Category Archives: Course Design

Teaching an Integrated Human Anatomy and Physiology Course: Additional Lessons Learned and Online Course Adjustments
Jennifer Ann Stokes, PhD
Assistant Professor of Kinesiology
Southwestern University

In my previous blog post, I outlined the lessons learned in my first run teaching a year-long integrated upper-division human anatomy and physiology course. It has been about a year and a half since the original post and after having taught the course for a second time I will review and add to my list of initial lessons learned. Additionally, this spring semester brought new challenges with a very swift move to online coursework due to COVID-19, so I will also comment on the resulting course alterations. As a reminder, this course sequence (A&P I and II) is an upper-division junior and senior level course at my college and class sizes are very small (20-24 students) allowing for maximum time for interaction, questions, and instructor guidance both in lecture and lab.

First, I will review the previous lessons learned and add additional commentary based on what I learned in my second year. If you haven’t yet, I would check out the previous blog for the initial notes.

1) Use an integrative textbook.

My textbook of choice is still Physiology: An Integrated Approach by Dee U. Silverthorn. For anatomy, I continued to supplement the anatomy information, such as the specifics of the skeletal system and joints, muscles, histology, etc., through the use of models and other reference material in hands-on lab activities. One addition made in the second year was the use of AD Instrument’s Lt online learning platform.  I discuss the addition of Lt in more detail later in this post, but I think it is important to note here too since the Lt lessons directly complemented the textbook material and helped bridge the gap between lecture and lab for the students.

2) Start building and assessing students’ A&P knowledge from the ground up, and build incrementally.

Laying the foundation for the core concepts is critical to the student’s understanding, application, and mastery of the complex integrative content that this course builds. I took this foundation building more seriously the second time around and, in the end, I did not have to spend more time on the basic content but instead I provided more formative assessment opportunities. This helped the students who did not have as strong a background or understanding of the basic material to recognize that they needed additional assistance. In addition to the weekly homework assignments which were graded for completion only, I added weekly low-stake quizzes using our learning management system (LMS). At first I thought the students would dislike the extra work, but an end-of-the-year survey indicated that they appreciated the extra practice and that the quizzes helped them feel better prepared for the exams.

3) Create a detailed course outline, and then be prepared to change it.

This lesson holds true for just about any course, but I found it especially true for an integrated A&P course – even when teaching it a second time. And it is even more important when you have to switch to online delivery. In the second year, I learned to appreciate that no two cohorts of students are the same and what took the previous cohort a day to master took the next cohort up to two days in some cases. Having the “flex days” at the end of each section was crucial for concept review and content integration. These are days where no new content is introduced, but instead we review and practice together.

4) Constantly remind your students of the new course format.

I cannot emphasize this enough: students will want to revert back to what they are comfortable with and what has worked for them in the past. I constantly remind students that their “cram and forget” method will not serve them well in this course and provide them with ample opportunity to practice this both on the formative and summative assessments. In the second year I continued the individual meetings with each student after their first exam to discuss study strategies and new ways to approach this material, but I also implemented additional check-ins throughout the year particularly with those students who were struggling. I continued to remind the students that the course content not only builds throughout the entire semester but also the entire year! I hammered this point home a bit more with the addition of “retention” quizzes which were delivered unannounced throughout the year and tested major core concepts and application.

5) Solicit student feedback.

Students can be brutally honest, so use that to your advantage. A lot of the new things I added in my second year teaching this course came from the first year-student feedback. I send out my own surveys with specific questions throughout the year which the students fill out anonymously. I find that students are happy to help, especially when they can see a course alteration mid-semester which was based on their feedback.

6) Be prepared to spend a lot of time with students outside of the classroom.

Still very true, but that’s probably my favorite part of this job. Even when we switched to online course delivery the virtual office hours were busy and students took advantage of the extra review and time to ask questions. 

In this second section, I will add additional lessons learned in my second year of teaching this course and comment on the changes made when the course moved online mid-way through the second semester.  

7) Over-communication.

One of the things I am known for with my students is consistent and clear communication, probably to the point of over-communication. I also emphasize that communication is a two-way street, so just as I am constantly communicating information to them, I expect them to do the same to me, including any accommodations, sports travel, or general course questions. I model this behavior with regular use of our LMS announcement page and I use the start of each class to review important deadlines and open the floor for questions. The move to online instruction only made this over-communication even more important. Early on in the transition period I checked in often to let them know the new plan and opened discussion pages to allow them to ask questions and express any concerns. I checked in multiple times a day using the LMS announcement page, posted a “live” course schedule and tables of new homework and quiz due dates all in one central location, and I added silly memes to the discussion boards to up engagement. I also added resource pages on the basics of Zoom and how to be an online student since this was very new territory for them (and me). Looking back this was a lot of information that was constructed and disseminated very quickly, but an end-of-the-year survey indicated they appreciated the information and that it told them that I was prepared and willing to help them during the transition.

8) More assessments. More practice. More activity.

In my second year, I assigned more practice problems from the textbook to help the students prepare for the exams and held problem sessions outside of class for review. This additional time and practice was well received even when it was a greater time commitment for the students. With the move to online instruction I was thankful that I had already established a fairly homework-heavy course as these assignments became even more important. The assigned “lecture” time was switched to virtual problem solving sessions and the course moved even more toward a flipped-classroom model. Since the switch to online occurred after I had already built a pretty solid reputation with this class (about a semester and a half) they were used to reading and problem solving before class, even if that class was now online. All homework and quizzes moved online which allowed for quicker feedback to the students on their progress and, thus, more time for questions before the exams. The switch to fully online homework and quizzes I plan to keep even when the course moves back to in-person as the quick feedback for the students and less time spent hand-grading by me is worth the extra time it takes to set-up the online modules.

9) Utilization of LMS Discussion Forums.

Honestly, the use of the LMS discussion forums did not start until the course moved online, but their quick success made me question why I had not taken advantage of this tool earlier. When the course moved online I added discussion pages with titles such as “What is going on?!? General course questions.” and “What I am most nervous about with the course moving online is…” The goal was to provide an outlet for students to ask questions and share their concerns. I always started the discussion myself, giving them a sort of “jumping off” point and an example. These discussion pages were utilized by almost all members of the course and were rated very highly in the end. Students could comment any time of day enhancing the accessibility of the discussion. I will modify these to be used in my courses moving forward for both in-person and online courses.

10) Online presence for both lecture and lab.

I actually increased my A&P online presence prior to the mandatory switch to online coursework with the implementation of AD Instruments Lt learning platform in the fall semester. My students received free access to both the anatomy and physiology modules thanks to an award from the American Physiological Society. The Teaching Career Enhancement Award supported a year-long study assessing the use of the ADInstruments Lt learning platform and its interactive and immersive lessons aimed at enhancing knowledge, retention, and practical application of the integrative course content. The Lt platform was fully customized to the course material and was used both in the lecture classroom and in the lab. In the lab, students were able to interact with a data acquisition system that is more “game-like” and familiar, while still collecting high-level human physiology data. Lt also allowed for the creation of new lessons that engaged students with the use of embedded questions in multiple formats, including drag-and-drop labeling, drawing, short answers, and completion of tables. These lessons were used in many ways: for pre-lab preparation, in-lab and post-lab assessment, and for active learning activities in the classroom. Lessons were completed individually or in small groups, and questions were set up with hints, immediate feedback, multiple tries, and/or automatic grading.

These modules were also incorporated in the active-learning lecture component of the course, providing additional exposure and practice with the content. The Lt lessons directly complemented the textbook material and helped bridge the gap between lecture and lab for the students. When the course moved fully online I was incredibly thankful that Lt was already in use in my course and that the students were already comfortable and familiar with the platform. I used Lt exclusively for the online labs and supplemental lecture content for the remainder of the spring semester. Just as before, the lessons and modules were customized by me to fit my course learning objectives and prepare the students for their new online assessments. Students could complete the online coursework at their leisure and stop by the virtual office hours for help or post questions on the discussion boards for feedback. Student feedback indicated that the addition of Lt to this course enhanced accessibility of the course content, provided extra practice and exposure to the material, and overall was rated highly by the students.  

And just as I did before, now I turn the conversation over to the MANY seasoned educators who read this blog. What did you learn in your quick move to online coursework? Did you implement any new pedagogical tools which you will continue to use even with in-person instruction? Please share!

Jennifer Ann Stokes is a soon-to-be Assistant Professor of Kinesiology at Southwestern University in Georgetown, TX, after spending the last three years at Centenary College of Louisiana. Jennifer received her PhD in Biomedical Sciences from the University of California, San Diego (UCSD) and following a Postdoctoral Fellowship in respiratory physiology at UCSD, Jennifer spent a year at Beloit College (Beloit, WI) as a Visiting Assistant Professor of Biology to expand her teaching background and pursue a teaching career at a primarily undergraduate institution. Jennifer’s courses include Human Anatomy and Physiology (using an integrative approach), Nutritional Physiology, Exercise Physiology, Medical Terminology, and Psychopharmacology. Jennifer is also actively engaged with undergraduates in basic science research (www.stokeslab.com) and in her free time enjoys cycling, hiking, and yoga.

A Sabbatical in Australia Cut Short and the Rapid Transition of Course Delivery of an Australian University due to the COVID-19 Global Pandemic
Emilio Badoer, PhD
Professor of Neuropharmacology
School of Health & Biomedical Science with the College of Science, Engineering & Health
Royal Melbourne Institute of Technology (RMIT) University, Bundoora (Melbourne, Victoria, Australia)

Patricia A. Halpin, PhD
Associate Professor of Biological Science and Biotechnology & Visiting Associate Professor at RMIT University
Department of Life Sciences, University of New Hampshire at Manchester (Manchester, NH)

I was thrilled to spend my sabbatical performing education research at RMIT University in Australia during the spring semester of 2020. I met my collaborator Emilio Badoer at the APS ITL in 2016 and at that time we vowed to collaborate someday. I had a smooth flight to Melbourne AU and as we left the airport, I got my first view of the city covered in a smoky haze from the bushfires to the north1. The radio broadcast playing on the car stereo was alerting everyone to the tropical cyclones headed for the east coast and these would soon cause massive flooding in New South Wales. “Welcome to Australia” Emilio said, little did we know at the time that the worst was yet to come. The COVID-19 outbreak in China had caused Australia to close its borders on February 12,3 to foreign nationals who had left or transited through mainland China.  I arrived February 9 and the focus of my attention was the excitement and anticipation of starting our two research projects.  At my small college, my courses usually enroll 10-24 students, at RMIT our first study was working with a large nursing class (n =368) with the primary goal of using Twitter to engage them outside of class with the course content. 

The nursing cohort started two weeks prior to the start of the term, and in the third week, the students went on clinical placements for five weeks. This course is team-taught and Emilio taught during the first two-week period so that content was the focus of our research for this study. We designed the study to collect data using paper surveys to be distributed at face-to-face class meetings at the beginning and end of the term to ensure a high rate of survey completion. The second study performed with his Pharmacology of Therapeutics class (n=140) started on March 2 with one face-to-face meeting followed by four weeks of flipped teaching (FT). During the FT period, we would engage them on Twitter with course content and they would meet during weekly face-to-face Lectorial sessions for review during the usual scheduled class time.  Students completed the paper pre-survey in the first class meeting and the scheduled paper post-surveys were to be distributed during the final Lectorial sessions on March 19 and 20.  Then on Monday March 16th everything changed; Victoria declared a state of emergency to combat the COVID-19 pandemic4 and Qantas announced that they would cancel 90% of their international flights5, with the remaining flights cancelled on March 31. 

I was contacted by friends and family back home urging me to come home right away. RMIT announced the decision that learning would go online starting March 23. In the United States, colleges had previously announced that students heading home for spring break should stay home as their classes would be delivered online due to the COVID-19 concerns 6. The faculty at the US schools had spring break to prepare the transition of their course content for the new delivery mode. At RMIT, they had recently started their semester with no spring break normally scheduled and the only break on the horizon was the distant Easter holiday (April 10-13) long weekend. Our hopes for data collection were quickly dashed as during the last Lectorial sessions only a few students attended, and we would not be able to survey the nursing students in person when they returned from placements.

My focus shifted to leaving the country as soon as possible. The only way to change my airline ticket home was through a travel agent and my personal travel agent spent a total of 11.5 h on hold with Qantas over a two-day period to secure my ticket home. I left Australia with hordes of anxious Americans. The airports were overwhelmed as we formed long lines trying to check in and then go through security. Everyone had a story to tell of how they had to cut their trip short and then changed their tickets. In Los Angeles I was joined by more Americans who were coming from New Zealand. Many of the American travelers were undergraduates very disappointed that their universities had called them home and they were leaving their semester abroad adventures. We would all soon arrive home safely to a country living in a new reality.

Meanwhile, in Australia, the situation at universities evolved rapidly. In line with the Australian Government mandate, students were told that all new arrivals into the country must self-isolate for 14 days effective March 16. Public gatherings of over 500 people were no longer allowed. Although universities were specifically exempt from this requirement, RMIT University proactively cancelled or postponed any events that were not related to the core business of learning, teaching and research. It also foreshadowed a progressive transition to lectures being delivered online where possible.  The University also indicated that students would not be disadvantaged if they chose not to attend face-to-face classes during the week of March 16. In response to the rapid changes occurring internationally, on March 20, the Australian Government restricted all non-Australian citizens and non-Australian residents from entering the country.  While Australian Universities could remain open and operating it was clear that this would not last for long 7. In response, RMIT University mandated that from Monday March 23 lectures were to be made available online but tutorials and seminars and non-specialist workshops could continue face-to-face until March 30.

On Sunday March 22 the State Government of Victoria (where the main RMIT University campus is based) mandated the shutdown of all non-essential activity from Tuesday March 24 to combat the spread of COVID-19 7. Immediately, RMIT University suspended all face-to-face learning and teaching activity on all its Australian campuses. Overnight, faculty became online teaching facilitators. Emilio produced and is continuing to produce new videos (15-30 minutes duration) covering the content normally delivered during the face-to-face large lecture session. Each week 3-5 videos are produced and uploaded onto Canvas (RMIT’s online learning management system) for the students. 

Unlike many of the US schools that are using Zoom, RMIT is using Collaborate Ultra within Canvas as its way of connecting with students on a weekly basis. Collaborate Ultra has the ability to create breakout groups and faculty can assign students to a specific breakout group or allow students to self-allocate to a specific breakout group. Emilio has allowed students to move between breakout groups to increase engagement. The only stipulation was to limit the group size usually to no more than six. Each student was originally registered to attend one small group Lectorial session that meets once per week for one hour and these groups have between 45-50 students each. The Lectorials were replaced by Collaborate Ultra sessions that were organized for the same times and dates as the normally scheduled small Lectorial sessions. The students and facilitators would all meet in the so-called “main room” where Emilio would outline the plans for the session. The main room session was conducted with Emilio’s video turned on so the students were ‘invited “into his home” and could feel connected with him. Dress code was also important. Emilio was conscious of wearing smart casual apparel as he would have worn had he been facing the students in a face-to-face session. In this way he attempted to simulate the normal pre-COVID-19 environment.

Following the introductory remarks outlining the tasks for the session, students were ‘sent’ to their breakout rooms to discuss and work on the first problem / task discussed in the main room. The analogy used by Emilio was that the breakout rooms were akin to the tables that were used in their collaborative teaching space in which he normally conducted the Lectorial sessions. Each table in that space accommodated approximately six students (hence the stipulation of no more than six in each breakout group). Emilio and another moderator ‘popped’ into each breakout room to guide and facilitate the students in their discussions. To date, the level of engagement and discussion amongst the students themselves generally appears to be much greater than that observed at face-to-face sessions which was a fantastic surprise. After a set time had elapsed, students re-assembled in the main room where the task was discussed with the whole class. This ensured that all students understood the requirements of the task and they had addressed all points that were needed to complete the task to the satisfactory standard. Next followed another task that differed from the first providing variety and maintaining the interest of the students.

Examples of tasks performed.

1 – Practice exam questions

A short answer question requiring a detailed response that would normally take at least 10 minutes in an exam environment to answer properly. Such questions were based on that week’s lecture (now video) course content and was contextualized in a scenario in which physiological/pathophysiological conditions were described and the pharmacological treatments needed to be discussed in terms of mechanisms of action, adverse effects, potential drug interactions or pharmacogenomic influences etc.

2 – Multiple choice questions – Quizzes

Emilio ran these using the Kahoot platform. By sharing his screen, Emilio could conduct such quizzes live providing instant feedback on student progress. This allowed Emilio to provide formative feedback, correct any misconceptions and discuss topics. Additionally, students were able to gauge their own learning progress. These tasks were performed in the main room with all participants.

3 – Completing sentences or matching answers

These could be done effectively in the breakout rooms, where a ‘lead’ student could utilize the whiteboard function in Collaborate Ultra which allowed all students in the group the opportunity to write on the whiteboard allowing discussion regarding the answers written.

4 – Filling in the gaps

Here Emilio would share his screen in which a diagram / figure / a schematic of a pathway etc. with labels/ information missing was provided and students were asked to screenshot the shared information. Then in breakout rooms, one student shared the captured screen shot with the group and the missing information was completed by the members of the group.

The Collaborate Ultra sessions were also utilized to provide students with a platform in which group work could be performed. With a lockdown in force and gatherings of groups forbidden, this utility was very important for enabling connection between students working on group projects. It also provided a sense of belonging within the student cohort.

In conclusion, with minimal preparation, a huge Australian University converted face-to-face teaching and learning to an online digital teaching and learning environment where working remotely was the new norm. It is almost inconceivable just a few short weeks ago that such a transformation could have happened in the timeframe that it did. It is a truly remarkable achievement.  

References

1 Alexander, H and Moir N. (December 20, 2019). ‘The monster’: a short history of Australia’s biggest forest fire. Sydney Morning Herald Retrieved on April 10, 2020 from https://www.smh.com.au/national/nsw/the-monster-a-short-history-of-australia-s-biggest-forest-fire-20191218-p53l4y.html

2 Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV) (Jan. 30, 2020). Retrieved on April 10, 2020 from https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)

3 Travel Restrictions on China Due to COVID-19 (April 6, 2020). Retrieved on April 10, 2020 from https://www.thinkglobalhealth.org/article/travel-restrictions-china-due-covid-19

4 Premier of Victoria, State of Emergency Declared in Victoria Over COVID-19. (March 16, 2020) Retrieved on April 10, 2020 from https://www.premier.vic.gov.au/state-of-emergency-declared-in-victoria-over-covid-19/

5 Qantas and Jetstar slash 90 per cent of international flights due to corona virus (March 16, 2020). Retrieved on April 10, 2020 from https://www.abc.net.au/news/2020-03-17/qantas-coronavirus-cuts-capacity-by-90-per-cent/12062328

6 Hartocollis A. (March 11, 2020). ‘An Eviction Notice’: Chaos After Colleges Tell Students to Stay Away. The New York Times. Retrieved on April 10, 2020 from  https://www.nytimes.com/2020/03/11/us/colleges-cancel-classes-coronavirus.html

7 Worthington B (March 22, 2020). Coronavirus crackdown to force mass closures of pubs, clubs, churches and indoor sporting venues. Retrieved on April 10, 2020 from https://www.abc.net.au/news/2020-03-22/major-coronavirus-crackdown-to-close-churches-pubs-clubs/12079610

Professor Badoer has held numerous teaching and learning leadership roles including many years as the Program Coordinator for the undergraduate Pharmaceutical Sciences Program at RMIT University in Bundoora AU and he coordinates several courses. He is an innovative instructor that enjoys the interactions with students and teaching scholarship. He has also taught pharmacology and physiology at Melbourne and Monash Universities. In addition, he supervises several postgraduate students, Honours students and Postdoctoral Fellows.

Patricia A. Halpin is an Associate Professor in the Life Sciences Department at the University of New Hampshire at Manchester (UNHM). Patricia received her MS and Ph.D. in Physiology at the University of Connecticut. She completed a postdoctoral fellowship at Dartmouth Medical School. After completion of her postdoc she started a family and taught as an adjunct at several NH colleges. She then became a Lecturer at UNHM before becoming an Assistant Professor. She teaches Principles of Biology, Endocrinology, Cell Biology, Animal Physiology, Global Science Explorations and Senior Seminar to undergraduates. She has been a member of APS since 1994 and is currently on the APS Education committee and is active in the Teaching Section. She has participated in Physiology Understanding (PhUn) week at the elementary school level in the US and Australia. She has presented her work on PhUn week, Using Twitter for Science Discussions, and Embedding Professional Skills into Science curriculum at the Experimental Biology meeting and the APS Institute on Teaching and Learning.

Backward planning of lab course to enhance students’ critical thinking
Zhiyong Cheng, PhD
Food Science and Human Nutrition Department
The University of Florida

Development of critical thinking and problem-solving skills hallmarks effective teaching and learning [1-2]. Physiology serves as a fundamental subject for students in various majors, particularly for bioscience and pre-professional students [1-8]. Whether they plan on careers in science or healthcare, critical thinking and problem-solving skills will be keys to their success [1-8].

Backwards course design is increasingly employed in higher education. To effectively accomplish specific learning goals, instructions are to begin course development with setting learning objectives, then backwardly create assessment methods, and lastly design and deliver teaching and learning activities pertaining to the learning objectives and assessment methods. In terms of development of critical thinking and problem-solving skills, a lab course constitutes an excellent option to provide opportunities for instructors and students to explore innovative paths to their desired destinations, i.e., to accomplish specific learning goals.

In a traditional “cookbook” lab setting, detailed procedures are provided for the students to follow like cooking with a recipe. Students are usually told what to do step-by-step and what to expect at the end of the experiment. As such, finishing a procedure might become the expected goal of a lab course to the students who passively followed the “cookbook”, and the opportunity for developing critical thinking skills is limited. In a backwards design of a lab course; however, the instructor may engage the students in a series of active learning/critical thinking activities, including literature research, hypothesis formulation, study design, experimental planning, hands-on skill training, and project execution. Practically, the instructor may provide a well-defined context and questions to address. Students are asked to delve into the literature, map existing connections and identify missing links for their project to bridge. With the instructor’s guidance, students work together in groups on hypothesis development and study design. In this scenario, students’ focus is no longer on finishing a procedure but on a whole picture with intensive synthesis of information and critical thinking (i.e., projecting from generic context to literature search and evaluation, development of hypothesis and research strategy, and testing the hypothesis by doing experiments).

An example is this lab on the physiology of fasting-feeding transitions. The transition from fasting to feeding state is associated with increased blood glucose concentration. Students are informed of the potential contributors to elevated blood glucose, i.e., dietary carbohydrates, glycogen breakdown (glycogenolysis), and de novo glucose production (gluconeogenesis) in the liver. Based on the context information, students are asked to formulate a hypothesis on whether and how hepatic gluconeogenesis contributes to postprandial blood glucose levels. The hypothesis must be supported by evidence-based rationales and will be tested by experiments proposed by students with the instructor’s guidance. Development of the hypothesis and rationales as well as study design requires students to do intensive information extraction and processing, thereby building critical thinking and problem-solving skills. Students also need to make sound judgments and right decisions for their research plans to be feasible. For instance, most students tend to propose to employ the hyper-insulinemic-euglycemic clamp because the literature ranks it as a “gold standard” method to directly measure hepatic gluconeogenesis. However, the equipment is expensive and not readily accessible, and students have to find alternative approaches to address these questions. With the instructor’s guidance, students adjust their approaches and adopt more accessible techniques like qPCR (quantitative polymerase chain reaction) and Western blotting to analyze key gluconeogenic regulators or enzymes. Engaging students in the evaluation of research methods and selection helps them navigate the problem-solving procedure, increasing their motivation (or eagerness) and dedication to learning new techniques and testing their hypotheses. Whether their hypotheses are validated or disproved by the results they acquire in the end, they become skillful in thinking critically and problem solving in addition to hands-on experience in qPCR and Western blotting.

Evidently, students can benefit from backwards planning in different ways because it engages them in problem-based, inquiry-based, and collaborative learning — all targeted to build student problem solving skills [1-8]. For a typical lab course with pre-lab lectures; however, there is only 3-6 hours to plan activities. As such, time and resources could be the top challenges to implement backwards planning in a lab course. To address this, the following strategies will be of great value: (i) implementing a flipped classroom model to promote students’ pre- and after-class learning activities, (ii) delivering lectures in the lab setting (other than in a traditional classroom), where, with all the lab resources accessible, the instructor and students have more flexibility to plan activities, and (iii) offering “boot camp” sessions in the summer, when students have less pressure from other classes and more time to concentrate on the lab training of critical thinking and problem solving skills. However, I believe that this is a worthwhile investment for training and developing next-generation professionals and leaders.

References and further reading

[1] Abraham RR, Upadhya S, Torke S, Ramnarayan K. Clinically oriented physiology teaching: strategy for developing critical-thinking skills in undergraduate medical students. Adv Physiol Educ. 2004 Dec;28(1-4):102-4.

[2] Brahler CJ, Quitadamo IJ, Johnson EC. Student critical thinking is enhanced by developing exercise prescriptions using online learning modules. Adv Physiol Educ. 2002 Dec;26(1-4):210-21.

[3] McNeal AP, Mierson S. Teaching critical thinking skills in physiology. Am J Physiol. 1999 Dec;277(6 Pt 2):S268-9.

[4] Hayes MM, Chatterjee S, Schwartzstein RM. Critical Thinking in Critical Care: Five Strategies to Improve Teaching and Learning in the Intensive Care Unit. Ann Am Thorac Soc. 2017 Apr;14(4):569-575.

[5] Nguyen K, Ben Khallouq B, Schuster A, Beevers C, Dil N, Kay D, Kibble JD, Harris DM. Developing a tool for observing group critical thinking skills in first-year medical students: a pilot study using physiology-based, high-fidelity patient simulations. Adv Physiol Educ. 2017 Dec 1;41(4):604-611.

[6] Bruce RM. The control of ventilation during exercise: a lesson in critical thinking. Adv Physiol Educ. 2017 Dec 1;41(4):539-547.

[7] Greenwald RR, Quitadamo IJ. A Mind of Their Own: Using Inquiry-based Teaching to Build Critical Thinking Skills and Intellectual Engagement in an Undergraduate Neuroanatomy Course. J Undergrad Neurosci Educ. 2014 Mar 15;12(2):A100-6.

[8] Peters MW, Smith MF, Smith GW. Use of critical interactive thinking exercises in teaching reproductive physiology to undergraduate students. J Anim Sci. 2002 Mar;80(3):862-5.

Dr. Cheng received his PhD in Analytical Biochemistry from Peking University, after which he conducted postdoctoral research at the University of Michigan (Ann Arbor) and Harvard Medical School. Dr. Cheng is now an Assistant Professor of Nutritional Science at the University of Florida. He has taught several undergraduate- and graduate-level courses (lectures and lab) in human nutrition and metabolism (including metabolic physiology). As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively developing and implementing new pedagogical approaches to build students’ critical thinking and problem-solving skills.

Building bridges: Medical physiology teaching in China
Ryan Downey, Ph.D.
Assistant Professor
Co-Director, Graduate Physiology Program
Team Leader, Special Master’s Program in Physiology


Department Pharmacology and Physiology
Georgetown University Medical Center
Washington, D.C.

The Chinese Society of Pathophysiology hosted the 2019 Human Functional Experiment Teaching Seminar and the Second Human Physiology Experimental Teaching Training Course 25-27 October. Across two and a half days, educators from across China met at Jinzhou Medical University in the province of Liaoning to discuss and workshop the latest ideas in active learning and interactive teaching techniques. In many ways, especially in terms of the esteem in which this meeting is held by its attendees, this meeting was not dissimilar from the APS Institute on Teaching and Learning, which will hold its next biennial meeting this coming June in Minneapolis. For the 2019 meeting, the organizers decided to invite an international speaker, which is how I found myself on a plane headed to China. As part of my visit, not only did I get to attend the workshop hosted at Jinzhou Medical University, but also I was hosted by several of the meeting organizers at their home institutions to see their facilities. In this writeup, I will reflect on some of the observations that I made during the many different conversations that I had with the educators participating in the meeting.

The most common question that I got from my hosts was, “What kinds of technology do you use in your classrooms and labs and how do you use them?” What surprised me the most about this question wasn’t the actual question itself, but the perception that many of the educators at the meeting held that they were lagging behind in the implementation of using technologies as   teaching and learning tools. The large majority of teaching spaces that I visited were equipped with much the same technology as any classroom or lecture hall that I would find in an American university: computers, projectors, large-screen LCD displays, and power at every seat to accommodate student personal electronic devices. While there was the occasional technological oddity, such as a computer here or there that was still running Windows XP, the technology available to these educators was very much on par with the technology I would expect at any modern university, which is why I was surprised that the educators had the perception that they were behind in implementing different technologies. In my conversations with them, I discussed the use of audience response systems like iClicker and PollEverywhere as well as interactive elements like gamification through websites such as Kahoot!, but my emphasis in these conversations was exactly the same as I have with educators at home: we need to make sure that there is a sound pedagogical basis for any engagement we use with our students and that the technology doesn’t matter. I can use 3×5 colored  index cards to create an audience response system that functions as well as (or sometimes even better!) than clickers because no one has any problems with the WiFi while using a 3×5 card. The technology facilitates our instruction and should never drive it for the sake of itself.

A common thread of many discussions was the use of internet technologies in teaching. While there is much to be said about the limitations of the ‘Great Firewall’ of China and the amount of government regulation that occurs over their communications, it’s important to note how little these limitations affect the day-to-day activities of the majority of citizens. There are Chinese versions of almost every single internet convenience that we would take for granted that function at least as well as our American versions. Their social media system has grown to the point that many international users are engaging on their platforms. There are food delivery apps and the local taxi services have all signed on to a common routing system (at least in Beijing) that functions in a similar way to Uber or Lyft. In a side-by-side comparison between my phone and one of the other meeting participants, there is near feature parity on every aspect. From an educational standpoint, however, there are some notable differences. The lack of access to Wikipedia is a notable gap in a common open resource that many of us take for granted and there is not yet a Chinese equivalent that rivals the scope or depth that Wikipedia currently offers. Another key area in which internet access is limited is their access to scholarly journals. This lack of accessibility is two-fold, both in the access to journals because of restrictions on internet use as well as the common problem that we are already familiar with of journal articles being locked behind paywalls. The increasing move of journals to open access will remove some of these barriers to scholarly publications, but there are still many limits on the number and types of journal articles that educators and learners are allowed through Chinese internet systems.

The most common request that I received while attending the educators meeting was, “Tell me about the laboratories you use to teach physiology to your medical students.” I think this is the largest difference in teaching philosophy that I observed while in China. The teaching of physiology is heavily based on the use of animal models, where students are still conducting nerve conduction experiments with frogs, autonomic reflex modules with rabbits, and pharmacological studies in rats. These are all classic experiments that many of us would recognize, but that we rarely use anymore. One key area of the workshops were modules designed to replace some of these classic animal experiments with non-invasive human-based modules, such as measuring nerve conduction velocities using EMG. My response that the majority of our physiology teaching is now done through lecture only was met with a certain degree of skepticism from many of them because the use of labs is so prevalent throughout the entire country. Indeed, the dedication of resources such as integrated animal surgical stations runs well into the hundreds of thousands of dollars per laboratory room set up, and to facilitate the entirety of students each year, there are multiple labs set up at each university. As the use of non-invasive human experiments expands, an equal amount of space and resources are being given to setting up new learning spaces with data acquisition systems and computers for this new task. In this area, I think that we have much to gain from our Chinese counterparts as many of the hardest concepts in physiology are more easily elucidated by giving students the space to self-discover in the lab while making physiological measurements to fully master ideas like ECG waves and action potential conduction.

Upon returning home, I have been asked by nearly everyone about my travel experiences, so I think it may be worth a brief mention here as well. I cannot overstate the importance of having a good VPN service setup on all of your electronic devices before traveling. Using a VPN, I had near-normal use of the internet, including Google and social media. My largest problem was actually trying to access local Chinese websites when my internet address looked like I was outside of the country. I have had good experience with NordVPN, but there are several other very good options for VPN service. Carrying toilet paper is a must. There are lots of public restrooms available everywhere in the city, but toilet paper is either not provided or available only using either social media check-ins or mobile payments. For drinking water, I traveled with both a Lifestraw bottle and a Grayl bottle. This gave me options for using local water sources and not having to rely on bottled water. The Lifestraw is far easier to use, but the Grayl bottle has a broader spectrum of things that are filtered out of the water, including viruses and heavy metals, which may be important depending on how far off the tourist track you get while traveling. My final tip is to download the language library for a translator app on your mobile device for offline use so that you can communicate with others on the streets. When interacting with vendors and others not fluent in English, it was common to use an app like Google Translate to type on my device, show them the translated results, and they would do the same in reverse from their mobile device.

One of the themes across the meeting was building bridges — bridges between educators, bridges between universities, bridges across the nation and internationally. I’m glad to have had the opportunity to participate in their meeting and contribute to their conversation on building interactive engagement and human-focused concepts into the teaching of physiology. Overall, the time that I spent talking to other educators was useful and fantastic. Everyone I met and interacted with is enthusiastic and excited about continuing to improve their teaching of physiology. I left the meeting with the same renewed energy that I often feel after returning from our ITL, ready to reinvest in my own teaching here at home.

Ryan Downey is an Assistant Professor in the Department of Pharmacology & Physiology at Georgetown University. As part of those duties, he is the Co-Director for the Master of Science in Physiology and a Team Leader for the Special Master’s Program in Physiology. He teaches cardiovascular and neuroscience in the graduate physiology courses. He received his Ph.D. in Integrative Biology from UT Southwestern Medical Center. His research interests are in the sympathetic control of cardiovascular function during exercise and in improving science pedagogy. When he’s not working, he is a certified scuba instructor and participates in triathlons

Using Quests to Engage and Elevate Laboratory Learning
Sarah Knight Marvar, PhD
American University

My students, like me, enjoy a challenge. Occasionally this challenge comes in the form of staying on track, using our lab time efficiently to achieve the learning outcomes and staying engaged with the material. There are specific topics that we cover in our undergraduate human anatomy and physiology course, such as the skeletal system, that had become a little dry over time. Classes occasionally included students sitting at desks looking disinterestedly at disarticulated bones glancing at their lab manual and then checking their phones. I felt that the students were not getting enough out of our laboratory time and weren’t nearly as excited as I was to be there!

With other faculty members I recently devised some new laboratory activities that include a series of quests that closely resemble a mental obstacle course, to try to encourage engagement with the material and make our learning more playful and memorable. There may also be some healthy competition along the way.

I teach an undergraduate two semester combined anatomy and physiology course, in which I lead both the lecture and laboratory portions. Students who are enrolled in this course are majoring in Biology, Neuroscience, Public Health and Health Promotions. Many of the enrolled students are destined for graduate school programs such as Medicine, Nursing, Physical Therapy, Physicians Assistant and PhD Programs. An example of the quest format we used recently in a bone laboratory is described here.

The Quests

The laboratory is set up with multiple quest stations that each represent a multi-step task on areas within the overarching laboratory topic. All of the tasks are designed to enable students to achieve the learning outcomes of the laboratory in an engaging way. The quest stations are designed to encourage the students to physically move around the laboratory in order to interact with other students, touch the exhibits, explore case studies, complete illustrations and build models. Each student begins with a quest guide which provides instructions and upon which they take notes, answer questions and complete drawings. Students move at their own pace and work in self-selected pairs or groups of three. They are able to ask for assistance at any stage of a quest from either of two faculty members present.   

Clinical case studies

Because of the students’ interest in patient care, we use clinical case studies as a major component of the obstacle course. X-ray images of a variety of pathological conditions as well as healthy individuals challenged students’ ability to identify anomalies in bone structure and surgery outcomes. The images that we used included a skull of a newborn showing clearly the fontanelles, an example of osteoporosis and joint replacement surgery. Students are required to identify anatomical location of the image as well as any anomalies, pathology or points of interest. Because of the student demographic of this class, many of them are destined to enter healthcare professions, they are particularly interested in this quest and are invested in solving the mystery diagnoses.

The Creative Part

Illustrations

An example of a student’s histological drawing.

The coloring pencils and electric pencil sharpener have come into their own in the laboratory and like Grey’s Anatomy illustrator Henry Vandyke Carter created before them, amazing anatomically accurate drawings are appearing on the page. Histology has been a particularly challenging aspect of our course for students with little previous exposure to sectioned specimens. In an attempt to allow students to really process what they are looking at and reflect on the tissue function I have asked students to draw detailed images of the histological specimens, label cell types and reflect on specific cell functions. This exercise aims to elevate the student’s ability to look closely at histological specimens and gain a better understanding of what they are observing and contemplate specific cell function.

Another quest involves categorizing bones and making illustrations of them, making note of unique identifying features and their functions.

3-D Modeling

Student synovial joint models with notes on function

Reminiscent of scenes from my three year old’s birthday party, I brought out the modeling clay and tried to stifle the reflex instruction to “don’t mix the colors”! Students were tasked with creating a 3-dimensional model of structures such as synovial joints. This is a particularly successful exercise in which students work with colored modeling clay to construct models of joints and label parts of the joint and describe the function of each part. This allows students to consider the relationship between the structure and function and move beyond looking at two-dimensional images from their textbooks and lecture slides. Students submit images of their completed models to the faculty for successful completion of the quest.

Other quest stations that were part of this particular laboratory session included Vertebrae Organizing, Mystery Bone Identification and Bone Growth Mechanisms.

One of the primary things that I learned from this exercise was that designing game-like scenarios in the classroom is far more enjoyable and entertaining for me as well as for the students, a win-win scenario. Overall from the perspective of the teaching faculty, the level of engagement was significantly increased compared with previous iterations of the class. The quality of the work submitted was high and in addition, this quest-based laboratory design is suitable for a wide range of topics and activities. I am currently designing a muscle physiology laboratory in a similar format that will include an electromyogram strength and cheering station as well as a sliding filament muscle contraction student demonstration station. In reflection I feel that my personal quest to find a novel and interesting way for the students to learn about bones was successful. Now onto the next quest……

Sarah Knight Marvar received her BSc in Medical Science and PhD in Renal Physiology from the University of Birmingham, UK. Sarah is currently a Senior Professorial Lecturer and Assistant Laboratory Director in the Biology Department at American University in Washington DC. Sarah teaches undergraduate Anatomy and Physiology, general biology classes as well as a Complex Problems class on genetic modification to non-majors as part of the AU Core program. Sarah’s research interests include using primary research literature as a teaching tool in the classroom, open educational resources and outreach activities.

How do you feel about sharing with the world? The Open Educational Resources (OER) phenomenon.

Joann May Chang, PhD
Professor of Biology & Director for the Center for Instructional Excellence at Arizona Western College
Yuma, Arizona

I recently attended a training on Open Educational Resources (OER) and what it truly means to offer an OER course.  What is an OER course?  If you offer a course that uses an e-text with other content found on the web to supplement without costing the student any money, this would be defined as being free of costs and not truly an OER course.  Why? That leads to the key question Matthew Bloom, OER Coordinator for Maricopa Community Colleges, posed to our group during the training: “How do you feel about sharing with the world?” 

OER has become a prominent topic in higher education to save students on textbook costs, but also a movement in building high quality accessible teaching materials for educators without being tied to a publishing company.  In a 2017 blog post by Chris Zook, he provided infographics of data associated with the increase in textbook prices that have outpaced inflation, medical services, and even new home costs. [attached graphic 1 & 2]  As Chris Zook also noted, community college students are two times more likely to purchase textbooks with their financial aid than four-year college students which increases their financial burden to complete their degree.  When faculty build OER courses, they can decrease this burden and share their course content with others who are working towards giving equal access to higher education.

OER is at the forefront of Arizona Western College because it is an integral part of our institution’s strategic planning goals to make higher education more accessible for our student population where the average yearly salary is only $38,237.    We are a year into this goal with our first formal OER training taking place in June 2019.  When Matthew first asked us if we share our teaching materials, most of us said “Sure! We share with our colleagues often.”  But then he followed that up with “How willing are you to share your developed content with the world?”  And that is the difference between a free versus an OER course.  If a faculty member develops open course content and licenses it under the Creative Commons License, the material can be retained, reused, revised, remixed, and redistributed (known as the 5R activities) by others.  The creator of the open content can control how their material is used with the different Creative Commons licenses. [Creative Commons License gif] With the shared content, the OER movement aims to provide quality teaching materials that can be used in an open creative and collaborative manner while benefitting students in reducing textbook costs.

I did not realize the importance of Matthew’s question until I started my search for OER content with Creative Commons Licensing for our OER transitioning Anatomy and Physiology courses.  We will be using the OpenStax A & P textbook starting this Fall and even though Matthew gave us some good starting points to search for open resources that follow the 5R activities, it has been difficult finding pictures and diagrams that can be used in lecture and activities.  I have been able to find various posts to labs, power point slides, videos, and open textbooks that can be used for A&P.  The most common issue is the lack of quality science pictures or diagrams offered as open content, which I have also heard is a problem from other colleagues transitioning to OER. 

So, here’s my challenge question for you: Are you willing to share your developed content, pictures, and diagrams with the world?  If you are, please license them and share so that you can be a part of this OER movement and others can also collaborate and build that open content. Ultimately, this is about the ability to be inclusive and provide quality higher education for our students without burdening them with textbook costs.

If you are interested in this OER movement and are looking for information or content, please check out the following resources:

This list is in no way inclusive.  There are many other resources out there, they just take time to find and to search through.  I hope more of the scientific community takes part in this OER movement and can provide more resources for everyone to use or collaborate on.  It truly makes a difference to our students and their education.

Joann Chang, Ph.D. is a Professor of Biology and the Director for the Center for Instructional Excellence at Arizona Western College (AWC), a community college in Yuma, Arizona.  She currently manages the professional development for AWC and teaches A&P and Introduction to Engineering Design.  When she’s not teaching or directing, she is keeping up with her twin daughters, son, husband, three cats and one dog.  On her spare time, she is baking delicious goodies for her friends and family.

My Summer Reading: Discussion as a Way of Teaching: Tools and Techniques for Democratic Classrooms 2nd Edition by Stephen D. Brookfield and Stephen Preskill

Jessica L. Fry, PhD
Associate Professor of Biology
Curry College, Milton, MA

Ah Summer – the three months of the year when my To Do list is an aspirational and idealistic mix of research progress, pedagogical reading, curriculum planning, and getting ahead.  Here we are in July, and between hiring, new building construction, uncooperative experiments and familial obligations, I am predictably behind, but my strategic scheduling of this blog as a book review– meaning I have a deadline for both reading and digesting this book handed out at our annual faculty retreat — means that I am guaranteed to get at least one item crossed off my list!

My acceptance of (and planning for) my tendency to procrastinate is an example of the self-awareness Stephen D. Brookfield and Stephen Preskill advocate for teachers in their book “Discussion as a Way of Teaching”.  By planning for the major pitfalls of discussion, as well as the reasons behind why both teachers and students manage discussions poorly, they catalog numerous strategies to increase the odds of realizing the major benefits of discussion in the classroom.  At fifteen years old, this book is hardly dated; some of the discussion formats will be familiar to practitioners of active learning such as snowballing and jigsaw, but the real value in this book for me was the frank discussion of the benefits, drawbacks, and misconceptions about discussion in the classroom that are directly relevant to my current teaching practice.  

My lowest moments as a professor seem to come when my students are more focused on “finding the right answer” than on exploring a topic and fitting it into their conceptual understanding.  Paper discussions can fall flat, with students hastily reciting sentences from the discussion or results sections and any reading questions I may have assigned.  This book firmly makes the case that with proper groundwork and incentive, students can and will develop deliberative conversational skills.  Chapter 3 describes how the principles for discussion can be modeled during lecture, small group work, and formats designed for students to practice the processes of reflection and analysis before engaging in discussions themselves. Chapters 4 and 5 present the nuts and bolts of keeping a discussion going by describing active listening techniques, teacher responses, and group formats that promote rather than suppress discourse, and chapters 9 and 10 illustrate the ways students and teachers talk too much… and too little.  One of the most emphasized concepts in these chapters and threaded throughout the book is allowing silence.  Silence allows for reflection and should not be feared – 26 pages in this book cover silence and importantly, how and why professors and students are compelled to fill it, which can act as a barrier to all students participating in the discussion.   

Preskill and Brookfield emphasize the need for all students to be active listeners and participants in a discussion, even if they never speak a word, because discussion develops the capacity for the clear communication of ideas and meaning.  “Through conversation, students can learn to think and speak metaphorically and to use analogical reasoning…. They can get better at knowing when using specialized terminology is justified and when it is just intellectual posturing” (pg. 32).  What follows is an incredibly powerful discussion on not only honoring and respecting diversity, but a concise well-written explanation of how perceptions of social class and race affect both non-white and non-middle-class students in American college classrooms.  Their explanation of how academia privileges certain patterns of discourse and speech that are not common to all students leading to feelings of impostership should be read by everyone who has ever tone-policed a student or a colleague.  The authors advocate for a democratic approach to speech, allowing students to anonymously report if, for example, another student banging their hand on their desk to emphasize a point seemed too violent, which then allows the group to discuss and if necessary, change the group rules in response to that incident.  The authors note that “A discussion of what constitutes appropriate academic speech is not lightweight or idle.  It cuts to several core issues: how we privilege certain ways of speaking and conveying knowledge and ideas, who has the power to define appropriate forms and patterns of communication, and whose interests these forms and patterns serve” (pg 146).  The idea that academic language can be gatekeeping and alienating to many students is especially important in discussions surrounding retention and persistence in the sciences, where students seeing themselves as scientists is critical (Perez et al. 2014).  Brookfield and Preskill argue that through consistent participation in discussion, students will see themselves as co-creators of knowledge and bring their authentic selves to the community.   

All in all, this book left me inspired and I recommend it for those who imagine the kinds of invigorating discussions we have with colleagues taking place with our students and want to increase the chances it will happen in the classroom.  I want to cut out quotes from my favorite paper’s discussion section and have my students justify or refute the statements made using information from the rest of the paper (pg. 72-73 Getting Discussion Started).  I want my students to reflect on their journey to science and use social media to see themselves reflected in the scientific community (pg. 159-160 Discussing Across Gender Differences), and I want to lay the groundwork for the first discussion I have planned for the class of 2023; Is Water Wet?  All this and the rest of that pesky To Do list with my remaining month of summer. Wish me luck!  

Brookfield, S. D., & Preskill, S. (2005). Discussion as a Way of Teaching: Tools and Techniques for Democratic Classrooms (2nd ed.). San Francisco: Jossey-Bass.

Perez, T., Cromley, J. G., & Kaplan, A. (2014). The role of identity development, values, and costs in college STEM retention. Journal of Educational Psychology. http://doi.org/10.1037/a0034027

Jessica L. Fry Ph.D. is an Associate Professor of Biology at Curry College, a liberal-arts based primarily undergraduate institution in Milton, Massachusetts.  She currently teaches Advanced Physiology, Cell Biology, and Introduction to Molecules and Cells for majors, and How to Get Away with Murder which is a Junior Year Interdisciplinary Course in the General Education Program.  She procrastinates by training her dog, having great discussions with her colleagues, and reading copious amounts of science fiction. 

Synergy – From conference to classroom – The value of attending and doing project-based learning

Monica J. McCullough, PhD
Western Michigan University, Department of Biological Sciences

After attending the 2018 APS – ITL conference for the first time, I walked away with so many actionable ideas to implement in my large classes. One valuable experience was practicing active learning techniques as part of a session. “Doing” helps many to learn much more than “hearing” about best practices. I not only learned much from the active sessions offered at APS-ITL but transferred that experience into my own classroom upon returning.

I decided to try a semester-long project for my Intro to Bio for majors, modifying a project  I learned about from Dr. Beth Beason-Abmayr (http://advan.physiology.org/content/41/2/239) from Rice University.  Dr. Beason-Abmayr introduced ‘The Fictitious Animal Project’ during her session at APS-ITL as one she uses in her Vertebrate Physiology for non-bio majors, averaging around 30 students per semester.  During her session at APS-ITL, we divided into groups, ranging from 2-10, and mimicked the project. I instantly saw the value of this activity and had to add it to my teaching repertoire.  Dr. Beason-Abmayr’s project was to create a fictitious animal that had certain physiological characteristics. Students had categories, such as cardiovascular system, respiratory system, that were randomly selected and answer sets of questions that students would answer about the integration of them, including benefits and trade-offs for the fictitious animal.   They completed scheduled homework sets after topics were discussed in class. The students worked in groups and would present their creations to the class with drawings of their animals. What really piqued my interest was that since students had to create an animal that does not exist in nature, they couldn’t just Google it to create this project, and the potential to bring out their ingenuity to the design. 

Since I was going to teach biological form and function the upcoming Fall, and mind you for the first time, I thought I’d start with this semester-long project for 290 students, which were primarily freshmen. A major component that I wanted to maintain was the student presentations, as this is an important skill for these budding scientists. Obviously, the logistics to maintain this was the first decision, and when factoring in around 75 groups (averaging 4 students per group), I decided that the group presentations would span a total of 4 days at the end of the semester, in a gallery-style presentation. Presenters would line the room with their visual aid and the rest of the class would visit each group with designated rubrics. (Presentation Rubric) Additionally, the individual group members would submit a peer evaluation of their group mates at the end of the day of their presentation. (Group Peer Evaluation). My next modification was to adapt the category options so that the students would create a species that yielded both plant and animal components, as we would be learning about both. There were 5 overall anatomical/physiological categories, including size, circulation, sensory environmental interaction, structure and motility.  These too would be randomized with the use of Google by “rolling the dice” to assign each characteristic. (Project directions)  I continued with Dr. Beason-Abmayr’s project checkpoint of homework sets throughout the semester where students work on a subset of the categories and continue to build their species, as we learn about the topics in class. Each group submitted electronically to Dropbox, and allow time for feedback with rubrics. (HW set 1 rubric example) To end, there was a final wrap-around short answer portion on the final exam where students described each category and how it was incorporated with their own species. This allowed me to check for individual understanding of the project as we all know some group projects allow for ‘moochers’ to do and understand little.   

For me, this project is a keeper. It helped reinforce the essential concepts during the semester and practice soft skills needed to excel in the workforce. It was exciting to see how some students really embraced the project, including creating a costume of their species, 3-D print outs, live plants they’ve modified and sculptures. While difficult, there were also some group conflicts that did occur, yet, these emerging adults were able to work through their differences. A key factor to this was each group developing their own contract at the very beginning of the semester and was open for adjustments for the duration of the semester. (Team Contract)  The big take-away for me is, it is worth the risk to try something new in the classroom, no matter how large or small the size. This project helped student gains with the material, and practice throughout the semester. As an educator, I feel it is pivotal to find ways that help our students feel confident with the material and keep them curious and innovative. Just as at the top presentations at our conference, doing science makes concepts stick much more than just hearing about it.  

Monica J. McCullough, PhD joined as a Faculty Specialist in the Department of Biological Sciences and Western Michigan University in 2016, prior to which she was faculty at Adrian College. She currently teaches large introductory courses, including Anatomy, Physiology and Biological Form and Function. Dr. McCullough received her BS and PhD from Western Michigan University and studied regulation of neurotrophic factors. Dr. McCullough has 4 young children and has found a great interest in doing science demo’s in her elementary children’s’ classrooms.

Fostering an Inclusive Classroom: A Practical Guide

Ah, the summer season has begun! I love this time of year, yes for the sun and the beach and baseball games and long, lazy summer reading, but also because it gets me thinking about new beginnings. I’ve always operated on a school-year calendar mindset, so if you’re like me, you’re probably reflecting on the successes and shortcomings of the past year, preparing for the upcoming fall semester, or maybe even launching into a new summer semester now. As campuses become more diverse, fostering an inclusive learning environment becomes increasingly important, yet the prospect of how to do so can be daunting. So where to start?

First, recognize that there is not just one way to create an inclusive classroom. Often, the most effective tactics you use may be discipline-, regional-, campus-, or classroom-specific. Inclusive teaching is a student-oriented mindset, a way of thinking that challenges you to maximize opportunities for all students to connect with you, the course material, and each other.

Second, being proactive before a semester begins can save you a lot of time, headaches, and conflict down the road. Set aside some dedicated time to critically evaluate your course structure, curriculum, assignments, and language choices before ever interacting with your students. Consider which voices, perspectives, and examples are prominent in your class materials, and ask yourself which ones are missing and why. Try to diversify the mode of content representation (lectures, videos, readings, discussions, hands-on activities, etc.) and/or assessments types (verbal vs. diagrammed, written vs. spoken, group vs. individual, online vs. in-class, etc.). Recognize the limits of your own culture-bound assumptions, and, if possible, ask for feedback from a colleague whose background differs from your own.

Third, know that you don’t have to change everything all at once. If you are developing an entirely new course/preparation, you’ll have less time to commit to these endeavors than you might for a course you’ve taught a few times already. Recognize that incremental steps in the right direction are better than completely overwhelming yourself and your students to the point of ineffectiveness (Trust me, I’ve tried and it isn’t pretty!)

Below, I have included some practical ways to make a classroom more inclusive, but this list is far from comprehensive. As always, feedback is much appreciated!

Part 1: Course Structure and Student Feedback

These strategies require the largest time commitment to design and implement, but they are well worth the effort.

  • Provide opportunities for collaborative learning in the classroom. Active learning activities can better engage diverse students, and this promotes inclusivity by allowing students from diverse backgrounds to interact with one another. Furthermore, heterogeneous groups are usually better problem-solvers than homogeneous ones.
  • Implement a variety of learning activity types in order to reach different kinds of learners. Use poll questions, case studies, think-pair-share, jigsaws, hands-on activities, oral and written assignments, etc.
  • Select texts/readings whose language is gender-neutral or stereotype-free, and if you run across a problem after the fact, point out the text’s shortcomings in class and give students the opportunity to discuss it.
  • Promote a growth mindset. The language you use in the classroom can have a surprising impact on student success, even when you try to be encouraging. How many of us have said to our students before a test, “You all are so smart. I know you can do this!”? It sounds innocent enough, but this language conveys that “being smart” determines success rather than hard work. Students with this fixed mindset are more likely to give up when confronted with a challenge because they don’t think they are smart/good/talented enough to succeed. Therefore, when we encourage our students before an assessment or give them feedback afterwards, we must always address their effort and their work, rather than assigning attributes (positive or negative) to them as people.
  • Convey the same level of confidence in the abilities of all your students. Set high expectations that you believe all students can achieve, emphasizing the importance of hard work and effort. Perhaps the biggest challenge is maintaining high expectations for every student, even those who have performed poorly in the past. However, assuming a student just can’t cut it based on one low exam grade may be as damaging as assuming a student isn’t fit due to their race, gender, background, etc.
  • Be evenhanded in praising your students. Don’t go overboard as it makes students feel like you don’t expect it of them.

Part 2: Combating Implicit Bias

Every one of us harbors biases, including implicit biases that form outside of our conscious awareness. In some cases, our implicit biases may even run counter to our conscious values. This matters in the classroom because implicit bias can trigger self-fulfilling prophecies by changing stereotyped groups’ behaviors to conform to stereotypes, even when the stereotype was initially untrue. Attempting to suppress our biases is likely to be counterproductive, so we must employ other strategies to ensure fairness to all our students.

  • Become aware of your own biases, by assessing them with tools like the Harvard Implicit Association Test (https://implicit.harvard.edu/implicit/takeatest.html) or by self-reflection. Ask yourself: Do I interact with men and women in ways that create double standards? Do I assume that members of one group will need extra help in the classroom – or alternatively, that they will outperform others? Do I undervalue comments made by individuals with a different accent than my own?
  • Learn about cultures different than your own. Read authors with diverse backgrounds. Express a genuine interest in other cultural traditions. Exposure to different groups increases your empathy towards them.
  • Take extra care to evaluate students on individual bases rather than social categorization / group membership. Issues related to group identity may be especially enhanced on college campuses because this is often the first time for students to affirm their identity and/or join single-identity organizations / groups.
  • Recognize the complexity of diversity. No person has just one identity. We all belong to multiple groups, and differences within groups may be as great as those across groups.
  • Promote interactions in the classroom between different social groups. Even if you choose to let students form their own groups in class, mix it up with jigsaw activities, for example.
  • Use counter-stereotypic examples in your lectures, case studies, and exams.
  • Employ fair grading practices, such as clearly-defined rubrics, anonymous grading, grading question by question instead of student by student, and utilize activities with some group points and some individual points.

Part 3: Day-to-Day Classroom Culture

These suggestions fall under the “biggest bang for your buck” category. They don’t require much time to implement, but they can go a long way to making your students feel more welcome in your classroom.

  • Use diverse images, names, examples, analogies, perspectives, and cultural references in your teaching. Keep this in mind when you choose pictures/cartoons for your lectures, prepare in-class or take-home activities, and write quiz/test questions. Ask yourself if the examples you are using are only familiar or relevant to someone with your background. If so, challenge yourself to make it accessible to a wider audience.
  • Pay attention to your terminology and be willing to adjust based on new information. This may be country-, region-, or campus-specific, and it may change over time (e.g. “minority” vs. “historically underrepresented”). When in doubt, be more specific rather than less (e.g. “Korean” instead of “Asian”; “Navajo” instead of “Native American”).
  • Use inclusive and non-gendered language whenever possible (e.g. “significant other/partner” instead of “boyfriend/husband,” “chairperson” instead of “chairman,” “parenting” instead of “mothering”).
  • Make a concerted effort to learn your students’ names AND pronunciations. Even if it takes you a few tries, it is a meaningful way to show your students you care about them as individuals.
  • Highlight the important historical and current contributions to your field made by scientists belonging to underrepresented groups.
  • Limit barriers to learning. You will likely have a list of your own, but here are a few I’ve compiled:
    • Provide lecture materials before class so that students can take notes on them during class.
    • Use a microphone to make sure all students can hear you clearly.
    • Consider using Dyslexie font on your slides to make it easier for dyslexic students to read them.
    • Speak slowly and limit your use of contractions so that non-native-English speakers can understand you more easily.
    • Write bullet points on the board that remain there for the whole class period, including the main points for that lecture, important dates coming up, and key assignments.
    • Be sensitive to students whose first language is not English and don’t punish them unnecessarily for misusing idioms.

As a final parting message, always try to be mindful of your students’ needs, but know that you don’t have everything figured out at the outset. Make time to reevaluate your approach, class materials, and activities to see where improvements can be made. Challenge yourself to continually improve and hone better practices. Listen to your students, and be mindful with the feedback you ask them to give you in mid-semester and/or course evaluations.

For more information, I recommend the following resources:

  1. Davis, BG. “Diversity and Inclusion in the Classroom.” Tools for Teaching (2nd Ed). San Francisco: Jossey-Bass, A Wiley Imprint. p 57 – 71. Print.
  2. Eredics, Nicole. “16 Inclusive Education Blogs You Need to Know About!” The Inclusive Class, 2016 July 27. http://www.theinclusiveclass.com/2016/07/16-inclusive-education-blogs-you-need.html
  3. Handelsman J, Miller S, Pfund C. “Diversity.” Scientific Teaching. New York: W. H. Freeman and Company, 2007. p 65 – 82. Print.
  4. “Instructional Strategies: Inclusive Teaching and Learning.” The University of Texas at Austin Faculty Innovation Center. https://facultyinnovate.utexas.edu/inclusive

Laura Weise Cross is an Assistant Professor of Biology at Millersville University, beginning in the fall of 2019, where she will be teaching courses in Introductory Biology, Anatomy & Physiology, and Nutrition. Laura received a B.S. in Biochemistry from the University of Texas and a Ph.D. in Molecular and Cellular Pathology from the University of North Carolina. She recently completed her post-doctoral training in the Department of Cell Biology & Physiology at the University of New Mexico, where she studied the molecular mechanisms of hypoxia-induced pulmonary hypertension. Laura’s research is especially focused on how hypoxia leads to structural remodeling of the pulmonary vessel wall, which is characterized by excessive vascular smooth muscle cell proliferation and migration. She looks forward to engaging undergraduate students in these projects in her new research lab.

Do You Want To Be On TV?

Last summer, some colleagues and I published a paper on how high school students can communicate their understanding of science through songwriting.  This gradually led to a press release from my home institution, and then (months later) a feature article in a local newspaper, and then appearances on Seattle TV stations KING-5 and KOMO-4.

It’s been an interesting little journey.  I haven’t exactly “gone viral” — I haven’t been adding hundreds of new Twitter followers, or anything like that — but even this mild uptick in interest has prompted me to ponder my relationship with the news media. In short, I do enjoy the attention, but I also feel some responsibility to influence the tone and emphases of these stories. In this post, I share a few bits of advice based on my recent experiences, and I invite others to contribute their own tips in the comments section.

(1) Find out how your school/department/committee views media appearances.  In April, I was invited to appear on KING’s mid-morning talk show, which sounded cool, except that the show would be taped during my normal Thursday physiology lecture!  My department chair and my dean encouraged me to do the show, noting that this sort of media exposure is generally good for the school, and so, with their blessing, I got a sub and headed for the studio.

(2) Respect students’ privacy during classroom visits.  After some students were included in a classroom-visit video despite promises to the contrary, I realized that I needed to protect their privacy more strongly. I subsequently established an option by which any camera-shy students could live-stream the lecture until the TV crew left.

(3) Anticipate and explicitly address potential misconceptions about what you’re doing.  I’ve worried that these “singing professor” pieces might portray the students simply as amused audience members rather than as active participants, so, during the classroom visits, I’ve used songs that are conducive to the students singing along and/or analyzing the meaning of the lyrics. (Well, mostly. “Cross-Bridges Over Troubled Water” wasn’t that great for either, but I had already sung “Myofibrils” for KING, and KOMO deserved an exclusive too, right?)

(4) Take advantage of your institution’s public relations expertise.  Everett Community College’s director of public relations offered to help me rehearse for the talk show — and boy am I glad that she did!  Being familiar with the conventions and expectations of TV conversations, Katherine helped me talk much more pithily than I normally do. In taking multiple cracks at her practice question about “how did you get started [using music in teaching]?” I eventually pared a meandering 90-second draft answer down to 30 seconds. She also asked me a practice question to which my normal response would be, “Can you clarify what you mean by X?” — and convinced me that in a 4-minute TV conversation, you don’t ask for clarifications, you just make reasonable assumptions and plow ahead with your answers.

(5) Ask your interviewers what they will want to talk about. Like a novice debater, I struggle with extemporaneous speaking; the more I can prepare for specific questions, the better.  Fortunately, my interviewers have been happy to give me a heads-up about possible questions, thus increasing their chances of getting compelling and focused answers.

Readers, what other advice would you add to the above?

Gregory J. Crowther, PhD has a BA in Biology from Williams College, a MA in Science Education from Western Governors University, and a PhD in Physiology & Biophysics from the University of Washington. He teaches anatomy and physiology in the Department of Life Sciences at Everett Community College. His peer-reviewed journal articles on enhancing learning with content-rich music have collectively been cited over 100 times.