students understand the challenges we all face. They also understand the rules in virtual classes, provided we emphasize them.

References

Hill, Phil (2020), Massive Increase in LMS and Synchronous Video Usage Due to COVID-19. PhilonEdTech. https://philonedtech.com/massive-increase-in-lms-and-synchronous-video-usage-due-to-covid-19/

Greeno, Nathan (2020), Prepare to Move Online (in a Hurry). Inside Higher Ed. https://www.insidehighered.com/views/2020/03/10/prepare-move-online-continuity-planning-coronavirus-and-beyond-opinion


McMurtrie, Beth (2020), The Coronavirus Has Pushed Courses Online. Professors Are Trying Hard to Keep Up. The Chronicle of Higher Education. https://www.chronicle.com/article/The-Coronavirus-Has-Pushed/248299

Dr Ida Fonkoué is a post-doctoral fellow at Emory University School of Medicine in the Laboratory of Dr Jeanie Park. She trained under Dr Jason Carter at Michigan Technological University, where she graduated with a PhD in Biological Sciences in December 2016. She teaches renal physiology classes and lead small groups in the School of Medicine. Her long-term research goal is to understand how the sympathetic nervous system, the vasculature and inflammation interplay to contribute to the high cardiovascular disease risk of patients living with chronic stress, such as those with post-traumatic stress disorder.

Dr. Ramon A Fonkoué is an Associate Professor of French and Cultural Studies and the Director of Graduate Studies in the Department of Humanities at Michigan Technological University. He is also a Visiting Scholar in the department of French and Italian at Emory University. He has been teaching online for 9 years and has experience with blended, flipped and full online classes.

Involving students in the teaching experience
Karen L. Sweazea, PhD, FAHA
Arizona State University

As faculty, we often find ourselves juggling multiple responsibilities at once. Although many of us are interested in adding hands-on or other activities to our classes, it can be difficult to find the time to develop them. This is where more advanced students who have already taken the class or graduate students can help.

A couple of summers ago I requested the help of an extra teaching assistant in my Animal Physiology course. The role of the position I was requesting was unique as I was not seeking a student to help with grading or proctoring exams. Rather, the role of this student was to help develop in-class activities that would enhance the learning experience of students taking the course.

For each lesson, the special graduate student TA was tasked with finding an existing (ex: https://www.lifescitrc.org/) or creating a new activity that could be implemented in the classroom during the last 10-20 minutes of each session, depending on the complexity of the activity. This enabled me to begin converting the course into a flipped classroom model as students enrolled in the course were responsible for reading the material ahead of time, completing a content comprehension quiz, and coming to class prepared to discuss the content and participate in an activity and/or case study. Special TAs can also assist with developing activities for online courses.

While the benefits of having such a TA for the faculty are clear, this type of experience is also beneficial to both the TA as well as the students enrolled in the course. For the TA, this experience provides an opportunity to develop their own teaching skills through learning to develop short lesson plans and activities as well as receiving feedback from the faculty and students. For the students, this is a great way to build cultural competence into the course as TAs are often closer in age to the students and may better reflect the demographics of the classroom. Cultural competence is defined by the National Education Association as “the ability to successfully teach students who come from a culture of cultures other than our own.” Increasing our cultural competency, therefore, is critical to student success and is something that we can learn to address. Having special TAs is just one way we can build this important skill.

Karen Sweazea is an Associate Professor in the College of Heath Solutions at Arizona State University. Her research specializes in diabetes and cardiovascular disease. She received her PhD in Physiological Sciences from the University of Arizona in 2005 where her research focused on understanding glucose homeostasis and natural insulin resistance in birds. Her postdoctoral research was designed to explore how poor dietary habits promote the development of cardiovascular diseases. 

Dr. Sweazea has over 40 publication and has chaired sessions and spoken on topics related to mentoring at a variety of national and local meetings. She has additionally given over 10 guest lectures and has developed 4 graduate courses on topics related to mentoring and professional development. She has mentored or served on the committees for undergraduate, master’s, and doctoral students and earned an Outstanding Faculty Mentor Award from the Faculty Women’s Association at Arizona State University for her dedication towards mentoring.   

Can the Flipped Classroom Method of Teaching Influence Students’ Self-Efficacy?
Chaya Gopalan, PhD, FAPS
Associate Professor
Departments of Applied Health, Primary Care & Health Systems
Southern Illinois University Edwardsville

Self-efficacy is the belief in one’s ability to succeed in a specific situation or accomplish a specific task (Bandura, 1977). Students with high self-efficacy have higher motivation to learn and, therefore, are able to reach higher academic goals (Honicke & Broadbent, 2016). Gender, age, and the field of study are some factors that are known to affect self-efficacy (Huang, 2013). Genetics plays a significant role (Waaktaar & Torgersen, 2013). Certain physiological factors such as perceptions of pain, fatigue, and fear may have a marked, deleterious effect on self-efficacy (Vieira, Salvetti, Damiani, & Pimenta, 2014). In fact, research has shown that self-efficacy can be strengthened by positive experiences, such as mastering a skill, observing others performing a specific task, or by constant encouragement (Vishnumolakala, Southam, Treagust, Mocerino, & Qureshi, 2017). Enhancement of self-efficacy may be achieved by the teachers who serve as role models as well as by the use of supportive teaching methods (Miller, Ramirez, & Murdock, 2017). Such boost in self-efficacy helps students achieve higher academic results.

The flipped classroom method of teaching shifts lectures out of class. These lectures are made available for students to access anytime and from anywhere. Students are given the autonomy to preview the content prior to class where they can spend as much time as it takes to learn the concepts. This approach helps students overcome cognitive overload by a lecture-heavy classroom.  It also enables them to take good notes by accessing lecture content as many times as necessary. Since the lecture is moved out of class, the class time becomes available for deep collaborative activities with support from the teacher as well as through interaction with their peers. Additionally, the flipped teaching method allows exposure to content multiple times such as in the form of lecture videos, practice questions, formative assessments, in-class review, and application of pre-class content. The flipped classroom therefore provides a supportive atmosphere for student learning such as repeated exposure to lecture content, total autonomy to use the constantly available lecture content, peer influence, and support from the decentered teacher. These listed benefits of flipped teaching are projected to strengthen self-efficacy which, in turn, is expected to increase students’ academic performance. However, a systematic approach measuring the effectiveness of flipped teaching on self-efficacy is lacking at present.

References:

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review84(2), 191.

de Moraes Vieira, É. B., de Góes Salvetti, M., Damiani, L. P., & de Mattos Pimenta, C. A. (2014). Self-efficacy and fear avoidance beliefs in chronic low back pain patients: coexistence and associated factors. Pain Management Nursing15(3), 593-602.

Honicke, T., & Broadbent, J. (2016). The influence of academic self-efficacy on academic performance: A systematic review. Educational Research Review17, 63-84.

Huang, C. (2013). Gender differences in academic self-efficacy: A meta-analysis. European journal of psychology of education28(1), 1-35.

Miller, A. D., Ramirez, E. M., & Murdock, T. B. (2017). The influence of teachers’ self-efficacy on perceptions: Perceived teacher competence and respect and student effort and achievement. Teaching and Teacher Education64, 260-269.

Vishnumolakala, V. R., Southam, D. C., Treagust, D. F., Mocerino, M., & Qureshi, S. (2017). Students’ attitudes, self-efficacy and experiences in a modified process-oriented guided inquiry learning undergraduate chemistry classroom. Chemistry Education Research and Practice18(2), 340-352.

Waaktaar, T., & Torgersen, S. (2013). Self-efficacy is mainly genetic, not learned: a multiple-rater twin study on the causal structure of general self-efficacy in young people. Twin Research and Human Genetics16(3), 651-660.

Dr. Chaya Gopalan received her PhD in Physiology from the University of Glasgow, Scotland. Upon completing two years of postdoctoral training at Michigan State University, she started her teaching career at St. Louis Community College. She is currently teaching at Southern Illinois University Edwardsville. Her teaching is in the areas of anatomy, physiology, and pathophysiology at both undergraduate and graduate levels for health science career programs. Dr. Gopalan has been practicing evidence-based teaching where she has tested team-based learning and case-based learning methodologies and most recently, the flipped classroom. She has received several grants to support her research interest.

Building bridges: Medical physiology teaching in China
Ryan Downey, Ph.D.
Assistant Professor
Co-Director, Graduate Physiology Program
Team Leader, Special Master’s Program in Physiology


Department Pharmacology and Physiology
Georgetown University Medical Center
Washington, D.C.

The Chinese Society of Pathophysiology hosted the 2019 Human Functional Experiment Teaching Seminar and the Second Human Physiology Experimental Teaching Training Course 25-27 October. Across two and a half days, educators from across China met at Jinzhou Medical University in the province of Liaoning to discuss and workshop the latest ideas in active learning and interactive teaching techniques. In many ways, especially in terms of the esteem in which this meeting is held by its attendees, this meeting was not dissimilar from the APS Institute on Teaching and Learning, which will hold its next biennial meeting this coming June in Minneapolis. For the 2019 meeting, the organizers decided to invite an international speaker, which is how I found myself on a plane headed to China. As part of my visit, not only did I get to attend the workshop hosted at Jinzhou Medical University, but also I was hosted by several of the meeting organizers at their home institutions to see their facilities. In this writeup, I will reflect on some of the observations that I made during the many different conversations that I had with the educators participating in the meeting.

The most common question that I got from my hosts was, “What kinds of technology do you use in your classrooms and labs and how do you use them?” What surprised me the most about this question wasn’t the actual question itself, but the perception that many of the educators at the meeting held that they were lagging behind in the implementation of using technologies as   teaching and learning tools. The large majority of teaching spaces that I visited were equipped with much the same technology as any classroom or lecture hall that I would find in an American university: computers, projectors, large-screen LCD displays, and power at every seat to accommodate student personal electronic devices. While there was the occasional technological oddity, such as a computer here or there that was still running Windows XP, the technology available to these educators was very much on par with the technology I would expect at any modern university, which is why I was surprised that the educators had the perception that they were behind in implementing different technologies. In my conversations with them, I discussed the use of audience response systems like iClicker and PollEverywhere as well as interactive elements like gamification through websites such as Kahoot!, but my emphasis in these conversations was exactly the same as I have with educators at home: we need to make sure that there is a sound pedagogical basis for any engagement we use with our students and that the technology doesn’t matter. I can use 3×5 colored  index cards to create an audience response system that functions as well as (or sometimes even better!) than clickers because no one has any problems with the WiFi while using a 3×5 card. The technology facilitates our instruction and should never drive it for the sake of itself.

A common thread of many discussions was the use of internet technologies in teaching. While there is much to be said about the limitations of the ‘Great Firewall’ of China and the amount of government regulation that occurs over their communications, it’s important to note how little these limitations affect the day-to-day activities of the majority of citizens. There are Chinese versions of almost every single internet convenience that we would take for granted that function at least as well as our American versions. Their social media system has grown to the point that many international users are engaging on their platforms. There are food delivery apps and the local taxi services have all signed on to a common routing system (at least in Beijing) that functions in a similar way to Uber or Lyft. In a side-by-side comparison between my phone and one of the other meeting participants, there is near feature parity on every aspect. From an educational standpoint, however, there are some notable differences. The lack of access to Wikipedia is a notable gap in a common open resource that many of us take for granted and there is not yet a Chinese equivalent that rivals the scope or depth that Wikipedia currently offers. Another key area in which internet access is limited is their access to scholarly journals. This lack of accessibility is two-fold, both in the access to journals because of restrictions on internet use as well as the common problem that we are already familiar with of journal articles being locked behind paywalls. The increasing move of journals to open access will remove some of these barriers to scholarly publications, but there are still many limits on the number and types of journal articles that educators and learners are allowed through Chinese internet systems.

The most common request that I received while attending the educators meeting was, “Tell me about the laboratories you use to teach physiology to your medical students.” I think this is the largest difference in teaching philosophy that I observed while in China. The teaching of physiology is heavily based on the use of animal models, where students are still conducting nerve conduction experiments with frogs, autonomic reflex modules with rabbits, and pharmacological studies in rats. These are all classic experiments that many of us would recognize, but that we rarely use anymore. One key area of the workshops were modules designed to replace some of these classic animal experiments with non-invasive human-based modules, such as measuring nerve conduction velocities using EMG. My response that the majority of our physiology teaching is now done through lecture only was met with a certain degree of skepticism from many of them because the use of labs is so prevalent throughout the entire country. Indeed, the dedication of resources such as integrated animal surgical stations runs well into the hundreds of thousands of dollars per laboratory room set up, and to facilitate the entirety of students each year, there are multiple labs set up at each university. As the use of non-invasive human experiments expands, an equal amount of space and resources are being given to setting up new learning spaces with data acquisition systems and computers for this new task. In this area, I think that we have much to gain from our Chinese counterparts as many of the hardest concepts in physiology are more easily elucidated by giving students the space to self-discover in the lab while making physiological measurements to fully master ideas like ECG waves and action potential conduction.

Upon returning home, I have been asked by nearly everyone about my travel experiences, so I think it may be worth a brief mention here as well. I cannot overstate the importance of having a good VPN service setup on all of your electronic devices before traveling. Using a VPN, I had near-normal use of the internet, including Google and social media. My largest problem was actually trying to access local Chinese websites when my internet address looked like I was outside of the country. I have had good experience with NordVPN, but there are several other very good options for VPN service. Carrying toilet paper is a must. There are lots of public restrooms available everywhere in the city, but toilet paper is either not provided or available only using either social media check-ins or mobile payments. For drinking water, I traveled with both a Lifestraw bottle and a Grayl bottle. This gave me options for using local water sources and not having to rely on bottled water. The Lifestraw is far easier to use, but the Grayl bottle has a broader spectrum of things that are filtered out of the water, including viruses and heavy metals, which may be important depending on how far off the tourist track you get while traveling. My final tip is to download the language library for a translator app on your mobile device for offline use so that you can communicate with others on the streets. When interacting with vendors and others not fluent in English, it was common to use an app like Google Translate to type on my device, show them the translated results, and they would do the same in reverse from their mobile device.

One of the themes across the meeting was building bridges — bridges between educators, bridges between universities, bridges across the nation and internationally. I’m glad to have had the opportunity to participate in their meeting and contribute to their conversation on building interactive engagement and human-focused concepts into the teaching of physiology. Overall, the time that I spent talking to other educators was useful and fantastic. Everyone I met and interacted with is enthusiastic and excited about continuing to improve their teaching of physiology. I left the meeting with the same renewed energy that I often feel after returning from our ITL, ready to reinvest in my own teaching here at home.

Ryan Downey is an Assistant Professor in the Department of Pharmacology & Physiology at Georgetown University. As part of those duties, he is the Co-Director for the Master of Science in Physiology and a Team Leader for the Special Master’s Program in Physiology. He teaches cardiovascular and neuroscience in the graduate physiology courses. He received his Ph.D. in Integrative Biology from UT Southwestern Medical Center. His research interests are in the sympathetic control of cardiovascular function during exercise and in improving science pedagogy. When he’s not working, he is a certified scuba instructor and participates in triathlons

The Benefits of Learner-Centered Teaching

Jaclyn E. Welles
Cell & Molecular Physiology PhD Candidate
Pennsylvania State University – College of Medicine

In the US, Students at Still Facing Struggles in the STEMs

Literacy in the World Today:
According to the United Nations Educational, Scientific, and Cultural Organization (UNESCO), there are approximately 250 million individuals worldwide, who cannot read, write, or do basic math, despite having been in school for a number of years (5, 8). In fact, UNESCO, is calling this unfortunate situation a “Global Learning Crisis” (7). The fact that a significant number of people are lacking in these fundamental life skills regardless of attending school, shows that part of the problem lies within how students are being taught.

Two Main Styles of Teaching – Learner or Teacher-Centered

Learning and Teaching Styles:
It was due to an early exposure to various education systems that I was able to learn of that there were two main styles of teaching – Learner-centered teaching, and Teacher-centered teaching (2). Even more fascinating, with the different styles of teaching, it has become very clear that there are also various types of learners in any given classroom or lecture setting (2, 6, 10). Surprisingly however, despite the fact that many learners had their own learning “modularity” or learning-style, instructors oftentimes taught their students in a fixed-manner, unwilling or unable to adapt or implement changes to their curriculum. In fact, learner-centered teaching models such as the “VARK/VAK – Visual Learners, Auditory Learners and Kinesthetic Learners”, model by Fleming and Mills created in 1992 (6), was primarily established due to the emerging evidence that learners were versatile in nature.

VARK Model of Learners Consists of Four Main Types of Learners: Visual, Auditory, Reading and Writing, and Tactile/Kinesthetic (touch)

What We Can Do to Improve Learning:
The fundamental truth is that when a student is unable to get what they need to learn efficiently, factors such as “learning curves” – which may actually be skewing the evidence that students are struggling to learn the content, need to be implemented (1, 3). Instead of masking student learning difficulties with curves and extra-credit, we can take a few simple steps during lesson-planning, or prior to teaching new content, to gauge what methods will result in the best natural overall retention and comprehension by students (4, 9). Some of methods with evidence include (2, 9):

  • Concept Maps – Students Breakdown the Structure or Organization of a Concept
  • Concept Inventories – Short Answer Questions Specific to a Concept
  • Self-Assessments – Short Answer/Multiple Choice Questions
  • Inquiry-Based Projects – Students Investigate Concept in a Hands-On Project

All in all, by combining both previously established teaching methodologies with some of these newer, simple methods of gauging your students’ baseline knowledge and making the necessary adjustments to teaching methods to fit the needs of a given student population or class, you may find that a significant portion of the difficulties that can occur with students and learning such as – poor comprehension, retention, and engagement, can be eliminated (4, 9) .

Jaclyn Welles is a PhD student in Cellular and Molecular Physiology at the Pennsylvania State University – College of Medicine. She has received many awards and accolades on her work so far promoting outreach in science and education, including the 2019 Student Educator Award from PSCoM.

Her thesis work in the lab of Scot Kimball, focuses on liver physiology and nutrition; mainly how nutrients in our diet, can play a role in influencing mRNA translation in the liver. 

Student Evaluation of Teaching – The Next 100 Years

Mari K. Hopper, PhD
Sam Houston State University

Student evaluation of teaching (SET) has been utilized and studied for over 100 years. Originally, SET was designed by faculty to gather information from students in order to improve personal teaching methods (Remmers and Guthrie, 1927). Over time, SET became increasingly common. Reports in the literature indicate 29% of institutions of higher education employed this resource in 1973, 68% in 1983,  86% in 1993, and 94.2% in 2010 (Seldin, 1993).

Today, SET is employed almost universally, and has become a routine task for both faculty and students. While deployment of this instrument has increased, impact with faculty has declined. A study published in 2002 indicated only 2-10% of instructors reported major teaching changes based on SET (Nasser & Fresko, 2002). However, results of SET has become increasingly important in making impactful faculty decisions including promotion and tenure, merit pay, and awards. A study by Miller and Seldin (2010), reported that 99.3% Deans use SET in evaluating their faculty (Miller & Seldin, 2014)

The literature offers a rich discussion of issues related to SET including bias, validity, reliability, and accuracy. Although discussions raise concern for current use of SET, institutions continue to rely on SET for multiple purposes. As a consequence, it has become increasingly important that students offer feedback that is informative, actionable, and professional. It would also be helpful to raise student awareness of the scope, implications, and potential impact of SET results. 

To that end, I offer the following suggestions for helping students become motivated and effective evaluators of faculty:

  • Inform students of changes made based on evaluations from last semester/year
  • Share information concerning potential bias (age, primary language, perception of grading leniency, etc.)
  • Inform of full use including departmental and campus wide (administrative decisions, awards, P & T, etc,)
  • Establish a standard of faculty performance for each rating on the Likert scale (in some cases a 3 may be the more desirable indicator)
  • Inform students of professionalism, and the development of professional identity. Ask students to write only what they would share in face-to-face conversation.
  • Ask students to exercise caution and discrimination – avoid discussing factors out of faculty control (class size, time offered, required exams, classroom setting, etc.)
  • If indicating a faculty behavior is unsatisfactory – offer specific reasons
  • When writing that a faculty member display positive attributes – be sure to include written comments of factual items, not just perceptions and personal feelings
  • Give students examples of USEFUL and NOT USEFUL feedback
  • Distinguish between ‘anonymous’ and ‘blinded’ based on your school’s policy

Although technology has made the administration of SET nearly invisible to faculty, it is perhaps time for faculty to re-connect with the original purpose. It is also appropriate for faculty to be involved in the process of developing SET instruments, and screening questions posed to their students. Additionally, it is our responsibility to help students develop proficiency in offering effective evaluation. Faculty have the opportunity, and perhaps a responsibility, to determine the usefulness and impact of SET for the next 100 years.

Please share your ideas about how we might return to the original purpose of SET – to inform our teaching. I would also encourage you to share instructions you give your students just prior to administering SET. 

Mari K. Hopper, PhD, is currently the Associate Dean for Biomedical Sciences at Sam Houston State University Proposed College of Osteopathic Medicine. She received her Ph.D. in Physiology from Kansas State University. She was trained as a physiologist with special interest in maximum capabilities of the cardiorespiratory and muscular systems. Throughout her academic career she has found immense gratification in working with students in the classroom, the research laboratory, and in community service positions. Dr Hopper has consistently used the scholarly approach in her teaching, and earned tenure and multiple awards as a result of her contributions in the area of scholarship of teaching and learning. She has focused on curriculum development and creating curricular materials that challenge adult learners while engaging students to evaluate, synthesize, and apply difficult concepts. At SHSU she will lead the development of the basic science curriculum for the first two years of medical school. Dr Hopper is very active in professional organizations and currently serves as the Chapter Advisory Council Chair for the American Physiological Society, the HAPS Conference Site Selection Committee, and Past-President of the Indiana Physiological Society. Dr Hopper has four grown children and a husband David who is a research scientist.

Fostering an Inclusive Classroom: A Practical Guide

Ah, the summer season has begun! I love this time of year, yes for the sun and the beach and baseball games and long, lazy summer reading, but also because it gets me thinking about new beginnings. I’ve always operated on a school-year calendar mindset, so if you’re like me, you’re probably reflecting on the successes and shortcomings of the past year, preparing for the upcoming fall semester, or maybe even launching into a new summer semester now. As campuses become more diverse, fostering an inclusive learning environment becomes increasingly important, yet the prospect of how to do so can be daunting. So where to start?

First, recognize that there is not just one way to create an inclusive classroom. Often, the most effective tactics you use may be discipline-, regional-, campus-, or classroom-specific. Inclusive teaching is a student-oriented mindset, a way of thinking that challenges you to maximize opportunities for all students to connect with you, the course material, and each other.

Second, being proactive before a semester begins can save you a lot of time, headaches, and conflict down the road. Set aside some dedicated time to critically evaluate your course structure, curriculum, assignments, and language choices before ever interacting with your students. Consider which voices, perspectives, and examples are prominent in your class materials, and ask yourself which ones are missing and why. Try to diversify the mode of content representation (lectures, videos, readings, discussions, hands-on activities, etc.) and/or assessments types (verbal vs. diagrammed, written vs. spoken, group vs. individual, online vs. in-class, etc.). Recognize the limits of your own culture-bound assumptions, and, if possible, ask for feedback from a colleague whose background differs from your own.

Third, know that you don’t have to change everything all at once. If you are developing an entirely new course/preparation, you’ll have less time to commit to these endeavors than you might for a course you’ve taught a few times already. Recognize that incremental steps in the right direction are better than completely overwhelming yourself and your students to the point of ineffectiveness (Trust me, I’ve tried and it isn’t pretty!)

Below, I have included some practical ways to make a classroom more inclusive, but this list is far from comprehensive. As always, feedback is much appreciated!

Part 1: Course Structure and Student Feedback

These strategies require the largest time commitment to design and implement, but they are well worth the effort.

  • Provide opportunities for collaborative learning in the classroom. Active learning activities can better engage diverse students, and this promotes inclusivity by allowing students from diverse backgrounds to interact with one another. Furthermore, heterogeneous groups are usually better problem-solvers than homogeneous ones.
  • Implement a variety of learning activity types in order to reach different kinds of learners. Use poll questions, case studies, think-pair-share, jigsaws, hands-on activities, oral and written assignments, etc.
  • Select texts/readings whose language is gender-neutral or stereotype-free, and if you run across a problem after the fact, point out the text’s shortcomings in class and give students the opportunity to discuss it.
  • Promote a growth mindset. The language you use in the classroom can have a surprising impact on student success, even when you try to be encouraging. How many of us have said to our students before a test, “You all are so smart. I know you can do this!”? It sounds innocent enough, but this language conveys that “being smart” determines success rather than hard work. Students with this fixed mindset are more likely to give up when confronted with a challenge because they don’t think they are smart/good/talented enough to succeed. Therefore, when we encourage our students before an assessment or give them feedback afterwards, we must always address their effort and their work, rather than assigning attributes (positive or negative) to them as people.
  • Convey the same level of confidence in the abilities of all your students. Set high expectations that you believe all students can achieve, emphasizing the importance of hard work and effort. Perhaps the biggest challenge is maintaining high expectations for every student, even those who have performed poorly in the past. However, assuming a student just can’t cut it based on one low exam grade may be as damaging as assuming a student isn’t fit due to their race, gender, background, etc.
  • Be evenhanded in praising your students. Don’t go overboard as it makes students feel like you don’t expect it of them.

Part 2: Combating Implicit Bias

Every one of us harbors biases, including implicit biases that form outside of our conscious awareness. In some cases, our implicit biases may even run counter to our conscious values. This matters in the classroom because implicit bias can trigger self-fulfilling prophecies by changing stereotyped groups’ behaviors to conform to stereotypes, even when the stereotype was initially untrue. Attempting to suppress our biases is likely to be counterproductive, so we must employ other strategies to ensure fairness to all our students.

  • Become aware of your own biases, by assessing them with tools like the Harvard Implicit Association Test (https://implicit.harvard.edu/implicit/takeatest.html) or by self-reflection. Ask yourself: Do I interact with men and women in ways that create double standards? Do I assume that members of one group will need extra help in the classroom – or alternatively, that they will outperform others? Do I undervalue comments made by individuals with a different accent than my own?
  • Learn about cultures different than your own. Read authors with diverse backgrounds. Express a genuine interest in other cultural traditions. Exposure to different groups increases your empathy towards them.
  • Take extra care to evaluate students on individual bases rather than social categorization / group membership. Issues related to group identity may be especially enhanced on college campuses because this is often the first time for students to affirm their identity and/or join single-identity organizations / groups.
  • Recognize the complexity of diversity. No person has just one identity. We all belong to multiple groups, and differences within groups may be as great as those across groups.
  • Promote interactions in the classroom between different social groups. Even if you choose to let students form their own groups in class, mix it up with jigsaw activities, for example.
  • Use counter-stereotypic examples in your lectures, case studies, and exams.
  • Employ fair grading practices, such as clearly-defined rubrics, anonymous grading, grading question by question instead of student by student, and utilize activities with some group points and some individual points.

Part 3: Day-to-Day Classroom Culture

These suggestions fall under the “biggest bang for your buck” category. They don’t require much time to implement, but they can go a long way to making your students feel more welcome in your classroom.

  • Use diverse images, names, examples, analogies, perspectives, and cultural references in your teaching. Keep this in mind when you choose pictures/cartoons for your lectures, prepare in-class or take-home activities, and write quiz/test questions. Ask yourself if the examples you are using are only familiar or relevant to someone with your background. If so, challenge yourself to make it accessible to a wider audience.
  • Pay attention to your terminology and be willing to adjust based on new information. This may be country-, region-, or campus-specific, and it may change over time (e.g. “minority” vs. “historically underrepresented”). When in doubt, be more specific rather than less (e.g. “Korean” instead of “Asian”; “Navajo” instead of “Native American”).
  • Use inclusive and non-gendered language whenever possible (e.g. “significant other/partner” instead of “boyfriend/husband,” “chairperson” instead of “chairman,” “parenting” instead of “mothering”).
  • Make a concerted effort to learn your students’ names AND pronunciations. Even if it takes you a few tries, it is a meaningful way to show your students you care about them as individuals.
  • Highlight the important historical and current contributions to your field made by scientists belonging to underrepresented groups.
  • Limit barriers to learning. You will likely have a list of your own, but here are a few I’ve compiled:
    • Provide lecture materials before class so that students can take notes on them during class.
    • Use a microphone to make sure all students can hear you clearly.
    • Consider using Dyslexie font on your slides to make it easier for dyslexic students to read them.
    • Speak slowly and limit your use of contractions so that non-native-English speakers can understand you more easily.
    • Write bullet points on the board that remain there for the whole class period, including the main points for that lecture, important dates coming up, and key assignments.
    • Be sensitive to students whose first language is not English and don’t punish them unnecessarily for misusing idioms.

As a final parting message, always try to be mindful of your students’ needs, but know that you don’t have everything figured out at the outset. Make time to reevaluate your approach, class materials, and activities to see where improvements can be made. Challenge yourself to continually improve and hone better practices. Listen to your students, and be mindful with the feedback you ask them to give you in mid-semester and/or course evaluations.

For more information, I recommend the following resources:

  1. Davis, BG. “Diversity and Inclusion in the Classroom.” Tools for Teaching (2nd Ed). San Francisco: Jossey-Bass, A Wiley Imprint. p 57 – 71. Print.
  2. Eredics, Nicole. “16 Inclusive Education Blogs You Need to Know About!” The Inclusive Class, 2016 July 27. http://www.theinclusiveclass.com/2016/07/16-inclusive-education-blogs-you-need.html
  3. Handelsman J, Miller S, Pfund C. “Diversity.” Scientific Teaching. New York: W. H. Freeman and Company, 2007. p 65 – 82. Print.
  4. “Instructional Strategies: Inclusive Teaching and Learning.” The University of Texas at Austin Faculty Innovation Center. https://facultyinnovate.utexas.edu/inclusive

Laura Weise Cross is an Assistant Professor of Biology at Millersville University, beginning in the fall of 2019, where she will be teaching courses in Introductory Biology, Anatomy & Physiology, and Nutrition. Laura received a B.S. in Biochemistry from the University of Texas and a Ph.D. in Molecular and Cellular Pathology from the University of North Carolina. She recently completed her post-doctoral training in the Department of Cell Biology & Physiology at the University of New Mexico, where she studied the molecular mechanisms of hypoxia-induced pulmonary hypertension. Laura’s research is especially focused on how hypoxia leads to structural remodeling of the pulmonary vessel wall, which is characterized by excessive vascular smooth muscle cell proliferation and migration. She looks forward to engaging undergraduate students in these projects in her new research lab.

Do You Want To Be On TV?

Last summer, some colleagues and I published a paper on how high school students can communicate their understanding of science through songwriting.  This gradually led to a press release from my home institution, and then (months later) a feature article in a local newspaper, and then appearances on Seattle TV stations KING-5 and KOMO-4.

It’s been an interesting little journey.  I haven’t exactly “gone viral” — I haven’t been adding hundreds of new Twitter followers, or anything like that — but even this mild uptick in interest has prompted me to ponder my relationship with the news media. In short, I do enjoy the attention, but I also feel some responsibility to influence the tone and emphases of these stories. In this post, I share a few bits of advice based on my recent experiences, and I invite others to contribute their own tips in the comments section.

(1) Find out how your school/department/committee views media appearances.  In April, I was invited to appear on KING’s mid-morning talk show, which sounded cool, except that the show would be taped during my normal Thursday physiology lecture!  My department chair and my dean encouraged me to do the show, noting that this sort of media exposure is generally good for the school, and so, with their blessing, I got a sub and headed for the studio.

(2) Respect students’ privacy during classroom visits.  After some students were included in a classroom-visit video despite promises to the contrary, I realized that I needed to protect their privacy more strongly. I subsequently established an option by which any camera-shy students could live-stream the lecture until the TV crew left.

(3) Anticipate and explicitly address potential misconceptions about what you’re doing.  I’ve worried that these “singing professor” pieces might portray the students simply as amused audience members rather than as active participants, so, during the classroom visits, I’ve used songs that are conducive to the students singing along and/or analyzing the meaning of the lyrics. (Well, mostly. “Cross-Bridges Over Troubled Water” wasn’t that great for either, but I had already sung “Myofibrils” for KING, and KOMO deserved an exclusive too, right?)

(4) Take advantage of your institution’s public relations expertise.  Everett Community College’s director of public relations offered to help me rehearse for the talk show — and boy am I glad that she did!  Being familiar with the conventions and expectations of TV conversations, Katherine helped me talk much more pithily than I normally do. In taking multiple cracks at her practice question about “how did you get started [using music in teaching]?” I eventually pared a meandering 90-second draft answer down to 30 seconds. She also asked me a practice question to which my normal response would be, “Can you clarify what you mean by X?” — and convinced me that in a 4-minute TV conversation, you don’t ask for clarifications, you just make reasonable assumptions and plow ahead with your answers.

(5) Ask your interviewers what they will want to talk about. Like a novice debater, I struggle with extemporaneous speaking; the more I can prepare for specific questions, the better.  Fortunately, my interviewers have been happy to give me a heads-up about possible questions, thus increasing their chances of getting compelling and focused answers.

Readers, what other advice would you add to the above?

Gregory J. Crowther, PhD has a BA in Biology from Williams College, a MA in Science Education from Western Governors University, and a PhD in Physiology & Biophysics from the University of Washington. He teaches anatomy and physiology in the Department of Life Sciences at Everett Community College. His peer-reviewed journal articles on enhancing learning with content-rich music have collectively been cited over 100 times.

An inventory of meaningful lives of discovery

by Jessica M. Ibarra

I always had this curiosity about life. Since the very beginning, always wanting to understand how animals’ breathe, how they live, how they move. All that was living was very interesting. – Dr. Ibarra

“I always had this curiosity about life and I wanted to become a doctor, but my parent told me it was not a good idea,” Lise Bankir explained in her interview for the Living History Project of the American Physiological Society (APS).  The video interview (video length: 37.14 min.) is part of a rich collection over 100 senior members of the APS who have made outstanding contributions to the science of physiology and the profession. 

The archive gives us great insight into how these scientists chose their fields of study.  As Dr. Bankir, an accomplished renal physiologist, explain how she ended up “studying the consequences of vasopressin on the kidney.”  She describes her work in a 1984 paper realizing “high protein was deleterious for the kidney, because it induces hyperfiltration,” which of course now we accept that high protein accelerates the progression of kidney disease. Later she describes her Aha! moment, linking a high protein diet to urea concentration, while on holiday. 

“It came to my mind that this adverse effect of high protein diet was due to the fact that the kidney not only to excrete urea (which is the end product of proteins), but also to concentrate urea in the urine.  Because the plasma level of urea is already really low and the daily load of urea that humans excrete need that urea be concentrated about 100-fold (in the urine with respect to plasma).” 

Other interviews highlight how far ahead of their time other scientists were.  As is the case when it comes to being way ahead of teaching innovations and active learning in physiology with  Dr. Beverly Bishop.  In her video interview, you can take inspiration from her 50 years of teaching neurophysiology to physical therapy and dental students at SUNY in New York (video length: 1 hr. 06.09 min.).  Learn about how she met her husband, how she started her career, and her time in Scotland.  Dr. Bishop believed students could learn better with experimental laboratory activities and years ahead of YouTube, she developed a series of “Illustrated Lectures in Neurophysiology” available through APS to help faculty worldwide.

She was even way ahead of others in the field of neurophysiology.  Dr. Bishop explains, “everyone knows that they (expiratory muscles) are not very active when you are sitting around breathing quietly, and yet the minute you have to increase ventilation (for whatever reason), the abdominal muscles have to play a part to have active expiration.  So, the question I had to answer was, “How are those muscles smart enough to know enough to turn on?” Her work led to ground breaking work in neural control of the respiratory muscles, neural plasticity, jaw movements, and masticatory muscle activity.

Another interview shed light on a successful career of discovery and their implications to understanding disease, as is the case with the video interview of Dr. Judith S. Bond. She describes the discovery of meprins proteases as her most significant contribution to science (video length: 37.38 min.), “and as you know, both in terms of kidney disease and intestinal disease, we have found very specific functions of the protease.  And uh, one of the functions, in terms of the intestinal disease relates to uh inflammatory bowel disease.  One of the subunits, meprin, alpha subunit, is a candidate gene for IBD and particularly ulcerative colitis. And so that opens up a window to – that might have significance to the treatment of ulcerative colitis.”

Or perhaps you may want to know about the life and research of Dr. Bodil Schmidt-Nielsen, the first woman president of the APS (video length: 1 hr. 18.07 min.) and daughter of August and Marie Krogh.  In her interview, she describes her transition from dentistry to field work to study water balance on desert animals and how she took her family in a van to the Arizona desert and while pregnant developed a desert laboratory and measured water loss in kangaroo rats.  Dr. Schmidt-Nielsen was attracted to the early discoveries she made in desert animals, namely that these animals had specific adaptations to reduce their expenditure of water to an absolute minimum to survive. 

The Living History Project managed to secure video interviews with so many outstanding contributors to physiology including John B. West, Francois Abboud, Charles TiptonBarbara Horwitz, Lois Jane Heller, and L. Gabriel Navar to name a few.  For years to come, the archive provides the opportunity to learn from their collective wisdom, discoveries, family influences, career paths, and entries into science. 

As the 15th anniversary of the project approaches, we celebrate the life, contributions, dedication, ingenuity, and passion for science shared by this distinguished group of physiologists.  It is my hope you find inspiration, renewed interest, and feed your curiosity for science by taking the time to watch a few of these video interviews. 

Dr. Jessica M. Ibarra is an Assistant Professor of Physiology at Dell Medical School in the Department of Medical Education of The University of Texas at Austin.  She teaches physiology to first year medical students.  She earned her B.S. in Biology from the University of Texas at San Antonio.  Subsequently, she pursued her Ph.D. studies at the University of Texas Health Science Center in San Antonio where she also completed a postdoctoral fellowship.  Her research studies explored cardiac extracellular matrix remodeling and inflammatory factors involved in chronic diseases such as arthritis and diabetes.  When she is not teaching, she inspires students to be curious about science during Physiology Understanding Week in the hopes of inspiring the next generation of scientists and physicians. Dr. Ibarra is a native of San Antonio and is married to Armando Ibarra.  Together they are the proud parents of three adult children – Ryan, Brianna, and Christian Ibarra.

Engaging students in active learning via protocol development

Physiology, particularly metabolic physiology, covers the fundamentals of biophysics and biochemistry for nutrient absorption, transport, and metabolism. Engaging pre-health students in experimentation may facilitate students’ learning and their in-depth understanding of the mechanisms coordinating homeostatic control. In addition, it may promote critical thinking and problem-solving ability if students are engaged in active learning.

Traditionally, students are provided instructions that detail the stepwise procedures before an experiment or demonstration. Although students are encouraged to ask questions before and during the experiments, an in-depth discussion would not be possible until they understand each step and the underlying principles. This is particularly true nowadays when commercial kits come with stepwise instructions where no explanation can be found of principles behind the procedure. The outcomes may contrast in three ways: (1) students are happy with the perfect data they acquire by following the instructions provided by the manufacturer, but they miss the opportunity to chew on the key principles that are critical for students to develop creative thinking; (2) students are frustrated as they follow the instruction but fail the experiments, without knowing what is wrong and where to start for trouble shooting; and (3) driven by self-motivation, students dig into the details and interact intensively with the instructor to grasp the principles of the procedure. As such, the students can produce reliable data and interpret the procedure and data with confidence, and in addition, they may effectively diagnose operational errors for trouble shooting. Evidently, the 3rd scenario demonstrates an example of active learning, which is desirable but not common in a traditional model of experimentation.

To engage students in active learning, one of the strategies is to remove the ready-to-go procedure from the curricular setting but request the students to submit a working protocol of their own version at the end of an experiment. Instead of a stepwise procedure (i.e., a “recipe”), the students are provided with reading materials that discuss the key principles of the analytical procedures. When students show the competency in the understanding of the principles in a formative assessment (e.g., a 30-min quiz), they are ready to observe the demonstrations step by step, taking notes and asking questions. Based on their notes and inspiration from discussion, each student is requested to develop a protocol of their own version. Depending on how detail-oriented the protocols are, the instructor may approve it or ask students to recall the details and revise their protocols before moving forward. Once students show competency in the protocol development, they are ready to conduct the steps in groups under the instructor’s (or teaching assistant, TA’s) supervision. Assessment on precision and accuracy is the key to examine the competency of students’ operation, which also provides opportunities for students to go back to improve or update their protocols. In the case of unexpected results, the students are encouraged to interpret and justify their results in a physiological setting (e.g., fasting vs. feeding states) unless they choose not to. Regardless, students are asked to go back to recall and review their operation for trouble shooting under the instructor’s (or TA’s) supervision, till they show competency in the experiment with reproducible and biologically meaningful data. Trouble shooting under instructor’s or TA’s supervision and inspiration serves as an efficient platform for students to take the lead in critical thinking and problem solving, which prompts students to go back to improve or update their protocols showing special and practical notes about potential pitfalls and success tips.

Often with delight, students realize how much they have grown at the end of experimentation. However, frustration is not uncommon during the troubleshooting and learning, which has to be overcome through students’ persistence and instructor’s encouragement. Some students might feel like “jumping off a cliff” in the early stage of an experiment where a ready-to follow instruction is not available. Growing in experience and persistence, they become more confident and open to pursue “why” in addition to “what”.

Of note, logistic consideration is critical to ensure active learning by this strategy. A single experiment would take up to 3-fold more time for the instructor and students to work together to reach competency. To this end, the instructor needs to reduce the number of experiments for a semester, and carefully select and design the key experiments to maximally benefit students in terms of skill learning, critical thinking, and problem solving. Furthermore, group size should be kept small (e.g., less than 3 students per group) to maximize interactive learning if independent experimentation by individuals is not an option. Such a requirement can be met either by increasing TA support or reducing class size.

 

 

Zhiyong Cheng is an Assistant Professor of Nutritional Science at the Food Science and Human Nutrition Department, University of Florida’s Institute of Food and Agricultural Sciences (UF/IFAS). Dr. Cheng received his PhD in Analytical Biochemistry from Peking University. After completing his postdoctoral training at the University of Michigan (Ann Arbor) and Harvard Medical School, Dr. Cheng joined Virginia Tech as a faculty member, and recently he relocated to the University of Florida. Dr. Cheng has taught Nutrition and Metabolism, with a focus on substrate absorption, transport, and metabolism. As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively participating in undergraduate and graduate research training.