Category Archives: Curriculum

Pandemic, Physiology, Physical Therapy, Psychology, Purpose, Professor Fink, Practical Exams, and Proficiency!

Pandemic

To say that the COVID-19 pandemic has affected education would be an understatement.  Physical distancing measures that were introduced across the world to reduce community spread of SARS-CoV-2 (the COVID-19 pathogen), necessitated a cessation or reduction of in-person instruction, and the introduction of what has come to be known as “emergency remote education”(1, 2).  Emergency remote education or teaching (ERE or ERT) is different from remote or online education in that, it is not planned and optional, but rather, a response to an educational emergency (3).

Physiology for Physical Therapy Students

Against the backdrop of the COVID-19 pandemic, as I was trying to keep my primary research program on regenerative and rehabilitative muscle biology moving forward (4), engaging with the scientific community on repurposing FDA-approved drugs for COVID-19 (5, 6), and working on the Biomaterials, Pharmacology, and Muscle Biology courses that I teach each year; I was requested to take on a new responsibility.  The new responsibility was to serve as the course master and sole instructor for a 3-credit, 15-week course on Physiology and Pathophysiology for Professional Year One (PY1) Doctor of Physical Therapy (DPT) students.  I had foreseen taking on this responsibility a couple of years down the road, but COVID-19 contingencies required that I start teaching the course in January 2021.  I had always believed that within the Physical Therapy curriculum, Anatomy, Physiology and Neuroscience, were courses that could only be taught by people who were specialists – i.e. you had to be born for it and should have received a level of training needed to become a master of Shaolin Kung Fu (7).  With less than a year to prepare for my Physiology and Pathophysiology course, and with the acknowledgment that I was not trained in the martial art of Physiology instruction, I looked for inspiration.  The Peter Parker Principle from Spider-Man came to mind – “With great power comes great responsibility” (8).  Unfortunately, I realized that there was no corollary that said “With great responsibility comes great power”.  Self-doubt, anxious thoughts, and frank fear of failure abounded.

Psychology and Purpose

Call it coincidence, grace, or anything in between; at the time when I started preparing to teach Physiology and Pathophysiology, I had been working with a psychological counselor who was helping me process my grief following my father’s passing a couple of months before COVID-19 was declared a pandemic.  In addition to processing my grief, through counseling, I had also started learning more about myself and how to process anxious thoughts, such as the fear of failing in my new superhero role of teaching Physiology and Pathophysiology to Physical Therapy students.  Learning how to effectively use my “wise mind” (an optimal intersection of the “emotional mind” and “reasonable mind”), writing out the possible “worst outcomes” and “likely outcomes”, practicing “self-compassion”, increasing distress tolerance, working on emotional regulation, and most importantly embracing “radical acceptance” of the things I cannot change, helped me work through the anxiety induced by my new teaching responsibility.  This does not mean that my anxiety vanished, it just means that I was more aware of it, acknowledged it, and worked my way through it to get to what I was supposed to do.  I also learned through counseling that purpose drives motivation.  I realized that my anxiety over teaching Physiology was related to the value I placed on the teaching and learning of Physiology in Physical Therapy and other health professions.  Being a Physical Therapist and Physiologist who is committed to promoting movement-centered healthcare, I found motivation in the prospect of training Physical Therapists to serve as health educators with the ultimate goal of improving human movement.  Therefore, the idea of developing a course that would give my students a solid foundation in the Physiology and Pathophysiology of Human Movement began to excite me more than intimidate me.  The aspects of my personality that inspired me to publish a paper on the possible pathophysiological mechanisms underlying COVID-19 complications (5), stirred in me the passion to train the next generation of Physical Therapists, who through their sound knowledge of Physiology would likely go on to transform healthcare and promote healthier societies through movement (9).

The point about purpose being a positive driver of motivation, mentioned above, has been known to educational psychologists for a while.  When students see that the purpose of learning something is bigger than themselves, they are more motivated to learn (10).  So, rather than setting up my course as a generic medical physiology course, I decided to set it up as a Physiology and Pathophysiology of Human Movement course that is customized for human movement experts in training – i.e. Student Physical Therapists.  I set my course up in four modules – Moving the Body (focused on muscle and nerve), Moving Materials Around the Body (focused on the cardiovascular and pulmonary systems), Fueling Movement (focused on cellular respiration and the ATP story), and Decoding the Genetics of Human Movement (focused on how genetic information is transcribed and translated into proteins that make movement possible).

Professor Fink

For those of you who have not heard of Professor Steven Fink, you should look him up (11).  A Ph.D.-trained Physiologist and former member of the American Physiological Society (APS), Professor Fink has posted over 200 original educational videos on YouTube, covering Anatomy, Physiology, Pharmacology, and other subjects.  I had found his YouTube videos several years ago, while looking for good resources for my Pharmacology course, and never stopped watching them ever since then.  I would watch his videos while exercising, and listen to them during my commute (and sometimes even during my ablutions!).  There were two topics in Physiology that scared me the most – cellular respiration and genetics.  I had learned these topics just well enough to get me through high school, four years of Physical Therapy School, one year of Post-Professional Physical Therapy training, six years of Ph.D. training in a Physiology laboratory, six years as a Postdoctoral Fellow (also in a Physiology laboratory), and several years as an Assistant Professor in Physical Therapy.  However, despite the “few years” I had spent in academia and my 10+ years being a member of the APS, I never felt that I had gained mastery over the basic physiology of cellular respiration and genetics.  So, when I started preparing to teach Physiology, I decided to up my number of views on Professor Fink’s videos on cellular respiration and genetics.  Furthermore, I reached out to Professor Fink and asked him if he would serve as a teaching mentor for my new course and he very kindly agreed.  I am fortunate to be a teacher-scholar in a department and university, which places a high priority on teaching, and supports training in pedagogy and the scholarship of teaching and learning through consultation with experts within and outside the university.  As part of our mentoring relationship, Professor Fink gave feedback on my syllabus, course content, testing materials and pedagogical strategies.  He also introduced me to “Principles of Anatomy and Physiology, 16th Edition, by Gerard J. Tortora, Bryan H. Derrickson, which proved to be a useful resource (ISBN: 978-1-119-66268-6).  Through all these interactions, Professor Fink demonstrated that a person can be a “celebrity professor” and still be a kind and gentle human being.  Having him as my teaching mentor played a significant role in building my confidence as a physiology teacher.  Research shows that academic mentoring is related to favorable outcomes in various domains, which include behavior, attitudes, health, interpersonal relations, motivation, and career (12).

Practical Exams

As the COVID-19 pandemic rolled on through the Winter, Spring/Summer, and Fall semesters of 2020, it became certain that I would have to teach my Physiology and Pathophysiology course in a virtual environment come January 2021.  I had to figure out a way to make sure that the learning objectives of my course would be met despite the challenges posed by teaching and testing in a virtual environment.  Therefore, I came up with the idea of virtual practical exams for each of the four modules in my course.  These practical exams would be set up as a mock discussion between a Physical Therapist and a referring health professional regarding a patient who had been referred for Physical Therapy.  Students would take the exam individually.  On entering the virtual exam room, the student would introduce themselves as a Student Physical Therapist and then request me (the referring healthcare professional) to provide relevant details regarding the patient, in order to customize assessment, goal setting and treatment for the patient.  With the patient’s condition as the backdrop, I would ask the student questions from the course content that was relevant to the patient’s condition.  A clear and precise rubric for the exam would be provided to the students in keeping with the principles of transparency in learning and teaching (13).

Proficiency

As we went through the course, the virtual practical exams proved to be an opportunity to provide individualized attention and both summative and formative feedback to students (14).  As a teacher, it was rewarding to see my Physical Therapy students talk about cellular respiration and gene expression with more confidence and clarity than I could do during my prior 12+ years as a Ph.D.-trained Physiologist.  It was clear to me that my students had found a sense of purpose in the course content that was bigger than themselves – they believed that what they were learning would translate to better care for their patients and would ultimately help create healthier societies through movement.

In the qualitative feedback received through a formal student evaluation of teaching (SET) survey, one student wrote “Absolutely exceptional professor.  Please continue to do what you are doing for future cohorts.  You must keep the verbal practical examinations for this class.  Testing one’s ability to verbally explain how the body functions and how it is dysfunctional is the perfect way to assess if true learning has occurred.”  Sharing similar sentiments, another student wrote “I really enjoyed the format of this class. The virtual exams in this class forced us to really understand the content in a way that we can talk about it, rather than learning to answer a MC question. I hope future students are able to learn as much as I did from this class.”

Closing Remarks

When I meet students for the first time during a course, I tell them that even though I am their teacher, I am first a student.  I let them know that in order to teach, I first need to learn the content well myself.  Pandemic pedagogy in the time of COVID-19-related emergency remote education has reinforced my belief that, the best way to learn something is to teach it.  Thanks to my Physiology and Pathophysiology of Human Movement course, I learned more about myself, about teaching and learning, and of course about cellular respiration and genetics.  Do I now consider myself a master of Physiology instruction?  No!  Am I a more confident physiology teacher?  Yes!  Has writing this article made me reflect more on what worked well and what needs to be fine-tuned for the next iteration of my Physiology and Pathophysiology course?  Yes!

REFERENCES:

  1. Williamson B, Eynon R, Potter J. Pandemic politics, pedagogies and practices: digital technologies and distance education during the coronavirus emergency. Learning, Media and Technology. 2020;45(2):107-14.
  2. Bozkurt A, Jung I, Xiao J, Vladimirschi V, Schuwer R, Egorov G, et al. A global outlook to the interruption of education due to COVID-19 pandemic: Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education. 2020;15(1):1-126.
  3. Hodges C, Moore S, Lockee B, Trust T, Bond A. The difference between emergency remote teaching and online learning. Educause review. 2020;27:1-12.
  4. Begam M, Roche R, Hass JJ, Basel CA, Blackmer JM, Konja JT, et al. The effects of concentric and eccentric training in murine models of dysferlin-associated muscular dystrophy. Muscle Nerve. 2020.
  5. Roche JA, Roche R. A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. FASEB J. 2020;34(6):7265-9.
  6. Joseph R, Renuka R. AN OPEN LETTER TO THE SCIENTIFIC COMMUNITY ON THE POSSIBLE ROLE OF DYSREGULATED BRADYKININ SIGNALING IN COVID-19 RESPIRATORY COMPLICATIONS2020.
  7. Wikipedia contributors. Shaolin Kung Fu – Wikipedia, The Free Encyclopedia 2021 [Available from: https://en.wikipedia.org/w/index.php?title=Shaolin_Kung_Fu&oldid=1026594946.
  8. Wikipedia contributors. With great power comes great responsibility – Wikipedia, The Free Encyclopedia 2021 [Available from: https://en.wikipedia.org/w/index.php?title=With_great_power_comes_great_responsibility&oldid=1028753868.
  9. American Physical Therapy Association (APTA). Transforming Society – American Physical Therapy Association [Available from: https://www.apta.org/transforming-society.
  10. Yeager DS, Henderson MD, Paunesku D, Walton GM, D’Mello S, Spitzer BJ, et al. Boring but important: a self-transcendent purpose for learning fosters academic self-regulation. Journal of personality and social psychology. 2014;107(4):559.
  11. Fink S. ProfessorFink.com [Available from: https://professorfink.com/.
  12. Eby LT, Allen TD, Evans SC, Ng T, Dubois D. Does Mentoring Matter? A Multidisciplinary Meta-Analysis Comparing Mentored and Non-Mentored Individuals. J Vocat Behav. 2008;72(2):254-67.
  13. Winkelmes M. Transparency in Learning and Teaching: Faculty and students benefit directly from a shared focus on learning and teaching processes. NEA Higher Education Advocate. 2013;30(1):6-9.
  14. Alt D. Teachers’ practices in science learning environments and their use of formative and summative assessment tasks. Learning Environments Research. 2018;21(3):387-406.
Joseph A. Roche, BPT, PhD.  Associate Professor.  Physical Therapy Program.  Eugene Applebaum College of Pharmacy and Health Sciences.  

I am an Associate Professor in the Physical Therapy Program at Wayne State University, located in the heart of “Motor City”, Detroit, Michigan.  My research program is focused on developing regenerative and rehabilitative interventions for muscle loss arising from neuromuscular diseases, trauma and aging.  I have a clinical background in Physical Therapy and have received intensive doctoral and postdoctoral research training in muscle physiology/biology.

https://www.researchgate.net/profile/Joseph-Roche-2

https://scholar.google.com/citations?user=-RCFS6oAAAAJ&hl=en


Balancing Coursework, Student Engagement, and Time
Jennifer Rogers, PhD, ACSM EP-C, EIM-2
Associate Professor of Instruction
Director, Human Physiology Undergraduate Curriculum
Department of Health and Human Physiology
University of Iowa

First, a true story. Years ago, when my son was very little, he and his preschool friends invented a game called “What’s In Nick’s Pocket?” Every day before leaving for school my son would select a small treasure to tuck into his pocket.  The other 3- and 4- year olds at school would crowd around and give excited “oooh’s” and “aaah’s” as he presented his offering, which had been carefully selected to delight and amaze his friends.  And so it is with the PECOP blog forum—as each new post arrives in my inbox I wonder with anticipation what educational gem has been mindfully curated by colleagues to share with the PECOP community.

My contribution? Thoughts on the balance between coursework, student engagement, and time.  Student engagement in this context refers to a wide range of activities that exist outside of the traditional classroom that offer valuable opportunities for career exploration and development of professional skills.  Examples include:

  • Internships: either for course credit or independently to gain experience within a particular setting
  • Study Abroad opportunities
  • Participation in a student organization
  • Peer tutor/mentoring programs
  • Research: either as a course-based opportunity or as a lab assistant in a PI’s lab (paid or unpaid)
  • Job experiences: for example, as a certified nursing assistant, medical transcriptionist, emergency medical technician
  • Volunteer and community outreach experiences
  • Job shadowing/clinical observational hours

These are all increasingly popular co-curricular activities that allow students to apply concepts from physiology coursework to real-world scenarios as an important stepping stone to enhance career readiness and often personal development.  At the same time, however, students seem to more frequently communicate that they experience stress, anxiety, and concerns that they “are not at their best,” in part due to balancing coursework demands against time demands for other aspects of their lives.  If you are interested in learning more about the health behaviors and perceptions of college students, one resource is the American College Health Association-National College Health Assessment II (ACHA-NCHA II) Undergraduate Student Reference Group Data Report Fall 2018 (1).  Relevant to this blog, over half of the undergraduates surveyed (57% of 11,107 participants) reported feeling overwhelmed by all they had to do within the past two weeks.

I recently gave an undergraduate physiology education presentation that included this slide.  It was an initial attempt to reconcile how my course, Human Physiology with Lab, (a “time intensive course” I am told), fits within the context of the undergraduate experience.

I was genuinely surprised by the number of undergraduates in the audience who approached me afterward to essentially say “Thank you for recognizing what it feels like to walk in my shoes, it doesn’t seem like [my professors, my PI, my parents] understand the pressure I feel. “

In response, and prior to the changes in higher education following COVID-19, I began to ponder how to balance the necessary disciplinary learning provided by formal physiology coursework and participation in also-valuable experiential opportunities.  The Spring 2020 transition to virtual learning, and planning for academic delivery for Fall 2020 (and beyond), has increased the urgency to revisit these aspects of undergraduate physiology education.  As PECOP bloggers and others have mentioned, this is a significant opportunity to redefine how and what we teach. 

It has been somewhat challenging to me to consider how to restructure my course, specifically the physiology labs, in the post COVID-19 era when lab activities need to be adaptable to either in-person or virtual completion.  My totally-unscientific process to identify areas for change has been the “3-R’s” test. With regard to physiology lab, there may be many important learning objectives:

  • An ability to apply the scientific method to draw conclusions about physiological function
  • The act of collecting data and best practices associated with collection of high-quality data (identification of control variables, volunteer preparation/preparation of the sample prior to testing, knowledge of how to use equipment)
  • Application of basic statistical analyses or qualitative analysis techniques
  • Critical thought and quantitative reasoning to evaluate data
  • How to work collaboratively with others, that may be transferrable to future occupational settings: patients, clients, colleagues
  • Information literacy and how to read and interpret information coming from multiple resources such as scientific journals, online resources, advertisements, and others, and
  • Science communication/the ability to communicate information about human function, in the form of individual or group presentations, written lab reports, poster presentations, formal papers, infographics, mock patient interactions, etc.

Arguably, these are all important lab objectives.  Really important, in fact.

So, what is the 3 R’s test, and how might it help?  The 3 R’s is simply my way of prioritizing.  In order to triage lab objectives, I ask myself: What is Really Important for students to master throughout the semester versus what is Really, Really Important, or even Really, Really, REALLY Important?  For example, if I can only designate one activity that is Really, Really, REALLY Important, which one would it be?  The answer for my particular course is science communication.  It is obviously a matter of semantics, but I like being able to justify that all course activities are still Really Important, even if it is only my inner dialogue.  Going into the unknowns of the Fall semester, this will help me guide how course activities in physiology lab are transformed. 

Another worthy goal, in light of academic stress and allocation of effort for maximum benefit, is to improve the transparency of expectations for students.  A common question that arose during the spring semester was if students would still learn what they needed to in preparation for future coursework or post-graduation opportunities.  The identification of one or two primary learning outcomes (the Really, Really, REALLY important ones) may attenuate feeling overwhelmed by a long list of lab-related skills to master if there is another abrupt shift to virtual instruction mid-semester; course objectives can still be met even if we discontinue in-person lab sessions. 

To return to the original topic of balancing time demands allocated to formal coursework and valuable experiences, the two broad conclusions I have reached fall under the categories what I can do in my own courses and suggestions for conversations to be had at the program level.

In My Courses: COVID-19 has sped up the time course for revisions I had already been considering implementing in physiology labs.  Aligning course activities with what is Really, Really, REALLY important will help me manage preparation efforts for the coming fall semester (and hopefully keep my stress levels manageable).  Another important goal is to improve the transparency of course goals for students, ideally alleviating at least a portion of their course-induced stress through improved allocation of effort.  Ultimately, I hope the lab redesigns reinforce physiology content knowledge AND provide relevant experiences to promote career readiness.  *It is also necessary to emphasize to students that both will require focused time and effort.

At the Program Level:  Earning a degree in physiology is not based on acquired knowledge and skills in a single course, rather it is an end-product of efforts across a range of courses completed across an academic program.  Here are some ideas for program-wide discussion:

  • Faculty should identify the most important course outcome for their respective courses, and we should all meet to talk about it. Distribute program outcomes throughout the courses across the breadth of the program.  (Yes, this is backward design applied to curriculum mapping.)  From the faculty perspective, perhaps this will reduce feeling the need to teach all aspects of physiology within a particular course and instead keep content to a manageable level.  From the student perspective, clear communication of course objectives, in light of content presented within any particular course, may promote “buy in” of effort.  It may also build an awareness that efforts both inside and outside of the classroom are valuable if the specific body of content knowledge and aptitudes developed across the curriculum, relevant for future occupational goals, is tangibly visible.
  • Review experiential/applied learning opportunities. Are there a sufficient number of opportunities embedded within program coursework?  If not, are there other mechanisms available to students, for example opportunities through a Career Center or other institution-specific entities?  Establishing defined pathways for participation may reduce student stress related to not knowing how to find opportunities.  Another option would be to consider whether or not the program would benefit from a career exploration/professional skills development course.  Alternatively, could modules be developed and incorporated into already existing courses? 
  • Lastly, communicate with students the importance of engaging in co-curricular activities that are meaningful to them; this is more important than the number of activities completed. Time is a fixed quantity and must be balanced between competing demands based on personal priorities. 

As we consider course delivery for Fall 2020, the majority of us are reconsidering how we teach our own courses.  There are also likely ongoing conversations with colleagues about plans to navigate coursework in the upcoming semesters.  If everything is changing anyway, why not take a few minutes to share what is Really, Really, REALLY important in your courses?  The result could be an improved undergraduate experience related to balancing the time and effort allocations required for success in the classroom along with opportunities for participation in meaningful experiences.

Reference:

1. American College Health Association. American College Health Association-National College Health Assessment II: Undergraduate Student Reference Group Data Report Fall 2018. Silver Spring, MD: American College Health Association; 2018.

Jennifer Rogers completed her PhD and post-doctoral training at The University of Iowa (Exercise Science).  She has taught at numerous institutions ranging across the community college, 4-year college, and university- level higher education spectrum.  Jennifer’s courses have ranged from small, medium, and large (300+ students) lecture courses, also online, blended, and one-course-at-a-time course delivery formats.  She routinely incorporates web-based learning activities, lecture recordings, and other in-class interactive activities into class structure.  Jennifer’s primary teaching interests center around student readiness for learning, qualitative and quantitative evaluation of teaching strategies, and assessing student perceptions of the learning process.

Building a Conceptual Framework to Promote Future Understanding
Diane H. Munzenmaier, PhD
Program Director
Milwaukee School of Engineering

For most of my career, I taught physiology and genetics to medical students and graduate students.  My experiences with many students who had difficulty succeeding in these courses led me to the realization that the way high school and college students learn the biological sciences does not translate to effective physiology learning and understanding at the graduate level.

Medical students, by virtue of their admission to medical school, have, by definition, been successful academically prior to matriculation and have scored well on standardized exams.  They are among the best and brightest that our education system has to offer.  Yet, I have always been amazed at how many medical students truly struggle with physiology.  It is considered by many students to be the most difficult discipline of the basic medical sciences.  Most students come into medical school as expert memorizers but few have the capacity or motivation to learn a discipline that requires integration, pattern recognition, and understanding of complex mechanisms.  My overall conclusion is that high school and college level biological science education does not prepare students to succeed in learning physiology at the graduate level.  Furthermore, I believe if students were prepared to better appreciate and excel in basic physiology at earlier grade levels, the pipeline for graduate education in the physiological sciences would be significantly increased.

Over the past 5 years, it has become a passion of mine to promote a new way of teaching biology and physiology: one that helps students make connections and that lays a conceptual framework that can be enhanced and enriched throughout their educational careers, rather than one that promotes memorization of random facts that are never connected nor retained.  I recently joined the Center for Biomolecular Modeling at the Milwaukee School of Engineering (MSOE CBM) in order to focus on developing materials and activities to promote that type of learning and to provide professional development for K-16 teachers to help them incorporate this type of learning into their classrooms.

One of my first projects was to develop resources to allow students to study the structure-function relationships of a specific protein important in physiology and use that understanding to relate it to relevant physiology/pathophysiology concepts.  The program is called “Modeling A Protein Story” (MAPS) and, so far, I have developed resources for 3 different project themes: aquaporins, globins, and insulin.

The overall concept is for the students to build their understanding slowly and incrementally over time, usually as part of an extracurricular club.  They start by understanding water and its unique properties.  Then they learn about proteins and how they are synthesized and fold into specific 3D conformations in an aqueous environment based largely on their constituent amino acids and how they interact with water.  Eventually they progress to learning about the unique structure of their protein of interest and how it is related to its function.  Once they have developed a solid understanding of that protein, they work in teams to choose a specific protein story that they will develop and model.  This includes finding a structure in the Protein Data Bank, reading the associated research paper to determine what was learned from the structure, designing a model of the structure in Jmol, an online 3D visualization software, and 3D printing a physical model of the protein that helps them tell their story.  Stories can be anything related to the theme that the students find in their research and consider interesting.  For example, student-developed aquaporin stories have ranged from AQP2 in the kidney to AQP4 in the brain to the use of AQP proteins to develop biomimetic membranes for water purification in developing countries.  By choosing projects that students are interested in, they more readily accept the challenge of reading primary research literature and trying to piece together a confusing puzzle into an understandable “story”. 

In the past year, I have used the insulin theme resources and piloted an active learning project-based curriculum at the undergraduate, high school, and middle school levels on insulin structure-function, glucose homeostasis, and diabetes mellitus.  The type of learning environment in which this curriculum was introduced has varied.  Middle school level children participated in the active learning environment as part of a 2-week summer camp.  High school students from an innovative charter school in downtown Milwaukee were introduced to the project-based curriculum as a 9-week seminar course, and the activity was taught to freshman biomolecular engineering students at the Milwaukee School of Engineering as a team project in their first quarter introductory course.

Some of the activities utilized materials that we have developed at the MSOE CBM and were subsequently produced for distribution by our sister company, 3D Molecular Designs.  Others utilize resources that are readily available online such as those available at the Protein Data Bank at their educational site, PDB-101.  Finally, still other resources have been developed by us specifically for this curriculum in order to help the students move between foundational concepts in an attempt to help them make important connections and to assist them in developing their conceptual framework. 

One of the activities that helps them try to make sense of the connection between glucose and insulin is this “cellular landscape” painting by Dr. David Goodsell at Scripps Research Institute and available at PDB-101.

They learn the basic concept that when blood glucose increases after a meal, insulin is released from the pancreas and allows glucose to be taken up and stored by the cells.  But how?  When they are given this landscape and minimal instructions, they must look closely, connect it to what they already know and try to make sense of it.  They work together in a small group and are encouraged to ask questions.  Is this a cell?  If so, where is the plasma membrane and the extracellular/intracellular spaces?  What types of shapes do they see in those spaces?  What is in the membrane?  What are those white dots?  Why is one dot in one of the shapes in the membrane?  Why are there yellow blobs on the outside of the cell but not on the inside?  Eventually they piece together the puzzle of insulin binding to its receptor, leading to trafficking of vesicles contain glucose transporter proteins to the plasma membrane, thereby allowing the influx of glucose into the cell.  By struggling to make detailed observations and connections, a story has been constructed by the students as a logical mechanism they can visualize which is retained much more effectively than if it had been merely memorized.

In other activities they learn how insulin in synthesized, processed, folded, stored, and released by the pancreatic beta cells in response to elevated blood glucose.  They use a kit developed by MSOE CBM that helps them model the process using plastic “toobers” to develop an understanding of how insulin structure is related to its function in regards to the shape and flexibility required for receptor binding but also related to its compact storage in the pancreas as hexamers and the importance of disulfide bonds in stabilizing monomers during secretion and circulation in the blood.  

As the students build their understanding and progress to developing their own “story”, the depth of that story depends on grade level and the amount of time devoted to the project.  Undergraduate students and high school students who have weeks and months to research and develop their story tend to gravitate to current research into protein engineering of insulin analogs that are either rapid-acting or slow-release, developed as type 1 and type 2 diabetes medications, respectively.  The basic concepts behind most of these analogs are based on the structure-function relationships of hexamer formation.  Rapid-acting medications usually include amino acid modifications that disrupt dimer and hexamer formation.  Slow-release medications tend to promote hexamer stability.  Middle school students or high school students with limited time to spend on the project may only focus on the basic properties of insulin itself.  The curriculum is driven by the students, so it is extremely flexible based on their capabilities, time, and motivation.  Students ultimately use their understanding of insulin structure-function to design and 3D-print a physical model that they highlight to show relevant amino acid modifications and other details that will help them to present the story they have developed based on their learning progression and research. 

In conclusion, we have found that this type of open-ended project-based active learning increases learning, retention, and motivation at every educational level  with which we have worked.  Students are initially frustrated in the process because they are not given “the answer” but they eventually learn to be more present, make observations, ask questions, and make connections.  Our hope is that introduction of this type of inquiry-based instruction in K-16 biological sciences education will eventually make the transition to graduate level physiology learning more successful.

Diane Munzenmaier received her PhD in Physiology studying the role of the renin-angiotensin system on skeletal muscle angiogenesis. This was followed by postdoctoral study of the role of astrocytes in stroke-induced cerebral angiogenesis. She joined the faculty of the Department of Physiology at the Medical College of Wisconsin in 1999 and the Human and Molecular Genetics Center in 2008. As Director of Education in the HMGC, Dr. Munzenmaier lectured and developed curriculum for medical and graduate school physiology and genetics courses. She developed an ACGME-accredited medical residency curriculum and Continuing Medical Education (CME) courses for physician education. She also enjoyed performing educational outreach to K-12 classrooms and the lay public. She is passionate about education and career mentoring for students of all levels. Her specific interests in biomedical science education are finding engaging ways to help clarify the link between structure and (dys)function in health and disease.

Building bridges: Medical physiology teaching in China
Ryan Downey, Ph.D.
Assistant Professor
Co-Director, Graduate Physiology Program
Team Leader, Special Master’s Program in Physiology


Department Pharmacology and Physiology
Georgetown University Medical Center
Washington, D.C.

The Chinese Society of Pathophysiology hosted the 2019 Human Functional Experiment Teaching Seminar and the Second Human Physiology Experimental Teaching Training Course 25-27 October. Across two and a half days, educators from across China met at Jinzhou Medical University in the province of Liaoning to discuss and workshop the latest ideas in active learning and interactive teaching techniques. In many ways, especially in terms of the esteem in which this meeting is held by its attendees, this meeting was not dissimilar from the APS Institute on Teaching and Learning, which will hold its next biennial meeting this coming June in Minneapolis. For the 2019 meeting, the organizers decided to invite an international speaker, which is how I found myself on a plane headed to China. As part of my visit, not only did I get to attend the workshop hosted at Jinzhou Medical University, but also I was hosted by several of the meeting organizers at their home institutions to see their facilities. In this writeup, I will reflect on some of the observations that I made during the many different conversations that I had with the educators participating in the meeting.

The most common question that I got from my hosts was, “What kinds of technology do you use in your classrooms and labs and how do you use them?” What surprised me the most about this question wasn’t the actual question itself, but the perception that many of the educators at the meeting held that they were lagging behind in the implementation of using technologies as   teaching and learning tools. The large majority of teaching spaces that I visited were equipped with much the same technology as any classroom or lecture hall that I would find in an American university: computers, projectors, large-screen LCD displays, and power at every seat to accommodate student personal electronic devices. While there was the occasional technological oddity, such as a computer here or there that was still running Windows XP, the technology available to these educators was very much on par with the technology I would expect at any modern university, which is why I was surprised that the educators had the perception that they were behind in implementing different technologies. In my conversations with them, I discussed the use of audience response systems like iClicker and PollEverywhere as well as interactive elements like gamification through websites such as Kahoot!, but my emphasis in these conversations was exactly the same as I have with educators at home: we need to make sure that there is a sound pedagogical basis for any engagement we use with our students and that the technology doesn’t matter. I can use 3×5 colored  index cards to create an audience response system that functions as well as (or sometimes even better!) than clickers because no one has any problems with the WiFi while using a 3×5 card. The technology facilitates our instruction and should never drive it for the sake of itself.

A common thread of many discussions was the use of internet technologies in teaching. While there is much to be said about the limitations of the ‘Great Firewall’ of China and the amount of government regulation that occurs over their communications, it’s important to note how little these limitations affect the day-to-day activities of the majority of citizens. There are Chinese versions of almost every single internet convenience that we would take for granted that function at least as well as our American versions. Their social media system has grown to the point that many international users are engaging on their platforms. There are food delivery apps and the local taxi services have all signed on to a common routing system (at least in Beijing) that functions in a similar way to Uber or Lyft. In a side-by-side comparison between my phone and one of the other meeting participants, there is near feature parity on every aspect. From an educational standpoint, however, there are some notable differences. The lack of access to Wikipedia is a notable gap in a common open resource that many of us take for granted and there is not yet a Chinese equivalent that rivals the scope or depth that Wikipedia currently offers. Another key area in which internet access is limited is their access to scholarly journals. This lack of accessibility is two-fold, both in the access to journals because of restrictions on internet use as well as the common problem that we are already familiar with of journal articles being locked behind paywalls. The increasing move of journals to open access will remove some of these barriers to scholarly publications, but there are still many limits on the number and types of journal articles that educators and learners are allowed through Chinese internet systems.

The most common request that I received while attending the educators meeting was, “Tell me about the laboratories you use to teach physiology to your medical students.” I think this is the largest difference in teaching philosophy that I observed while in China. The teaching of physiology is heavily based on the use of animal models, where students are still conducting nerve conduction experiments with frogs, autonomic reflex modules with rabbits, and pharmacological studies in rats. These are all classic experiments that many of us would recognize, but that we rarely use anymore. One key area of the workshops were modules designed to replace some of these classic animal experiments with non-invasive human-based modules, such as measuring nerve conduction velocities using EMG. My response that the majority of our physiology teaching is now done through lecture only was met with a certain degree of skepticism from many of them because the use of labs is so prevalent throughout the entire country. Indeed, the dedication of resources such as integrated animal surgical stations runs well into the hundreds of thousands of dollars per laboratory room set up, and to facilitate the entirety of students each year, there are multiple labs set up at each university. As the use of non-invasive human experiments expands, an equal amount of space and resources are being given to setting up new learning spaces with data acquisition systems and computers for this new task. In this area, I think that we have much to gain from our Chinese counterparts as many of the hardest concepts in physiology are more easily elucidated by giving students the space to self-discover in the lab while making physiological measurements to fully master ideas like ECG waves and action potential conduction.

Upon returning home, I have been asked by nearly everyone about my travel experiences, so I think it may be worth a brief mention here as well. I cannot overstate the importance of having a good VPN service setup on all of your electronic devices before traveling. Using a VPN, I had near-normal use of the internet, including Google and social media. My largest problem was actually trying to access local Chinese websites when my internet address looked like I was outside of the country. I have had good experience with NordVPN, but there are several other very good options for VPN service. Carrying toilet paper is a must. There are lots of public restrooms available everywhere in the city, but toilet paper is either not provided or available only using either social media check-ins or mobile payments. For drinking water, I traveled with both a Lifestraw bottle and a Grayl bottle. This gave me options for using local water sources and not having to rely on bottled water. The Lifestraw is far easier to use, but the Grayl bottle has a broader spectrum of things that are filtered out of the water, including viruses and heavy metals, which may be important depending on how far off the tourist track you get while traveling. My final tip is to download the language library for a translator app on your mobile device for offline use so that you can communicate with others on the streets. When interacting with vendors and others not fluent in English, it was common to use an app like Google Translate to type on my device, show them the translated results, and they would do the same in reverse from their mobile device.

One of the themes across the meeting was building bridges — bridges between educators, bridges between universities, bridges across the nation and internationally. I’m glad to have had the opportunity to participate in their meeting and contribute to their conversation on building interactive engagement and human-focused concepts into the teaching of physiology. Overall, the time that I spent talking to other educators was useful and fantastic. Everyone I met and interacted with is enthusiastic and excited about continuing to improve their teaching of physiology. I left the meeting with the same renewed energy that I often feel after returning from our ITL, ready to reinvest in my own teaching here at home.

Ryan Downey is an Assistant Professor in the Department of Pharmacology & Physiology at Georgetown University. As part of those duties, he is the Co-Director for the Master of Science in Physiology and a Team Leader for the Special Master’s Program in Physiology. He teaches cardiovascular and neuroscience in the graduate physiology courses. He received his Ph.D. in Integrative Biology from UT Southwestern Medical Center. His research interests are in the sympathetic control of cardiovascular function during exercise and in improving science pedagogy. When he’s not working, he is a certified scuba instructor and participates in triathlons

The Benefits of Learner-Centered Teaching

Jaclyn E. Welles
Cell & Molecular Physiology PhD Candidate
Pennsylvania State University – College of Medicine

In the US, Students at Still Facing Struggles in the STEMs

Literacy in the World Today:
According to the United Nations Educational, Scientific, and Cultural Organization (UNESCO), there are approximately 250 million individuals worldwide, who cannot read, write, or do basic math, despite having been in school for a number of years (5, 8). In fact, UNESCO, is calling this unfortunate situation a “Global Learning Crisis” (7). The fact that a significant number of people are lacking in these fundamental life skills regardless of attending school, shows that part of the problem lies within how students are being taught.

Two Main Styles of Teaching – Learner or Teacher-Centered

Learning and Teaching Styles:
It was due to an early exposure to various education systems that I was able to learn of that there were two main styles of teaching – Learner-centered teaching, and Teacher-centered teaching (2). Even more fascinating, with the different styles of teaching, it has become very clear that there are also various types of learners in any given classroom or lecture setting (2, 6, 10). Surprisingly however, despite the fact that many learners had their own learning “modularity” or learning-style, instructors oftentimes taught their students in a fixed-manner, unwilling or unable to adapt or implement changes to their curriculum. In fact, learner-centered teaching models such as the “VARK/VAK – Visual Learners, Auditory Learners and Kinesthetic Learners”, model by Fleming and Mills created in 1992 (6), was primarily established due to the emerging evidence that learners were versatile in nature.

VARK Model of Learners Consists of Four Main Types of Learners: Visual, Auditory, Reading and Writing, and Tactile/Kinesthetic (touch)

What We Can Do to Improve Learning:
The fundamental truth is that when a student is unable to get what they need to learn efficiently, factors such as “learning curves” – which may actually be skewing the evidence that students are struggling to learn the content, need to be implemented (1, 3). Instead of masking student learning difficulties with curves and extra-credit, we can take a few simple steps during lesson-planning, or prior to teaching new content, to gauge what methods will result in the best natural overall retention and comprehension by students (4, 9). Some of methods with evidence include (2, 9):

  • Concept Maps – Students Breakdown the Structure or Organization of a Concept
  • Concept Inventories – Short Answer Questions Specific to a Concept
  • Self-Assessments – Short Answer/Multiple Choice Questions
  • Inquiry-Based Projects – Students Investigate Concept in a Hands-On Project

All in all, by combining both previously established teaching methodologies with some of these newer, simple methods of gauging your students’ baseline knowledge and making the necessary adjustments to teaching methods to fit the needs of a given student population or class, you may find that a significant portion of the difficulties that can occur with students and learning such as – poor comprehension, retention, and engagement, can be eliminated (4, 9) .

Jaclyn Welles is a PhD student in Cellular and Molecular Physiology at the Pennsylvania State University – College of Medicine. She has received many awards and accolades on her work so far promoting outreach in science and education, including the 2019 Student Educator Award from PSCoM.

Her thesis work in the lab of Scot Kimball, focuses on liver physiology and nutrition; mainly how nutrients in our diet, can play a role in influencing mRNA translation in the liver. 

Student Evaluation of Teaching – The Next 100 Years

Mari K. Hopper, PhD
Sam Houston State University

Student evaluation of teaching (SET) has been utilized and studied for over 100 years. Originally, SET was designed by faculty to gather information from students in order to improve personal teaching methods (Remmers and Guthrie, 1927). Over time, SET became increasingly common. Reports in the literature indicate 29% of institutions of higher education employed this resource in 1973, 68% in 1983,  86% in 1993, and 94.2% in 2010 (Seldin, 1993).

Today, SET is employed almost universally, and has become a routine task for both faculty and students. While deployment of this instrument has increased, impact with faculty has declined. A study published in 2002 indicated only 2-10% of instructors reported major teaching changes based on SET (Nasser & Fresko, 2002). However, results of SET has become increasingly important in making impactful faculty decisions including promotion and tenure, merit pay, and awards. A study by Miller and Seldin (2010), reported that 99.3% Deans use SET in evaluating their faculty (Miller & Seldin, 2014)

The literature offers a rich discussion of issues related to SET including bias, validity, reliability, and accuracy. Although discussions raise concern for current use of SET, institutions continue to rely on SET for multiple purposes. As a consequence, it has become increasingly important that students offer feedback that is informative, actionable, and professional. It would also be helpful to raise student awareness of the scope, implications, and potential impact of SET results. 

To that end, I offer the following suggestions for helping students become motivated and effective evaluators of faculty:

  • Inform students of changes made based on evaluations from last semester/year
  • Share information concerning potential bias (age, primary language, perception of grading leniency, etc.)
  • Inform of full use including departmental and campus wide (administrative decisions, awards, P & T, etc,)
  • Establish a standard of faculty performance for each rating on the Likert scale (in some cases a 3 may be the more desirable indicator)
  • Inform students of professionalism, and the development of professional identity. Ask students to write only what they would share in face-to-face conversation.
  • Ask students to exercise caution and discrimination – avoid discussing factors out of faculty control (class size, time offered, required exams, classroom setting, etc.)
  • If indicating a faculty behavior is unsatisfactory – offer specific reasons
  • When writing that a faculty member display positive attributes – be sure to include written comments of factual items, not just perceptions and personal feelings
  • Give students examples of USEFUL and NOT USEFUL feedback
  • Distinguish between ‘anonymous’ and ‘blinded’ based on your school’s policy

Although technology has made the administration of SET nearly invisible to faculty, it is perhaps time for faculty to re-connect with the original purpose. It is also appropriate for faculty to be involved in the process of developing SET instruments, and screening questions posed to their students. Additionally, it is our responsibility to help students develop proficiency in offering effective evaluation. Faculty have the opportunity, and perhaps a responsibility, to determine the usefulness and impact of SET for the next 100 years.

Please share your ideas about how we might return to the original purpose of SET – to inform our teaching. I would also encourage you to share instructions you give your students just prior to administering SET. 

Mari K. Hopper, PhD, is currently the Associate Dean for Biomedical Sciences at Sam Houston State University Proposed College of Osteopathic Medicine. She received her Ph.D. in Physiology from Kansas State University. She was trained as a physiologist with special interest in maximum capabilities of the cardiorespiratory and muscular systems. Throughout her academic career she has found immense gratification in working with students in the classroom, the research laboratory, and in community service positions. Dr Hopper has consistently used the scholarly approach in her teaching, and earned tenure and multiple awards as a result of her contributions in the area of scholarship of teaching and learning. She has focused on curriculum development and creating curricular materials that challenge adult learners while engaging students to evaluate, synthesize, and apply difficult concepts. At SHSU she will lead the development of the basic science curriculum for the first two years of medical school. Dr Hopper is very active in professional organizations and currently serves as the Chapter Advisory Council Chair for the American Physiological Society, the HAPS Conference Site Selection Committee, and Past-President of the Indiana Physiological Society. Dr Hopper has four grown children and a husband David who is a research scientist.

Do You Want To Be On TV?

Last summer, some colleagues and I published a paper on how high school students can communicate their understanding of science through songwriting.  This gradually led to a press release from my home institution, and then (months later) a feature article in a local newspaper, and then appearances on Seattle TV stations KING-5 and KOMO-4.

It’s been an interesting little journey.  I haven’t exactly “gone viral” — I haven’t been adding hundreds of new Twitter followers, or anything like that — but even this mild uptick in interest has prompted me to ponder my relationship with the news media. In short, I do enjoy the attention, but I also feel some responsibility to influence the tone and emphases of these stories. In this post, I share a few bits of advice based on my recent experiences, and I invite others to contribute their own tips in the comments section.

(1) Find out how your school/department/committee views media appearances.  In April, I was invited to appear on KING’s mid-morning talk show, which sounded cool, except that the show would be taped during my normal Thursday physiology lecture!  My department chair and my dean encouraged me to do the show, noting that this sort of media exposure is generally good for the school, and so, with their blessing, I got a sub and headed for the studio.

(2) Respect students’ privacy during classroom visits.  After some students were included in a classroom-visit video despite promises to the contrary, I realized that I needed to protect their privacy more strongly. I subsequently established an option by which any camera-shy students could live-stream the lecture until the TV crew left.

(3) Anticipate and explicitly address potential misconceptions about what you’re doing.  I’ve worried that these “singing professor” pieces might portray the students simply as amused audience members rather than as active participants, so, during the classroom visits, I’ve used songs that are conducive to the students singing along and/or analyzing the meaning of the lyrics. (Well, mostly. “Cross-Bridges Over Troubled Water” wasn’t that great for either, but I had already sung “Myofibrils” for KING, and KOMO deserved an exclusive too, right?)

(4) Take advantage of your institution’s public relations expertise.  Everett Community College’s director of public relations offered to help me rehearse for the talk show — and boy am I glad that she did!  Being familiar with the conventions and expectations of TV conversations, Katherine helped me talk much more pithily than I normally do. In taking multiple cracks at her practice question about “how did you get started [using music in teaching]?” I eventually pared a meandering 90-second draft answer down to 30 seconds. She also asked me a practice question to which my normal response would be, “Can you clarify what you mean by X?” — and convinced me that in a 4-minute TV conversation, you don’t ask for clarifications, you just make reasonable assumptions and plow ahead with your answers.

(5) Ask your interviewers what they will want to talk about. Like a novice debater, I struggle with extemporaneous speaking; the more I can prepare for specific questions, the better.  Fortunately, my interviewers have been happy to give me a heads-up about possible questions, thus increasing their chances of getting compelling and focused answers.

Readers, what other advice would you add to the above?

Gregory J. Crowther, PhD has a BA in Biology from Williams College, a MA in Science Education from Western Governors University, and a PhD in Physiology & Biophysics from the University of Washington. He teaches anatomy and physiology in the Department of Life Sciences at Everett Community College. His peer-reviewed journal articles on enhancing learning with content-rich music have collectively been cited over 100 times.

The Teaching of Basic Science as a Necessity in the Doctor in Physical Therapy Clinical Curriculum

There is an ever increasing need to train evidenced-based clinicians among all the health disciplines. This is particularly true in the relatively young profession of physical therapy, where the educational standards have shifted from entry level bachelor’s degree requirements to clinical doctorate training. The increase in educational standards reflect the growth of the discipline, with an effort to increase the depth of knowledge and level of skill required to be a physical therapist while moving from technician to an independent direct access practitioner. This evolution also marks a shift in standards of evidenced-based practice from clinical observation to an ability to provide mechanistic understanding which includes fundamental scientific insights and transforms clinical practice. The profession also recognizes the need to advance the profession through research that provides a scientific basis validating physical therapy treatment approaches. As a result, there is an expanding, yet underappreciated role, for the basic science researcher / educator in Doctor of Physical Therapy (DPT) programs.

Strategies to integrate and infuse the basic science into practice:

1. Faculty training:

Big Four Bridge in Louisville, KY

How to bridge the gap between basic science and clinical education?  As dual credentialed physical therapist and basic scientist these influence Sonja’s teaching approach, to serve as a “bridge” between foundational science content and clinical application.  Teaching across broad content areas in a DPT curriculum provides opportunities to “make the connection” from what students learn in the sciences, clinical courses, and relate these to patient diagnosis and therapeutic approaches.

While dual training is one approach, these credentials combined with years of ongoing contemporary clinical practice, are rare and impractical to implement in an academic setting. Most often DPT programs rely on PhD trained anatomists, neuroanatomists, and physiologists to teach foundational courses, often borrowed from other departments to fulfill these foundational teaching needs. Thus, Chris’s approach is through crosstalk between scientist/physiologist and clinician to serve as a role model and teach the application of discoveries for identifying best evidence in clinical decision making. By either approach, we have become that key bridge teaching and demonstrating how foundational science, both basic and applied impact clinical decision making.

2. Placement of foundational science courses (physiology, neuroscience, anatomy):

Traditional curricular approaches introduce foundational sciences in anatomy, neuroscience, and physiology in the first year of the DPT curriculum, followed by clinical content with either integrated or end loaded clinical experiences over the course of remaining 2.5-3 years. Our current program established an alternative approach of introducing foundational sciences after the introduction of clinical content and subsequently followed by a full time clinical clerkship/ education. Having taught in both models, early or late introduction of foundational sciences, we recognized either partitioned approaches lead to educational gaps and makes bridging the knowledge to application gap challenging for students.

Regardless, the overall message is clear and suggestive of the need for better integration of foundational/scientific content throughout the curriculum. These challenges are not unique to physical therapy, as this knowledge to clinical translation gap is well documented in medicine and nursing and has been the impetus for ongoing curriculum transformations in these programs. These professions are exploring a variety of approaches on how to best deliver /package courses / and curriculum that foster rapid translation into clinical practice. Arena, R., et al., 2017; Fall, L.H. 2015; Newhouse, R.P. and Spring, B., 2010; Fincher et al., 2009.

Recently, new curricular models have emerged within the doctoral of physical therapy curriculum that complement the academic mission to train competent evidenced based clinicians Bliss et al., 2018, Arena R. et al. 2017. These models leverage the faculty expertise of physiologist/scientist, research, and clinical faculty to create integrative learning experiences for students. These models include integrated models of clinical laboratory learning and/ or classroom-based discussion of case scenarios, that pair the basic scientist and the clinical expert. It is our belief, that teaching our clinical students through these models will lead to enhanced educational experience, application of didactic course work, and the appreciation for high quality research both basic and applied.

3. Appreciation and value of foundational sciences through participation in faculty led research:

Capstone experiences are common curricular elements for the physical therapy profession. This model is believed to 1) prepare future physical therapy generations to provide high-quality clinical care and, 2) provide research needed to guide evidence-based care, and 3) foster the appreciation for evidence and advances in the field. We believe these pipeline experiences could allow for advanced training incorporating strong foundational (science) knowledge that is relevant to the field, which can be applied broadly and adapted to integrate the rapidly growing knowledge base. Such models may assist in integrating the importance of scientific findings (basic and applied) while facilitating the breakdown of barriers (perceived and real) that silo clinical and foundational content (Haramati, A., 2011).

Contributing to the barriers are that relatively few of the basic sciences and translational studies are being conducted by rehabilitation experts. Furthermore, like medicine disciplines, it is unlikely that DPT faculty will be experts as both a clinician and scientist. Rather these emerging models promote teams of scientists and clinical faculty who work together to promote scientific, evidence-based education (Polancich S. et al., 2018; Read and Ward 2017; Fincher et al., 2009). Implementation of these education models requires “buy in” from administration and faculty who must recognize and value a core of outstanding clinician-educators, clinician-scientists, and basic scientists, and reward effective collaboration in education (Fincher 2009).

Although these models are flowering in research intensive universities, the challenges of integrating the basic sciences are greater in programs embedded within smaller liberal arts institutions that lack the infrastructure and administrative support for creating teaching-science-clinical synergies. Often these programs are heavily weighted towards clinical education faculty who emphasize clinical teaching and development of clinical skills, with a less integrated emphasis on the fundamental science in clinical decision making. Our own experience, having taught foundational (physiology and neuroscience) sciences, are that faculty in these programs are more reluctant to embrace and value foundational sciences. A possible explanation may be the limited exposure to and unrecognized value of contributions to the field from such basic and translational approaches. It is frequently implied if it works, it may not be necessary to understand mechanistically how it works. While this might suffice for today’s practice approach, this will not be enough for future clinicians in a rapidly evolving clinical environment. Programs that may not foster scientific curiosity, may be missing the opportunity to instill lifelong learning. We agree with other educators that the integration of basic science is critical for the student progress toward independence and essential competence, and that health science educators should support the teaching of basic science as it aids in the teaching of how to solve complex clinical scenarios even if clinicians may not emphasize the basic science that underlies their reasoning (Pangaro, 2011).

Concluding Thoughts:

Physical therapy departments particularly those within major academic centers housing a mix of research, education, and clinically focused faculty can successfully operate a curriculum able to synergize education, research, and clinical initiatives. Creating synergies early in a curriculum by pairing clinical specialists with science trained faculty will facilitate connections between clinical practice and science (Bliss, et al., 2018). While curricular change can be challenging, programs that implement a collaborative model where faculty with a shared area of expertise (e.g., orthopedics, neurology, cardiopulmonary, pediatrics and geriatrics) and unique complementary skill sets (i.e., research, education, and clinical practice) come together to transform student educational experiences – completing that bridge between basic science and clinical practice.

Stacked Stone Arch

 

References:

Arena, R., Girolami, G., Aruin, A., Keil, A., Sainsbury, J. and Phillips, S.A.,

Integrated approaches to physical Therapy education: a new comprehensive model from the University of Illinois Chicago, Physiotherapy Theory and Practice, 2017, 33:5, 353-360, doi: 10.1080/09593985.2017.1305471.

Bliss, R., Brueilly, K. E., Swiggum, M. S., Morris, G. S., Williamson, E.M., Importance of Terminal Academic Degreed Core Faculty in Physical Therapist Education, Journal of Physical Therapy Education. 2018, 32(2):123-127, doi: 10.1097/JTE.0000000000000054.

Fall, L.H., The Collaborative Construction of the Clinical Mind: Excellence in Patient Care through Cognitive Integration of Basic Sciences Concepts into Routine Clinical Practice, Med.Sci.Educ. 2015, 25(Suppl 1): 5, doi: 10.1007/s40670-015-0192-9.

Fincher, M., Wallach P., and Richardson, W.S.,  Basic Science Right, Not Basic Science Lite: Medical Education at a Crossroad, J Gen Intern Med. 2009, Nov; 24(11): 1255–1258, doi: 10.1007/s11606-009-1109-3

Haramati, A., Fostering Scientific Curiosity and Professional Behaviors in a Basic Science Curriculum, Med.Sci.Educ. 2011, 21(Suppl 3): 254, doi: 10.1007/BF03341720.

Newhouse, R.P. and Spring, B., Interdisciplinary Evidence-based Practice: Moving from Silos to Synergy, Nurs Outlook. 2010, Nov–Dec; 58(6): 309–317, doi: 10.1016/j.outlook.2010.09.001.

Pangaro, L., The Role and Value of the Basic Sciences in Medical Education: The Perspective of Clinical Education -Students’ Progress from Understanding to Action. Medical Science Educator. 2010, Volume 20: No. 3. 307-313.

Polancich, S., Roussel, L., Graves, B.A., O’Neal, P.V., A regional consortium for doctor of nursing practice education: Integrating improvement science into the curriculum. J Prof Nurs. 2017, Nov – Dec;33(6):417-421, doi: 10.1016/j.profnurs.2017.07.013.

Read C.Y., Ward L.D., Misconceptions About Genomics Among Nursing Faculty and Students. Nurse Educ. 2018, Jul/Aug;43(4):196-200, doi: 10.1097/NNE.0000000000000444.

 

 

Chris Wingard completed his BA in Biology form Hiram College a MS from University of Akron and PhD from Wayne State University. He has served in physiology departments at University of Virginia, Medical College of Georgia and East Carolina University during his career and has most recently joined the Bellarmine University College of Health Professions as Professor teaching in the Physical Therapy, Accelerated Nursing and Biology Programs.  His interests are in the impacts of environmental exposures on the function of the cardiovascular pulmonary systems.
Sonja Bareiss received a BS in Biology and Master’s in Physical Therapy from Rockhurst University. She completed her PhD in Anatomy and Cell Biology at East Carolina University. Dr. Bareiss was a faculty member at East Carolina University Department of Physical Therapy and Department of Anatomy and Cell Biology before joining the DPT program at Bellarmine University. Her areas of teaching span foundational sciences (neuroscience and anatomy) to clinical content (electrical modalities). Her most recent efforts have been to develop and implement a pain mechanisms and management course into physical therapy curriculum with emphasis on interdisciplinary learning. In addition to her academic experience, Dr. Bareiss has over 8 years of full-time clinical experience where she specialized in treating patients with chronic pain syndromes. Her research and clinical interests have been dedicated to understanding mechanisms of neural plasticity related to the development and treatment of pain and neurodegenerative disease and injury and integrating undergraduate Biology Honors and DPT students into the work.
Medical Physiology for Undergraduate Students: A Galaxy No Longer Far, Far Away

The landscape of medical school basic science education has undergone a significant transformation in the past 15 years.  This transformation continues to grow as medical school basic science faculty are faced with the task of providing “systems based” learning of the fundamental concepts of the Big 3 P’s: Physiology, Pathology & Pharmacology, within the context of clinical medicine and case studies.  Student understanding of conceptual basic science is combined with the growing knowledge base of science that has been doubling exponentially for the past century.  Add macro and microanatomy to the mix and students entering their clinical years of medical education are now being deemed only “moderately prepared” to tackle the complexities of clinical diagnosis and treatment.  This has placed a new and daunting premium on the preparation of students for entry into medical school.  Perhaps medical education is no longer a straightforward task of 4 consecutive years of learning.  I portend that our highest quality students today, are significantly more prepared and in many ways more focused in the fundamentals of mathematics, science and logic than those of even 30 years ago.  However, we are presenting them with a near impossible task of deeply learning and integrating a volume of information that is simply far too vast for a mere 4 semesters of early medical education.

 

To deal with this academic conundrum, I recommend here that the academic community quickly begin to address this complex set of problems in a number of new and different ways.  Our educators have addressed the learning of STEM in recent times by implementing a number of “student centered” pedagogical philosophies and practices that have been proven to be far more effective in the retention of knowledge and the overall understanding of problem solving.  The K-12 revolution of problem-based and student-centered education continues to grow and now these classroom structures have become well placed on many of our college and university campuses.  There is still much to be done in expanding and perfecting student-centered learning, but we are all keenly aware that these kinds of classroom teaching methods also come with a significant price in terms of basic science courses.

 

It is my contention that we must now expand our time frame and begin preparing our future scientists and physicians with robust undergraduate preprofessional education.  Many of our universities have already embarked upon this mission by developing undergraduate physiology majors that have placed them at the forefront of this movement.  Michigan State University, the University of Arizona and the University of Oregon have well established and long standing physiology majors.  Smaller liberal arts focused colleges and universities may not invest in a full majors program, but rather offer robust curricular courses in the basic medical sciences that appropriately prepare their students for professional medical and/or veterinary education.  Other research 1 universities with strong basic medical science programs housed in biology departments of their Colleges of Arts and Sciences may be encouraged to develop discipline focused “tracks” in the basic medical sciences.  These tracks may be focused on disciplines such as physiology, pharmacology, neuroscience, medical genetics & bioinformatics and microbiology & immunology.  These latter programs will allow students to continue learning with more broad degrees of undergraduate education in the arts, humanities and social sciences while gaining an early start on advanced in depth knowledge and understanding of the fundamentals of medical bioscience.  Thus, a true undergraduate “major” in these disciplines would not be a requirement, but rather a basic offering of focused, core biomedical science courses that better prepare the future professional for the rigors of integrated organ-based medical education.

 

In the long term, it is important for leaders in undergraduate biomedical education to develop a common set of curriculum standards that provide a framework from which all institutions can determine how and when they choose to prepare their own students for their post-undergraduate education.  National guidelines for physiology programs should become the standard through which institutions can begin to prepare their students.  Core concepts in physiology are currently being developed.  We must carefully identify how student learning and understanding of basic science transcends future career development, and teach professional skills that improve future employability.  Lastly, we must develop clear and effective mechanisms to assess and evaluate programs to assure that what we believe is successful is supported by data which demonstrates specific program strengths and challenges for the future.  These kinds of challenges in biomedical education are currently being addressed in open forum discussions and meetings fostered by the newly developed Physiology Majors Interest Group (P-MIG) of the APS.  This growing group of interested physiology educators are now meeting each year to discuss, compare and share their thoughts on these and other issues related to the future success of our undergraduate physiology students.  The current year will meet June 28-29 at the University of Arizona, Tucson, AZ.  It is through these forums and discussions that we, as a discipline, will continue to grow and meet the needs and challenges of teaching physiology and other basic science disciplines of the future.

Jeffrey L. Osborn, PhD is a professor of biology at the University of Kentucky where he teaches undergraduate and graduate physiology. He currently serves as APS Education Committee chair and is a former medical physiology educator and K12 magnet school director. His research focuses on hypertension and renal function and scholarship of teaching and learning. This is his first blog.
Thoughts from the Future

 

 

April 23, 2028

 

Dear Dave Harris of 2018,

It has been a long time my friend, in fact 10 years.  I have plenty of good news to share with you, which may be shocking or expected!

First, I am happy to inform you that the past decade has been extremely good for your Philadelphia Eagles!  After winning Super Bowl LII in 2018, they have gone on to win 3 more with Carson Wentz running new “Philly Specials” year after year!  Tom Brady finally retired after he dropped another wide-open pass in Super Bowl LV.  However, the biggest surprise for you may be that the Cleveland Browns won Super Bowl LV!

I am also happy to tell you that the educators survived the Great Medical Education Transformation of the 2020s! I knew that you saw this coming around 2015, but the speed at which the Transformation occurred was mind-blowing for many faculty!  We lost a few good “soldiers” in the process when they failed to adapt their educational views and styles, but as of now, medical education has never been better and there have been substantial improvements in patient safety and outcomes!  I am sharing some of the changes with you to prepare the faculty of the future!

One of the first recognizable changes was the manner in which students approached medical school curricula.  Even during your time, schools saw drastic reductions in class attendance and student engagement with the formal curriculum.  The millennial students were used to obtaining information how they wanted and immediately when they wanted.  Recording of lectures led to students remaining at home so that they could double speed your voice to sound (you have no idea how they describe you!), allowed them to view these lectures at midnight in their pajamas, and gave them the ability to stop and take notes.  Many faculty mistook this as student disengagement and tried to “force” them into class by making mandatory sessions or increasing the frequency of assessments. However, students responded by stating that some sessions were a “waste of time” and “took time away from studying for Step 1”.  They continued to vote with their feet and migrate away from the classroom!

However, what caught most faculty of your time off guard was the use of external resources outside of your own curricular items.  The emergence of the “hidden curriculum”!  Students were presented with alternative options such as Anki, Sketchy Medical, Osmosis, First Aid, Khan Academy and Pathoma to name a few!  At first faculty were unaware and put up a staunch resistance.  It was even postulated by some that the core curriculum of basic science could be delivered as a shared Medical Curricular Ecosystem (Le and Prober) that would help reduce redundancy in medical schools.  This caused an imbalance in the galaxy and many of the upset faculty tried to prevent this from coming. However, many astute faculty quickly realized that it was already there!!  At that point the faculty rebel forces decided to become proactive instead of reactive!

Town hall meetings, focus groups, and interviewing revealed many weaknesses in the medical school schema to date.  Faculty struggled to realize that the millennial students grew up with the internet and basically a cell phone attached to their hand.  Finding content was not an issue for them and what faculty discovered was that much of the content delivered in lectures was identical to what could be viewed in a video in 8 minutes.  They also discovered that students grew up in a world where everyone was connected through social media and available almost 24 hours a day!  They expected responses from their friends on a chat within seconds!  After all, how many people sleep with their cell phone next to them?  Faculty also discovered in these town halls that the generation valued work/life balance and anything that was deemed inefficient cut into this time that they could be doing something else.  Through these important meetings, faculty also discovered that students were excellent at recalling facts and regurgitating knowledge. However, when asked to apply that knowledge to a problem, the students went back to recalling the facts. Students had mistaken memorizing for learning!  And many faculty had mistaken learning for telling!  Some faculty reflected back and actually admitted that we may have enabled the behaviors with our constant barrage of standardized tests of knowledge!

At least, the good news is that this led to some drastic changes in medical education!  Gross anatomy has been severely trimmed down in an effort to focus on clinically relevant anatomy for undifferentiated medical students. Gross anatomy dissection is reserved for students interested in a surgical career as an elective.  Much of that experience of cutting through muscle layers and isolating each artery, nerve and vein, and picking through layers of fat to get there has been replaced by complex computer programs that help students visualize the anatomy in 3D!  Since ultrasound is currently available to any physician through their phone, more emphasis of anatomy related to ultrasound aspects has been a focus of instruction.  For many of the pathological or anatomical variations, 3D printing has allowed for much cheaper and better alternatives for learning.  Everything is currently related to clinical medicine and focuses on key concepts that are necessary to master as opposed to “knowing” everything!  However, the changes did not stop there!

Much of the basic physiology content knowledge is now presented to the students in alternative ways using directed, short videos or providing references.  The class time has been reserved for higher level threshold concepts where students are placed in situations in which misconceptions and dangerous reasoning can be identified and corrected.  Simulations and standardized patients (robots) have become common place where students have to integrate what they were learning in Doctoring courses with real life physiology.  Students enjoy the safe environment and as faculty discovered the role of affect in cognition, they quickly realized that this was a time efficient pedagogy.  Faculty have discovered that 1 hour of intense, clinically oriented, and high yield threshold concept learning is much more beneficial and time efficient than 4 hours of didactic lecture. And faculty discovered it was fun!

Another aspect under appreciated by faculty of your time is that students enjoy being able to learn in their own environment as opposed to in the classroom.  In your day coffee shops were filled with students studying away, but technology has allowed for large communities of learners to “get together” from their own homes.  Time spent traveling from various hospital sites during the clerkships was saved by developing online communities for learning and using technology to facilitate discussion.  Students felt more at ease critiquing another’s differential with this new design and appreciated the time saved from travel.

As I said my friend, medical education has been transformed in exciting and very positive ways!  Successful faculty have worked with the students to enhance the learning experience as opposed to trying to teach the way we were taught!  Faculty focused more on the learning process as opposed to trying to relay knowledge to the students.  It was discovered that technology could not substitute for poor teaching. Faculty learned to develop activities to get students out of their comfort zones so that true learning could occur.  And lastly, faculty realized that their roles were not eliminated. Rather the role of faculty had to change from the expert sage on the stage to the facilitator of student learning!

Well, I can’t wait to see what the next ten years will bring!  You will be happy to know that your two daughters have grown up to be beautiful, caring people!

 

See you in 10 years and Fly Eagles Fly!!

Dave Harris of 2028

 

———————————————————————————————————————————————————————

 

I realize that this letter may be viewed as provocative, crazy, and aspiring!  However, I hope that the conversations in medical education can begin to REALLY improve patient safety and outcomes in the future.  What changes do you think will occur in medical education in the next 10 years?

 

David M. Harris, PhD, is currently an Associate Professor of Physiology at the University of Central Florida College of Medicine in Orlando, Florida.  He received his PhD from Temple University School of Medicine, completed his post-doctoral research at Thomas Jefferson University, and was offered his first faculty position at Drexel University College of Medicine. He moved away from Philly to Orlando in 2011.  He has written several educational research manuscripts, mostly about the use of high fidelity mannequin simulators in medical physiology and currently serves as an Associate Editor for Advances in Physiology Education.  He is also on the Aquifer Sciences (formerly MedU Science) leadership team developing a curriculum that provides tools or how to integrate basic science knowledge with clinical decision making  to prevent harm.

Reference:  Le TT, Prober CG. A Proposal for a Shared Medical School Curricular Ecosystem. Acad Med, March 6, 2018