Category Archives: Course Design

The Undergraduate Physiology Lab – A New Shine on a Classic Course

The evolution of the workplace in the twenty-first century has created the need for a workforce with a skill set that is  unlike that needed by previous generations.  The American Physiological Society recognized this need  over a decade ago and with the assistance of  Association of Chairs of Departments of Physiology created  a set of professional skills needed by physiologists in the workplace (1).  This effort was echoed by the AAMC, the  STEM Innovation Task Force, and professional organizations  as they composed a  set of core competency or workplace  skills (2, 3).  Subsequent surveys of US employers across multiple industrial sectors indicated that students entering the technical workforce lacked these  critical skills.  Higher education has since been  tasked to provide students with training experiences in workplace skills, as well as content knowledge.

What are these workplace or employability skills?  The APS Professional Skills are a diverse set of skills, however the generally accepted workplace skills are a subset of this group and can be distilled into the list below.

Students entering the workplace should be able to:

  1. Work in a team structure
  2. Solve problems and think critically
  3. Plan, organize, and prioritize time
  4. Manage projects and resources
  5. Work with technology and software
  6. Communicate in oral or written formats
  7. Obtain and process information
  8. Pursue lifelong learning

Many of these skills have been embedded in the program objectives of the bachelor’s  degree.  Educators have found it difficult to insert skill training experiences into the traditional lecture classroom but most can be readily embedded into a lab curriculum such as the undergraduate physiology lab.

Let us consider these skills individually and examine how they can be found in a physiology  lab.

 

Students entering the workplace should be able to work in a team structure.

This skill is easily adapted to the physiology lab curriculum because lab partners are essential in most physiology lab courses.  The workload, experimental design, or timing of the protocol demands collaboration to accomplish tasks and complete the experiment.  The question that arises is, “How can we  train students to be productive team members in the workplace?”

Let’s think about the characteristics of good team work.  First and foremost good teamwork means completing assigned tasks promptly and responsibly.  It is easy to address this on an individual level in any course through graded assignments but it can be a challenge on a team level.   In labs however individual responsibility to the team can be addressed by assigning each team member a job that is essential to completion of the experiment.

There are also a set of interpersonal skills that promote good teamwork and these translate into practices that are important in any workplace.

  • Respect your team members and their opinions.
  • Contribute feedback, criticism, or advice in a constructive manner.
  • Be sensitive to the perspectives of different
  • When a conflict arises approach the dialog with restraint and respect.

These ideas  aren’t novel but when an instructor reviews them in class they not only provide students with guidelines  but they also communicate the instructor’s expectations for team behavior.

Finally, by using the common direction “Now show your partner how to do it.” or the well-known adage “see one, do one, teach one” an instructor promotes a subtle suggestion of responsibility for one’s team members.

Students entering the workplace should be able to solve problems and think critically. 

This objective has been a long-standing cornerstone of undergraduate life science education (4, 5).  Many instructors think that a bachelor’s degree in science is de facto a degree in critical thinking causing some instructors neglect this objective in curricular planning.  After all, if you are ever going to understand physiology, you have to be able to solve problems.  However in the workplace a physiologist will encounter many kinds of problems, challenges, puzzles, etc., and the well-prepared student will need experience in a variety of problem solving techniques.

Let’s review some problem solving practices and look at  how they occur  in the lab.

  • Use troubleshooting skills: Labs are a perfect place to teach this aspect of problem solving because it shows up so many times.  Consider the situation where a student asks  “Why  can’t I see my pulse, ECG, EMG, ….  recording on the screen?”  A typical instructor response might be, “Have you checked the power switch, cable connections, gain settings, display time..?”  only to find that the students has not thought to check any of these.  Ideally we want students to progress to the point where they can begin to troubleshoot their own problems so that their questions evolve to, “I have checked the power switch, cable connections, gain settings, display time and still don’t see a  recording on the screen.  Can you help me?”
  • Identify  irregular results:  This practice is similar to troubleshooting and again,  labs are a good place to learn about it.   Consider the situation where a student asks “My Q wave amplitude is 30.55 volts.  Does it look right to you?”  Be the end of the course the instructor hopes that the student will be able to reframe the question and ask “My P wave amplitude is 25.55 volts and I know that that is 10 fold higher than it should be.  Can you recheck my calculations?”
  • Use appropriate qualitative approaches to research problems: In the workplace a physiologist may be using this skill to ask a questions like “How can our lab evaluate the effect of Compound X on escape rhythm?”  but in the physiology lab students will learn a variety of experimental techniques and on the final exam must be able answer a less complex question like “How could you identify  third degree heart block?”
  • Use quantitative approaches to express a problem or solution: While physiology labs are rich in sophisticated  quantitative analyses it seems that it is simple calculational mechanics can often perplex and confound, students.  For example, students can readily calculate heart rate from an R-R interval when given an equation but without the equation some students may struggle to remember whether to divide or multiply by 60 sec.  Instructors recognize that the key is not to remember how to calculate rates but rather to understand what they are and be able to transfer that knowledge to problems in other areas of physiology  and ultimately be able to create their own equation for any rate.  The ability to use qualitative skills for problem solving in the workplace relies on making this transition.
  • Supporting a hypothesis or viewpoint with logic and data; Critically evaluating hypotheses and data:    In many ways these two problem solving skills are mirror images of each other. Physiology lab students get a lot of experience in supporting a hypothesis with logic and data, particularly as they write the discussion section of their lab reports.  However, the typical student gets little opportunity to critically evaluate untested or flawed hypotheses or data, a practice they will use frequently in their careers as they review  grants, manuscripts, or project proposals.  One solution might be engage students in peer review in the lab.

Students entering the workplace should be able to plan, organize, and prioritize time.  Students entering the workplace should be able to manage projects and resources.

These two skills representing personal organization and project organization often go together.  They are fundamental to any workplace but a lab is a special environment that has its own organizational needs and while they are idiosyncratic they provide experience that can be transferred to any workplace environment.  For a lab scientist  these skills can be characterized as being able to prioritize project tasks, identify needed resources, plan a project timeline, and track a projects progress.

Let’s consider some organizational and planning practices and examine on how they are used  in the lab.

As students read an experimental protocol they may ask themselves “What should do I do first – collect my reagents or start the water bath?” ,  “What is Type II water and where can I get it?” or “Can I finish my part of the data analysis and get it to my lab partner by Friday?”  How can instructors teach this?  As we look for an answer, let’s consider the realities of teaching a lab course.  Often in an effort to facilitate a lab session and enable students to complete the experiment on time, an instructor will complete some of the protocol like preparing buffers, pre-processing tissue, doing preliminary stages of dissection in advance  of the lab.  How can this instructional altruism help students learn about prioritizing tasks, identifying needed resources, or planning a project timeline.  There is no clear  or obvious answer.  Lab instructors routinely juggle learning objectives with time and content restraints  but  recognizing  that these skills are a fundamental part of professional practice makes us pause and think about  when and if  we can fit them in.

Students entering the workplace should be able to work with technology

This is clearly where lab courses can provide experiences and training that lecture courses cannot but it can be difficult for undergraduate institutions to equip labs with the most recent iteration in technology.   This does not diminish the significance of the course because physiology labs support an additional programmatic goal.  They train students to work with and use technology in ways that complement and extend their knowledge of physiology.

Let’s look at how these ideas show up in the lab.  Consider the situation where a student raises their hand during the lab and says,  “I can’t see anything on my recording but a wavy line.”  The instructor goes over to their experiment, surveys it and shows the student how to adjust the gain or display time.  Voila their data returns!

Or, consider the situation where a student raises their hand and says, “I know I am  recording something but it doesn’t look like my  ECG, pulse, etch”.  The instructor goes over to the experiment, surveys it and shows the student how to apply a digital filter.   Voila their data recording returns! Instructors recognize these situations as ‘aha!” moments where the lab has a tremendous impact on the student learning  but these experiences also provide students with  a long-term value – an appreciation  for knowing how to manage the technology they use.

Students entering the workplace should be able to communicate in an oral and written format

Many of the writing skills that are valued in the workplace are fundamental pieces of the physiology lab, particularly the physiology lab report.  Students are expected to organize their ideas, use graphics effectively, write clear and logical instructions in their methods, and support their position(s) with quantitative or qualitative data.

Let’s consider how writing skills are taught  in the lab report.  Instructors encourage and reinforce these skills by inserting marginal comments like “make the hypothesis more specific”,  “discuss and explain your graph”,  “discuss  how your results can be explained by homeostasis, cardiac output, etc.….” in the lab report.  Students, in the interest of  in getting a better grade on that next lab report, will ask their instructor “How can I make my hypothesis clearer?”, “I thought that I discussed that graph – what more do I need?”, or “  “I thought that I wrote about how the baroreceptor reflex explained my results – what should I have done instead?”  The typical instructor then gives their best explanation and grades the next lab report accordingly.

Some communication skills are embedded in the a lab course in a less transparent manner.  For example, one of the valued professional skills is the ability to convey complex information to an audience.  Instructors observe this in practice regularly as a student asks their lab partner “Show me how you did that?”

Finally there are some communication skills that are not so readily inserted into the lab curriculum and require a special effort on the part of the instructor.  One example of this is the ability to write/ present a persuasive argument which is a part of every  physiologists career in the preparation of  project proposals, contract bids, or project pitches.

Students entering the workplace should be able to obtain and process information

As physiologists we understand how critical it is to have these skills because much of our career is spent pursuing information or processing it.  There are however, multiple steps to becoming proficient.  One needs to be able to recognize  the what they need to know, identify resources to find it, be able to converse with experts to gain it, and finally be able to compile and process it in order to create learning or new knowledge.

The first step of this process, “knowing what you don’t know”, is the hardest for students because they often pursue and learn all the information available rather than focusing on what they don’t know or need to know.  This dilemma is faced by all undergraduate students at some point in their education and a lab course like many other courses tests them on this skill at least once or twice during the term.   The second step to proficiency is  identifying the resources needed to find information.   College libraries in collaboration with faculty inform students about institutional resources available for information gathering however they key to learning this skill is practice.  The physiology lab provides opportunities for practice each time an instructor asks a student to  “include 3 relevant  references in your lab report”, or asks a student to “describe clinical condition X in the discussion and explain how it relates to this lab, these results, etc.”.

Finally one of the objectives of most physiology labs is to teach students how to collect and process physiological information (data)  in a way that allows it to be compiled  into useable physiological information  (inferential statistics).   Students get plenty of practice with this in lab and even though it is discipline specific the general process can be applies to many other fields.

Students entering the workplace should be able to pursue lifelong learning.

Many of us teach or have taught physiology labs at one time or another  and found that not only is this an opportunity to reinforce concepts in physiology and dispel misconceptions  but also to impart to students a true appreciation for physiology and how it makes living organisms work.  Is there better way to promote lifelong learning?

This blog was not meant to be a complete presentation of professional or workplace skills nor was it intended to suggest that these skills  are the  most important in a physiologist’s career.   It was meant to reveal that fundamental professional skills are central components of most physiology lab courses and that sometimes we teach them without realizing it.

REFERENCES

  1. APS/ACDP List of Professional Skills for Physiologists and Trainees. The American Physiological Society.   http://www.the-aps.org/skillslist.aspx  accessed 10/24/2017.
  2. AAMC Core competencies for entering medical students. American Association of Medical Colleges.   accessed 10/20/2017.  https://www.careercenter.illinois.edu/sites/default/files/Core%20Competencies%20forEntering%20Medical%20Students.pdf accessed 10/25/2017.
  3. Focus on employability skills for STEM points to experiential learning. STEM Innovation Task Force.  https://www.stemconnector.com/wp-content/uploads/2016/12/Focus-on-Employability-Skills-Paper-1.pdf   accessed 10/21/2017.
  4. Vision and Change in undergraduate biology education:  A call to action.    http://visionandchange.org/files/2011/03/Revised-Vision-and-Change-Final-Report.pdf
  5. Bio 2010 Transforming undergraduate education for future research biologists. The National Academies Press.   https://www.nap.edu/login.php?record_id=10497&page=https%3A%2F%2Fwww.nap.edu%2Fdownload%2F10497
Jodie Krontiris-Litowitz is a Professor of Biological Sciences in the STEM College of Youngstown State University.  She currently teaches Human Physiology Lab, Advanced Systems Physiology and Principles of Neurobiology and has taught Human Physiology and Anatomy and Physiology.  In her classroom research Jodie investigates using active learning to engage students in the lecture classroom.  She is a long-standing member of the Teaching Section of the American Physiological Society and has served on the APS Education Committee.  Jodie is a Biology Scholars Research Fellow and a recipient of the YSU Distinguished Professor of Teaching award.
Stress and adaptation to curricular changes

 

 

 

…there was a teacher interested in enhancing the learning process of his students. He wanted to see them develop skills beyond routine memorization. With the support of colleagues and the education team at his university, he succeeded and chose a semi-flipped classroom approach that allowed him to introduce novel curricular changes that did not generate much resistance on the part of the students.

The change was made. The students apparently benefited from the course. They worked in groups and learned cooperatively and collaboratively. Students evaluated peers and learned to improve their own work in the process. They not only learned the topics of the class, but also improved their communication skills.

At some point the institution asked the teacher to teach another course. He happily did so, and based on his experience introduced some of the changes of his semi-flipped classroom into the new course. The students in this course were slightly younger and had not been exposed to education in biomedical sciences. To the teacher’s surprise, the students showed a lot of resistance to change. The sessions moved slowly, the test scores were not all that good, and students did not reach the expected outcomes. It was clear that the teacher and the students were going through a period of considerable stress, while adapting to the new model. Students and teachers worked hard but the results did not improve at the expected rate.

Some time ago this was my experience and as I wandered looking for solutions, I started to question the benefits of active learning and the role of stress in educational practice.

Advantages and challenges of active learning

Evidence says that active learning significantly improves student outcomes (higher grades and lower failure rates) and may also promote critical thinking and high level cognitive skills (1, 2). These are essential components of a curriculum that attempts to promote professionalism. However, it may be quite problematic to introduce active learning in settings in which professors and students are used to traditional/passive learning (2).

Some of the biggest challenges for teachers are the following:

  • To learn about backward design of educational activities
  • To think carefully about the expected accomplishments of students
  • To find an efficient way to evaluate student learning
  • To spend the time finding the best strategies for teaching, guiding, and evaluating students.
  • To recognize their limitations. For example, it is possible that despite their expertise, some teachers cannot answer the students’ questions. This is not necessarily bad; in fact, these circumstances should motivate teachers to seek alternatives to clarify the doubts of students. At this point, teachers become role models of professionals who seek to learn continuously.
  • To learn about innovations and disruptive technologies that can improve the teacher role.

Some of the challenges for students include:

  • Understanding their leading role in the learning process
  • Working hard but efficiently to acquire complex skills
  • Reflecting on the effectiveness of their learning methods (metacognition). Usually reading is not enough to learn, and students should look for ways to actively process the information.
  • Trusting (critically) on the methods made available by the teachers to guide their learning. For example, some tasks may seem simple or too complex, but teachers have the experience to choose the right methodology. A work from our team showed that strategies that seem very simple for the student (clay modeling) have a favorable impact on learning outcomes (3).
  • Seeking timely advice and support from teachers, tutors and mentors.

Working to overcome these challenges may generate a high level of stress on students and teachers. Without emphasizing that stress is a desirable trait, I do find that some disturbance in the traditional learning process and risk taking motivate teachers and students to improve their methods.

Intermediate disturbance hypothesis and stress in education

In the twentieth century, the work of Joseph H. Connell became famous for describing factors associated with the diversity of species in an ecosystem (4). Some of his observations were presented in Charles Duhigg’s book “Smarter Faster Better” which discusses circumstances related to effective teamwork (5). Duhigg reports that Connell, a biologist, found that in corals and forests there might be patches where species diversity increases markedly. Curiously, these patches appear after a disturbance in the ecosystem. For example, trees falling in a forest can facilitate the access of light to surface plants and allow the growth of species that otherwise could not survive (5). Connell’s work suggests that species diversity increases under circumstances that cause intermediate stress in the ecosystem. In situations of low stress, one species can become dominant and eradicate other species, whereas in situations of high stress, even the strongest species may not survive. But if, an intermediate stress where to appear, not very strong and not very weak, the diversity of species in an ecosystem could flourish.

I propose that the hypothesis of the intermediate disturbance can also be applied in education. In traditional learning, an individual (ecosystem) learns to react to the challenges presented and develops a method for passing a course. In situations of low stress, memorization (evaluated at the lower levels of Miller´s pyramid) may be enough to pass a course. In high stress level situations, students may drop out or feel inadequate. However, courses that involve active learning may include moderate challenges (intermediate disturbance). These well-managed challenges can motivate the student to develop more complex skills (diversity of species) that lead to effective learning and a broader professional development.

 

 

 

 

 

 

 

 

 

Figure 1. Intermediate disturbance hypothesis in education.

 

In the book “Problem-based learning, how to gain the most from PBL”, Donald Woods describes the challenges and stresses associated with the incorporation of active learning (PBL) in a curriculum (6). He describes the stages of grief that a student (and I add, a teacher) must go through while adapting to the new system. This adaptation can take months and generally is characterized by the following phases:

  • Shock
  • Denial
  • Strong emotion (including depression, panic and anger)
  • Resistance to change
  • Acceptance and resignation to change
  • Struggle to advance in the process
  • Perception of improvement in the expected performance
  • Incorporation of new habits and skills to professional practice

 

 

 

 

 

 

 

 

 

Figure 2. Performance adjustment after curricular changes. Adapted and modified from (6).

 

Properly managing stress and finding strategies to advance in the process are rewarded by achieving better performance once the students become familiar with the new method of active learning. However, to better adapt to curricular or pedagogical changes, it is important for all the education actors to recognize the importance of deliberate work and to have clear goals. In addition, students and teachers should have access to institutional strategies to promote effective time, and anger and frustration management.

Stress is not ideal, but some stress may motivate students and teachers to reevaluate their methods and ultimately work together for a classroom focused on professional excellence. The critical question is how big is the intermediate disturbance needed to improve learning outcomes. As is commonly concluded in papers, more research is needed to answer this question, and we can learn a lot from the theories and methods from our colleagues in Biology.

References

  1. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et al. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci U S A. 2014;111(23):8410-5.
  2. Michael J. Where’s the evidence that active learning works? Adv Physiol Educ. 2006;30(4):159-67.
  3. Akle V, Pena-Silva RA, Valencia DM, Rincon-Perez CW. Validation of clay modeling as a learning tool for the periventricular structures of the human brain. Anat Sci Educ. 2017.
  4. Connell JH. Diversity in Tropical Rain Forests and Coral Reefs. Science. 1978;199(4335):1302-10.
  5. Duhigg C. Smarter Faster Better: Random House; 2016.
  6. Woods DR. Problem Based Learning: How to gain the most from PBL. 2nd. ed1997.
Ricardo A. Peña-Silva M.D., PhD is an associate professor at the Universidad de los Andes, School of Medicine in Bogota, Colombia, where he is the coordinator of the physiology and pharmacology courses for second-year medical students. He received his doctorate in Pharmacology from The University of Iowa in Iowa City. His research interests are in aging, hypertension, cerebrovascular disease and medical education. He works in incorporation and evaluation of educational technology in biomedical education.

He enjoys spending time with his kids. Outside the office he likes running and riding his bicycle in the Colombian mountains.

12 years of teaching technology to physiology educators

When I was approached to write a blog for PECOP I thought I could bring a slightly different perspective on classroom technology as I am not a full-time classroom educator.  My primary role for the past dozen years with ADInstruments has been to work with educators who use our products to get the most from their investment in our technology.  This has led to thousands of conversations about use and misuse of technology in the classroom and teaching laboratories.  I would like to share some of my insights here.

Early in my academic career I was tasked with a major overhaul of the introductory Biology curriculum at Louisiana Tech, and incorporating technology was part of this mandate. I have always been a bit of a tech geek, but rarely an early adopter.  I spent quite a bit of time and effort taking a good hard look at technology before implementing it in my classrooms.  I was fortunate enough to participate in T.H.E. QUEST (Technology in Higher Education: Quality Education for Students and Teachers). Technology was just beginning to creep into the classroom in the late nineties. Most courses were traditional, chalk and talk; PowerPoint was still a new thing, and this three-week course taught us how to incorporate this emerging technology appropriately.  PowerPoint worked better for many of us than chalk and talk, but also became a crutch, and many educators failed to use the best parts of this technology and applied it as a panacea.  Now PowerPoint has fallen out of favor and has been deemed to be “Killing Education”(1).  When used improperly, rather than curing a problem, it has backfired and reduced complex concepts to lists and bullet points.

I was fortunate enough to have been on the leading edge for a number of technologies in both my graduate and academic careers.  Anybody remember when thermocyclers were rare and expensive?  Now Open PCR can deliver research quality DNA amplification for around $500.  Other technologies became quickly obsolete; anybody remember Zip drives? Picking the tech that will persist and extend is not an easy task.  Will the Microscope go the way of the zip drive?  For medical education this is already happening (2).  While ADInstruments continues to lead the way with our PowerLab hardware and software packages for education (3); there are plenty of other options available.  Racks of very specialized equipment for recording biological signals can now be replaced with very affordable Arduino based electronics (4,5). As these technologies and their supporting software gets easier to use, almost anyone can collect quality physiological data.

One of the more interesting technologies that is evolving rapidly is the area of content delivery or “teaching and learning” platforms. The most common of these for academia are the Learning Management Systems. These are generally purchased by institutions or institutional systems and “forced” upon the faculty.  I have had to use many different platforms at different institutions. Blackboard, Desire 2 Learn, Moodle, etc. are all powerful tools for managing student’s digital records, and placing content in their “virtual” hands.  Automatic grading of quiz questions, as well as built in plagiarism detection tools can assist educators with large classes and limited time, when implemented properly.  This is the part that requires buy in from the end user and resources from the institution to get the faculty up and running (6).  While powerful, these can be cumbersome and often lack the features that instructors and students who are digitally savvy expect.  Many publisher digital tools integrate with the University LMS’s and are adopted in conjunction with, or more frequently now instead of a printed textbook.  McGraw Hill’s Connect and LearnSmart platforms have been optimized for their e-textbooks and integrate with most LMS’s (7).  Other purpose-built digital tools are coming online that add features that students expect like Bring Your Own Device applications; Top Hat is one of these platforms that can be used with mobile devices in and out of the classroom (8).

 

So what has endured?

In my almost 20 years in higher education classrooms and labs, lots of tools have come and gone.  What endures are passionate educators making the most of the technology available to them.  No technology, whether digital or bench top hardware, will solve a classroom or teaching laboratory problem without the educator.  While these various technologies are powerful enhancements to the student experience, they fall flat without the educator implementing them properly.  It’s not the tech, it’s how the tech is used that makes the difference, and that boils down to the educator building out the course to match the learning objectives they set.

 

 

 

My advice to educators can be summed up in a few simple points: 

  • Leverage the technology you already have.
    • Get fully trained on your LMS and any other digital tools you may already have at your institution. The only investment you will have here is your time and effort.
    • Check the cabinets and closets, there is a lot of just out of date equipment lying around that can be repurposed. Perhaps a software update is all you need to put that old gear back in rotation.
  • Choose technology that matches your course objectives.
    • Small and inexpensive purpose-built tech is becoming readily available, and can be a good way to add some quantitative data to the laboratory experience.
    • Top of the line gear may have many advantages for ease of use and reliability, but is not necessarily the best tool to help your students accomplish the learning objectives you set.
  • Investigate online options to traditional tools.
    • eBooks, OpenStax, and publisher’s online tools can be used by students for a lot less money than traditional texts and in some cases these resources are free.

References:

1) http://pdo.ascd.org/lmscourses/pd11oc109/media/tech_m1_reading_powerpoint.pdf

2) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338491/

3) https://www.adinstruments.com/education

4) http://www.scoop.it/t/healthcare-medicine-innovation)

5) https://backyardbrains.com/

6) http://www.softwareadvice.com/hr/userview/lms-report-2015/

7) http://www.mheducation.com/highered/platforms/connect.html

8) https://tophat.com

 

Wes Colgan III is the Education Project Manager for ADInstruments North America. He works with educators from all over the world to develop laboratory exercises for the life sciences.  He conducts software and hardware workshops across North America, training educators to use the latest tools for data acquisition and analysis. He also teaches the acquisition and analysis portion of the Crawdad/CrawFly courses with the Crawdad group at Cornell. He has been a Faculty for Undergraduate Neuroscience member since 2007, and was named educator of the year for 2014.  Prior to Joining ADInstruments, he was an assistant professor at Louisiana Tech University where he was in charge of the introductory biology lab course series.
Teaching Backwards

 

Generating new ideas and cool learning experiences has always been natural and fun for me. My moments of poignant clarity often came during a swim workout or a walk with my dog as I reflect on my classes. As I visualize this activity, my students are as enthusiastic as I am and are learning. Then, reality returns as I grade the next exam and see that less than half of the class answered the question related to that activity correctly. Accounting for the students who learn despite what I do, I quickly see that I only reached a quarter of my students with this great activity. Why did this happen? What can I do about this?

Well, my life as an instructor changed the day I walked into my first session of University Center for Innovation in Teaching and Education (UCITE) Learning Fellows at Case Western Reserve University.  This program is a semester long session on how learning works where the focus is on evidence-based learning practices and provides an opportunity to discuss successes and failures in teaching with peers.  It was here that I learned about “Backwards Design”1.

What is Backwards Design?

Essentially, it is designing your course with the end in mind. I think of it as “Teaching Backwards” – that is, I visualize my students 5-10 years from now in a conversation with a friend or colleague discussing what they learned from my class. I ask myself these questions:

  1. How do I want them to describe my class? Hansen refers to this as the “Big Idea” or broad objective. An example from one of my classes is provided in Table 1.
  2. What do I want them to be able to tell their friend or colleague that they learned from the class in 5 to 10 years? Hansen has termed this as “Enduring Understanding” (see Table 1).

The next phase is to write learning objectives for each of the enduring understandings (see Table 1). We continue the journey backwards into linking learning objectives to assessment methods and developing the details of each class session. During this process, we must always take into account the student’s prior knowledge (refer to How Learning Works2).

Table 1: Example of Backwards Design Concepts for “Exercise Physiology and Macronutrient Metabolism” class.

Class: Exercise Physiology and Macronutrient Metabolism
Big Idea Enduring Understanding Learning Objective
Exercise-Body Interaction Substrate utilization during exercise depends on type, intensity, and duration of exercise. Students will be able to describe substrate utilization during exercise.
Fatigue during exercise has been associated with low glycogen levels, but scientists are not in agreement as to the underlying cause of fatigue. Students will be able to debate the theories of fatigue.

What did backwards design do for me?

Backwards design provided me focus. It allowed me to step back and ask myself: What are the key take-aways? Does that cool, creative idea I have help to achieve my end game for the course? Is there a better way to do this? Overall, the framework has helped me develop a higher quality course. With that said, I still run into exam questions where I thought I did better at teaching the material than represented by the students’ responses.  So, while there is always room for improvement, this has definitely been a step in the right direction for better learning by my students.

References:

  1. Hansen EJ. Idea Based Learning: A Course Design Process to Promote Conceptual Understanding. Sterling VA: Stylus Publishing, LLC; 2011.
  2. Ambrose SA, Bridges MW, DiPietro M, Lovett M, Norman MK.How Learning Works: 7 Research Based Points for Teaching. San Francisco CA: Jossey-Bass, 2010.

 

Lynn Cialdella-Kam, PhD, MBA, MA, RDN, LD joined CWRU as an Assistant Professor in Nutrition in 2013. At CWRU, she is engaged in undergraduate and graduate teaching, advising, and research. Her research has focused on health complications associated with energy imbalances (i.e. obesity, disordered eating, and intense exercise training). Specifically, she is in interested in understanding how to alterations in dietary intake (i.e., amount, timing, and frequency of intake) and exercise training (i.e., intensity and duration) can attenuate the health consequences of energy imbalance such as inflammation, oxidative stress, insulin resistance, alterations in macronutrient metabolism, and menstrual dysfunction.  She received her PhD in Nutrition from Oregon State University, her Masters in Exercise Physiology from The University of Texas at Austin, and her Master in Business Administration from The University of Chicago Booth School of Business.  She completed her postdoctoral research in sports nutrition at Appalachian State University and is a licensed and registered dietitian nutritionist (RDN).
Teaching Physiology in an Integrated Curriculum

Culmination of the 2016-17 academic year allows time for reflection and planning for the next year.   This past academic year, I was involved in the delivery of a new medical curriculum to an inaugural class of osteopathic medical students.   In keeping with current medical education trends, physiology and all other basic sciences were integrated throughout the year in individual systems based courses.  It is against this backdrop that I have decided to share a few observations and offer a few suggestions on delivering physiology content in a completely integrated teaching environment.

 

  • Delivery of an integrated curriculum is very time intensive for faculty. The idea of incorporating the teaching of anatomy, biochemistry, cell biology, physiology and microbiology/immunology of an organ system in a single course is conceptually attractive and to many medical practitioners the best way to educate the next generation of physicians.   Curricular challenges center on time limitations and the blurring of boundaries between the basic science disciplines.  Successful courses result when faculty are able to connect relevant information.   For example, my preparation for classroom discussions involved gaining an awareness of what was being taught in other disciplines and to incorporate appropriate synergies with the teaching materials developed by my colleagues in other disciplines.   The challenge was not to re-teach material.
  • Learning for the majority of students is not integrative. The development and delivery of an interdisciplinary integrated curriculum does not instantly result in students who are higher order problem solvers.   Learning is sequential, iterative, and cumulative.   Integration of concepts takes time and a firm foundation.   Guiding students along towards higher learning dimensions requires careful planning on behalf of the educator and can be accomplished through various pedagogical approaches.  Central to any approach should be basic questions for the educator to consider such as: 1) What is/are the basic fact(s) that the student should know? 2) Why does the student need to know this particular material?  and 3) How will the particular material be used in the problem solving process?   The answers to these and similar questions should then be used to introduce material in the classroom environment that keeps study groups discussing content after the session ends.
  • The true effectiveness of an integrated systems based curriculum should be measured by assessments that include questions designed specifically to high levels of integration. Data from both multidisciplinary and comprehensive formative as well as summative assessment instruments will provide a basis for future curricular decisions.

In the preceding discourse I have attempted to share a few views based on a year long teaching experience in a systems based medical curriculum.   My overall impression is that an integrated curriculum is a great way to teach physiology.   I also have learned that I am at the beginning of a new teaching journey that is sequential, iterative, and cumulative.   Sound familiar?  In preparation for next year, I know what I will be doing this summer to refine my previous year’s work in ways that facilitate student learning next year.    I am sure that I am not alone and wish you the best for a productive summer.

Joseph N. Benoit, PhD is Professor of Physiology and Director of Research & Sponsored Programs at the Burrell College of Osteopathic Medicine.   He has served in various higher education positions over the past 30 years including faculty, graduate school dean, college president and most recently founding faculty at a new medical school.   His current scholarly interests center on student learning, curriculum development, and regulatory compliance.  He lives and works in Las Cruces, NM.
Putting More Physiology into A & P

thinker-28741_640It’s tough being an undergrad student nowadays.  It’s expensive. State funding has cut into the budgets that used to go to offset tuition, and buildings for new classrooms have been on hold forever. Still they keep coming, paying higher and higher fees and tuition, crowded into larger and larger classroom sizes, getting shut out of labs: these are just the surface to larger problems in general. What kind of education are students getting now?  I ponder this as I teach A & P again after teaching physiology at a medical school for the last six years and A & P in smaller class sizes four years before that at universities and community colleges. Things have changed, and not for the better.  I’ll toss around some ideas that may or may not resonate with you, but these are things I feel we need to improve upon.

 

  1. How can we get class sizes smaller so we can teach and communicate? The depth of what students know goes not far beyond binge and purge. We can have small group discussion, more TBL and other models for active learning (if they read the pre-class material) and we’ll always have the good students, but for many lectures have become something to avoid. I get students who ask for my PPTs beforehand and use them as note templates, yet many rely on those as a sole source. The chances to integrate material become less frequent as we teach to the room and decrease the amount of material students can absorb. The long term rewards to learning are not being reinforced. I have students submit corrections for points in paragraph form, making them compose answers.

 

  1. Students need learning skills. Something I learned the hard way, but even in the prehistoric 1970’s note taking was essential. I implore students to do this as a way to create schemas even providing handouts with study skills that I have collected over the last thirty years. Of course the good students use this info, while the middle of the packers might but only after the first exam. We have more students who are being advised that health professions are good careers but not telling them how steep the competition is and how much is expected. Do I want an ED nurse who might forget that NaCl is not the same as KCl? Maybe I don’t have to weed them out, but I want their expectations to be parallel to the challenge and this should be considered the beginning of their career.

 

  1. Lastly, I propose perhaps a new approach to A & P; let’s separate the classes. Some institutions do this having advanced anatomy and general physiology classes for exercise science, why not do these for pre-health majors as well? The texts nowadays for A & P are humongous, with tons of information that skims the surface without enough integration. Let’s teach physiology with a chance to do more hands-on experiments and not have lab just being anatomy. I poll my students about whether they have seen frog muscle or heart experiments or any Mr. Wizard styled presentations. Few have, maybe from the more affluent secondary schools, therefore descriptions of diffusion or tetanus become an abstraction without the physical connection. They do ECGs and FEV1s in the second half of A & P, why not have that be the whole year?

 

Personally my career in physiology began when I walked into a behavioral neuroscience lab and ran my own independent study experiments for undergrad credit, all the while learning about the other research going on. I was happy that one of my biology students worked over the summer on an Integrative and Organismal NSF summer fellowship (that I know from my APS Porter Committee membership go underutilized) because statistics show that these students will go on in science.  I’d like to see our future caregivers have that depth as well.

 

johnson
 

 

 

William Johnson received his Master degree in Education from Johns Hopkins University in 1990. After teaching high school on the Dine reservation, he then pursued and obtained his PhD in Biology from Northern Arizonan University, studying angiotensin in desert anurans. After teaching physiology at University of South Florida Colleges of Public Health and Medicine, William has returned to his alma mater to teach anatomy and physiology and human physiology, as well as being involved in the summer program for Journey for Underrepresented in Medical Professions HRSA grant at NAU.

 

Course Preparation for a First Timer – Tips and Example Steps to Take

 


idea
This summer has been a uniquely exciting time for me as I prepare to teach my very first course, Human Physiology! What are the steps you take for preparing your courses? If it is your first time teaching, preparation seems overwhelming, and a challenge to figure out where to even begin. In this blog, I will be describing the steps I’ve taken to get ready for teaching my first course at our nearby minority-serving community college this fall. Full disclosure — I am definitely not an expert in course preparation, but I’ve included some tips and resources for what has worked for me.

Step 1: Reflection and determining my teaching philosophy

Reflecting on my time as an undergraduate student, I realize that learning how to learn did not come easy. It took me more than half way through my undergraduate years to figure out how to do it, and it was not until I was a graduate student that I mastered that skill. Thinking about my future students, I sought training opportunities to aid me in becoming a teacher who effectively facilitates student learning. I especially am interested in teaching practices that foster learning in first-generation college students who are not yet experienced with knowing how to learn and study. I want to make sure that my teaching style is inclusive of as many diverse student populations as possible. To do this, I have to educate myself on learning theories and effective teaching methods.

Early this summer, I attended the West Coast National Academies’ Summer Institute on Scientific Teaching to educate myself on teaching methods, and went home with understanding of the practices that fit my style and my philosophy. I highly recommend others to take advantage of these types of events or workshops (such as those offered by CIRTL) to familiarize yourself with various techniques. Aside from formal workshops, informal meetings with teaching mentors or experienced teachers gives valuable insight into the kinds of things to expect, things to avoid, suggestions and tips, teaching experiences, and inspirational words of wisdom. Use your network of mentors! Overall, inward reflection, formal workshops, and informal conversations with experienced mentors are ways that have helped me formulate the teaching practices that I will use for the course.

Step 2: Book and technology selection for the course

This sounds like an easy task, however, it can be a challenge if it is the first time you learn how to deal with choosing a book and the technology for your course. Luckily, one of my teaching mentors introduced me to the publisher’s local representative who met with me for several hours to discuss various book options and the technological tools that could be combined with my order. The rep helped me register my course in their online tool (Mastering A&P) and trained me to use this technology for creating homework, quizzes, interactive activities, rosters and grading. Thus far, I’ve spent countless hours exploring and learning how to use this technology before class starts. After all, I can’t expect my students to maneuver it if I can’t do it myself!

Step 3: Creating a syllabus, alignment table, and rubrics

The most important, hence time-consuming, task thus far is selecting the major topics and level of depth for the course while deciding the most important concepts, ideas, and skills for students to take away from the course. In order for students to meet expectations and become successful learners in the course, both the instructor and students should have this information clearly written out and understood at the very start of the course. The course syllabus is the first place where overall learning goals, outcomes, and expectations for the students for this course is presented. Furthermore, the syllabus should include information about grading, and any institutional policies on attendance, add/drop deadlines, and disability services.

Fortunately, the course that I am preparing has been offered multiple times previously, and thus I do not need to completely design a new course from scratch. However, I am re-designing and modifying sections of the course to include active and interactive teaching techniques. To guide this process during the semester, creating an alignment table for the course is beneficial to effectively execute learning activities and teach key concepts, ideas and skills. The components included in this table are: course learning goals, daily learning objectives, assignments, summary of activities, and assessments for each class period.

Take note that assessments should be determined first in order to prepare the content and activities for the class period accordingly (backwards design). Assessments could include an in-class activity, post-class assignments, exam and quiz questions. Rubrics of assessments should be made without ambiguity to formally assess students and to make sure the class period addresses the major points that students will be expected to learn. Preparing each class period, with flexibility for modifications based on gauging student grasp of the material, will help the semester run more smoothly and with less difficulties.

Step 4: Preparing content presentation and materials for activities

The last step I will take for course preparation is making and uploading any PowerPoint slides, handout materials, assignments, quizzes and exams, and any other material required for activities. With an alignment table already made, this portion of preparation should be relatively easy, but it will still take a significant amount of time.

Final Tips

Overall advice, plan ahead!! At minimum, it should take an entire summer to successfully prepare for a new course. With a well-planned course ahead of time, the hope is to be able to spend more energy throughout the semester to transfer and translate faculty enthusiasm for teaching into student enthusiasm for learning physiology!

Additional resource: Course Preparation Handbook by Stanford Teaching Commons

HernandezCarretero_9231

 

 

 

Angelina Hernández-Carretero is an IRACDA Postdoctoral Fellow at UC San Diego and is an adjunct faculty member at San Diego City College. She earned her Ph.D. in Cellular & Integrative Physiology from Indiana University School of Medicine. Her research interests involve diabetes, obesity, and metabolism. Angelina has a passion for mentoring, increasing diversity in STEM education and workforce, and inspiring the next generation through outreach.

 

 

 

The art of revamping an Introductory Biology course (and curriculum) around Vision & Change

blue cycling arrowsWhen Vision & Change: A Call to Action was published and distributed, University of Alaska Anchorage (UAA) Biology department (like many other departments across the country) answered the call. The rubrics for Vision and Change gave people a means to evaluate one’s department and how student instruction occurred. This led to great discussions on what needed to be remodeled within our courses and curriculum. This was good. The previous UAA Introductory Biology course had a 20% withdrawal rate and (by estimates only) an additional 20% of students who would not succeed in the course (D or F grade). If we wanted to increase retention in the major and increase the diversity of people pursuing a biological sciences undergraduate education, something needed to be done.

I want to take this opportunity to spend a bit of time on our process; not simply because I am excited about the positive changes that are happening at our biology department, but to share our brief story in hopes to hear from others.

The problem – UAA had a 2 semester introductory biology (survey based) course that had, in some instances, 40% reduction of students for each semester.

Our solution – Create a 1 semester laboratory/experiential learning introductory biology course (Principles and Methods of Biology; BIOL A108) that is founded on the principles laid forth in Vision and Change.

What does this really look like, other than a lot of work?

The basic flow is to have 3, 5-week (10 sessions) modules within the semester, which focus on three core concepts: evolution, information flow, and structure and function. These modules are tied together by principles of the scientific method and student led experiments. Each module has a different content lead instructor. The unifying instruction is led by a lab coordinator that follows the theme of scientific method to ensure students are practicing and utilizing each part of the scientific method throughout the duration of the course.

  • Module 1 focuses heavily on observation, creating and testing hypotheses, finding and using credible sources, and creating basic graphs for communication purposes.
  • Module 2 continues to build on observation, creating and testing hypotheses, creating graphs, and adds the component of applying the collected data into a greater context using credible sources.
  • Module 3 takes the components of modules 1 and 2 and asks the students to interpret their data using credible sources.

These modules culminate at the end of the course by having the students present a hypothetical experiment based on a current biologically relevant observation.

This course set up requires a large amount of group work and coordination among the students. We encourage discussions through specific assignment prompts and ask the students to present their data (6 times) as a group (they switch group members for each module). Presentations are assessed on flow of information, clarity of information, and accuracy of information. We include concept quizzes (3 per module), but no high stakes exams. There are a series of assignments that are formative to allow instructor feedback to be incorporated into summative assignments (presentations and experimental write ups).

Is it working? – We’ve tracked these changes with pre/post tests and student retention rates. Initial data show 96% of students passed (defined as a C or better grade) with a withdrawal rate of 2% in the first semester (Fall 2015). Data from the current semester (Spring 2016) suggest a similar trend. A second goal of the program revision was to increase student learning and engagement about the process of the scientific method; in this our data suggest we were successful. Within one month of BIOL A108, students have improved their use of the scientific method to tackle challenging biological questions and core concepts. Preliminary assessment data show 96% of BIOL A108 students can create and use hypothesis statements correctly. Additionally, BIOL A108 student pre/post data indicate a 25% improvement in their comprehension of Mendel’s principles.

These changes have required a lot of work by many people; including learners from all levels. Transparent communication between instructors and students have been paramount to our initial success. This communication includes informing the students that the changes within the course structure are based on discipline based educational research and is founded by using current data from evidence-based teaching to shape the course.

Additional data that we are collecting include student demographics and end of semester student perception surveys. I hope to gather information regarding how this course is perceived by students and their personal successes as scientists. Why would we care about our student demographics? Anchorage, Alaska has three high schools in the top ten diversity ranking of high schools. A majority of our students enrolled in UAA’s biological science degree program are from the Anchorage and greater Alaska area. Collectively, if we want to increase the diversity of people trained in the biological sciences; UAA’s biological sciences program is one place to start. Maybe our course redesign will help others with their curricular transformations.

I am really interested in learning about how other departments and programs have remodeled their courses following the guidelines of Vision and Change, and what outcomes they are tracking. Let’s share ideas and materials within the LifeSciTRC and PECOP resources!

 

References:

Aguirre, K. M., Balser, T. C., Jack, T., Marley, K. E., Miller, K. G., Osgood, M. P., & Romano, S. L. (2013). PULSE Vision & Change Rubrics. CBE-Life Sciences Education, 12(4), 579-581.

Brewer, C. A., & Smith, D. (2011). Vision and change in undergraduate biology education: a call to action. American Association for the Advancement of Science, Washington, DC.

Brownell, S. E., & Kloser, M. J. (2015). Toward a conceptual framework for measuring the effectiveness of course-based undergraduate research experiences in undergraduate biology. Studies in Higher Education, 40(3), 525-544.

Farrell, Chad R. (2016). “The Anchorage Mosaic: Racial and Ethnic Diversity in the Urban North.” Forthcoming chapter in Imagining Anchorage: The Making of America’s Northernmost Metropolis, edited by James K. Barnett and Ian C. Hartman. Fairbanks, AK: University of Alaska Press

Hanauer, D. I., & Dolan, E. L. (2014). The project ownership survey: measuring differences in scientific inquiry experiences. CBE-Life Sciences Education13(1), 149-158.
PECOP rachael hannah

 

Rachel Hannah is an Assistant Professor of Biological Sciences at University of Alaska, Anchorage. Helping people become scientifically literate citizens has become her major career focus as a science educator. As a classroom and outreach educator, Rachel works to help people explore science so they can apply and evaluate scientific information to determine its impact on one’s daily life. She is trained as a Neurophysiologist and her graduate degree is in Anatomy and Neurobiology from the University of Vermont College of Medicine. Recently, Rachel’s research interests have migrated to science education and how students build critical thinking skills.

A Journey to Develop a First-year Course in Critical Thinking. And the Learning Community it Created

thinkingHow do you develop a course called “Critical and Creative Thinking in the Life Sciences”? A course that isn’t content-driven – a course that will be taught by multiple instructors in multiple sections to all incoming students within a program that encompasses 7 majors and 2 colleges? How do you get that course approved by the various committees? Where does it fit into the curriculum for graduation? These were just some of our questions. The following is a brief history of our triumphs and struggles.

First-year programs, increasingly common in undergraduate institutions, have been shown to have positive consequences both for students and for the schools. At NC State, we instituted a Life Sciences First Year Program (LSFY) and included a new course entitled Critical and Creative Thinking in the Life Sciences (LSC 101).  We cited a call to critical and creative thinking – less content – more active learning from multiple sources: Vision and Change, Paul and Elder’s Guide to Critical and Creative Thinking, countless publications supported by NSF, HHMI, AAAS – the list goes on. It was the thing to do – all the “cool” schools were doing it! We thought we were completely prepared to tackle this.

Course Goals: (A struggle in itself to get 5 amiable colleagues to agree)

  • challenge students to apply the intellectual standards of critical and creative thinking
  • guide students to an understanding and appreciation of the rhetoric of science
  • help students gain an understanding of fundamental principles of the nature and conduct of science within the life sciences
  • encourage and challenge students to become active, engaged learners through an understanding of effective approaches to learning

These goals seemed reasonable…and vague. How do we achieve them? The curriculum committees would need to see specific activities and assessments. They would want to see…a syllabus. NOW what do we do? We need outcomes! We need backward design! The scientists in the room panicked like their hair was on fire – what WERE these terms? (I should admit that we were all trained as research scientists who had done extensive teaching and discovered we loved it.) Most of us had attended the National Academies Summer Institute. We were doing many of these things in our classrooms already – we just didn’t realize these approaches had names.

Our team was fortunate to have the support of our college and passing our syllabus through the various committees was relatively painless. Many schools have a 1-2 credit hour course that welcomes freshmen to the university. We replaced that course with this and made sure to incorporate information about research, internship, advisement, and other opportunities.

Activities: (More of a triumph – we had lots of ideas)

Ultimately, the course used a variety of approaches, with case studies and extensive group work incorporated into each class. Some of the case studies came from the NSF case study website, others were developed by our team. Students were required to solve problems, design experiments, and interpret data. They created and critiqued arguments. They evaluated scientific writings from peer-reviewed journals. We used classic communications like Nature’s classic Watson and Crick paper and the Avery, MacLeod, and McCarty paper from the Journal of Experimental Medicine to contrast different styles, target audiences, and impact of scientific communications. Students discussed mini-ethics cases from news sources (a student favorite). They wrote mini grant proposals (A shout out to Kover et al!). They learned the fundamental principles of the neurobiology of learning and developed their own strategies for learning. And almost all of these activities as well as some of the formative assessments were done within small groups of students working together as a cooperative team.

Back to the struggles:

We learned quickly that it was critical to have an instructor resource page to dump content, ideas, lesson plans, and anecdotes about time management, pitfalls, and student interest. As the student community grew, the discussion of “fairness” came up. “The other section didn’t have to do THAT assignment” or “I wish we had done THAT”. The site is very much a work in progress as we match activities with learning outcomes and work to create a bank of options for each. Ideally, these activities are dynamic as we incorporate current issues into the assignments.

And it was critical (and helped solidify the faculty community) to meet with each other weekly to discuss ideas and present a unified front. I know. I hate meetings too. So we set a stopwatch for 15 minutes. We met at a coffee shop on campus and we touched base. Honestly – 15 minutes is all it needs to be – think elevator talk.

What We Ultimately Learned:

So I mentioned we inadvertently created a learning community – it’s in the title – it must be true. And as a scientist, I thought I would provide a little data. (Very little data.) In many large universities, introductory courses populated by first-year students are large lectures with little opportunity for interaction. By creating small sections (30-40 students) of a required first semester course and structuring it so that much of the assessments relied on interaction, we hoped it would create learning communities that would last beyond those first few months. According to survey data, 94% of the students made new friends, 64% of these students purposefully scheduled classes with each other for future semesters, and 47% have formed study groups for courses other than LSC 101 (typically, chemistry and biology). It is our hope that providing this additional vehicle for forming learning communities will increase retention and overall GPA. So far, we have increased retention of students from freshman to sophomore year from 92% to 95%. And so far, students have been excited by the course. We will continue to track this information….”we” referring to our newly-formed faculty community of LSC 101 instructors and 15-minute coffee drinkers.

 

References

  1. R. Paul and L. Elder. (2008). The Thinker’s Guide to Critical and Creative Thinking http://www.criticalthinking.org/files/CCThink_6.12.08.pdf
  2. Brewer, C. A., & Smith, D. (2011). Vision and change in undergraduate biology education: a call to action.American Association for the Advancement of Science, Washington, DCwww.visionandchange.org
  1. Stone E.M. (2014). Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment. Cell Biology Education
  2. Stefanou, C.R. and Salisbury-Glennon, J.D. (2002). Developing motivation and cognitive learning strategies through an undergraduate learning community. Learning Environ Res 5:77-92.
  3. Jamelske, E. (2009). Measuring the impact of a university first-year experience program on student GPA and retention. High Educ 57:373-391.
  4. Handelsman J., Ebert-May D., Beichner R., Bruns P., Chang A., DeHaan R., Gentile J., Lauffer S., Stewart J., Tilghman S., Wood, W. (2004). Scientific Teaching. Science 304:521-522.
  5. Kover, H., Wirt, S.E., Owens, M.T., and Dosmann, A. J. (2014). “Thinking like a Neuroscientist”: Using Scaffolded Grant Proposals to Foster Scientific Thinking in a Freshman Neuroscience Course. Journal of Undergraduate Neuroscience Education, 13(1): A29-A40.

  

Lisa Parks, North Carolina University

 

Lisa Parks is the Honors Program Director and Teaching Associate Professor in Biological Sciences at North Carolina State University. In addition to her regular teaching load of cell biology and advanced human physiology, she helped develop and currently teaches in the new Life Science First Year Program. She has been a participant and a mentor in the National Academies Summer Institute where she was bitten by the “research as pedagogy – inquiry-based learning – critical thinking” bug. She gladly drops what she is doing to talk about this course. Lisa received her BS in Zoology from Duke University and her PhD in Biology with a concentration in cell physiology at Georgia State University.