Category Archives: Medical Physiology

The Physiology of the G.O.A.T. (Part 1- endocrine)

Who is the G.O.A.T.?

Figure 1 shows the main life events that took place since the G.O.A.T. was born. Lionel Andres Messi Cuccittini (Leo) was born on the 24th of June 1987, in the city of Rosario, Santa Fé province, Argentina. In 1992, when he was 4 years old, his grandmother suggested that he should play for local club “Abanderado Grandoli”. Even at that young age, his agility and soccer skills were quickly noticed, and he signed into the historic professional soccer team in Rosario, called Newell’s Old Boys, in the youth ranks in 1995. Newell’s Old Boys is notorious for being one of the few professional clubs from outside of Buenos Aires, Argentina, that has dominated the national scenes of the sport. Many great Argentinean players and tacticians have emerged from this club.

In 1998, unfortunate news came to Leo with his diagnosis of growth hormone deficiency (GHD), he immediately started the treatment, but his family struggled to find the means to pay for the treatment. Regardless, he continued to play soccer, and his father, continued looking for a club for Messi, as his talent was very evident. A scout from Barcelona, Spain, received a tip about a boy in Argentina called Messi. He had been watching videos of this player and knew about the need of the young player for GHD treatment, but everybody thought he was too young and little (2). Nevertheless, because of Messi’s extraordinary skills, a trial for the 11-year-old was arranged in Barcelona. The scout, and everybody present, were surprised to see the talented, and unusually small 11- year-old playing a game, and tried to sign him immediately. However, there was a delay that felt like an eternity, and Messi’s father told Barcelona’s scout that they needed to return to Argentina, and they couldn’t keep waiting for a decision. And right there, the scout was in such a rush to sign Messi that he wouldn’t wait to have a written contract, and did not want to lose such talent, so they signed an agreement on a napkin (https://www.espn.com/soccer/barcelona/story/4263107/barcelonalionel-messi-and-the-napkin-oral-history-of-his-transferarranged-20-years-ago).  In 2000, Messi joined “La Masia, FC Barcelona’s youth academy” and Messi and his father moved to Spain. Part of the contract included paying for Messi’s GHD treatment.

Messi made his debut with Barcelona in 2004, against city rivals Espanyol. Two years later, in 2006, Messi played at his first World Cup for Argentina. Two years after that, he won the Olympic gold medal with Argentina at the 2008 Beijing Olympics. By 2009, Leo had proven his mettle, and was voted the FIFA’s Ballon d’Or winner, the best player in the world, and received this prestigious award six more times. In 2022, Messi achieved his lifelong dream, and won the world cup with Argentina, and unofficially became the G.O.A.T. In early March 2023, Messi was voted yet again as the FIFA best men’s player, in other words, now Messi is “officially” the G.O.A.T.

Size matters, but it is not the main problem!

Messi was 1.32m (4ft 4in) tall at the age of 11 and he had not grown in a couple of years [1]. So, yes height was an issue, but not the biggest issue. Messi suffered from growth hormone deficiency-GHD. According to the Endocrine Society, GHD is a rare condition affecting 1 in 4,000- 1in 10,000 cases [2], and unfortunately, Messi was one of these rare cases. When children have GHD the normal growth of bone and muscle is impaired. GHD can be congenital or acquired, but the consequences of it go well beyond the obvious slowing in growth and short stature. It can cause serious systemic problems, including glucose [3] and fat metabolism [4], cardiovascular complications [5], depression [6], and all of these also lead to fatigue and  exercise intolerance.

Figure 3 illustrates how the secretion of GH occurs, and its actions on various target organs. Under normal healthy conditions, there is a fluctuation in GH secretion during the day, with a marked increase in its secretion during sleep, most precisely about an hour after the onset of deep sleep. Inputs such as exercise, stress, hypoglycemia signal the hypothalamus to secrete growth hormone releasing hormone (GHRH), this hormone travels to the anterior pituitary gland where ultimately, GH is secreted.  Somatropes are the cells in the anterior pituitary gland that secrete GH, which travels systemically to the liver, where insulin-like growth factor 1 is secreted (IGF-I). IGFs act on target cells that cause growth of bone and soft tissues. Since Messi had GHD, the levels of IGF-I were probably lower, slowing his growth during pre-pubertal years before the growth spurt. Other factors affect the levels of IGF-I, most specifically, inadequate nutrition negatively affects its levels in the blood. Fortunately, Messi received treatment before puberty, allowing him to grow to be 170 cm tall (5’7”). However, not only the lack of growth in bone and soft tissues could have halted his amazing athletic career, GHD also results in metabolic complications not related to growth that could have affected his tolerance to exercise.

Give me the sugar!

As illustrated in figure 3, GH acts directly on skeletal muscle, the liver, and adipose tissue. The overall action of GH is to maintain glucose homeostasis. In other words, GH increases the levels of circulating blood glucose, critical to produce adenosine triphosphate (ATP) for energy at rest, and most importantly during exercise. The action of GH on the muscle is to inhibit the glucose uptake by the muscle, thus, increasing the levels of circulating glucose to be later used for ATP production. Additionally, to further spare glucose in the blood stream, GH mobilizes fat stores by breaking down triglycerides, increasing fatty acid levels in blood. In the liver, GH also promotes gluconeogenesis, or the formation of glucose from non-carbohydrate substrates. All these actions can occur simultaneously and depend on the intensity and duration of exercise. With GHD, athletes can be more easily fatigued, and Messi probably would have been unable to perform to the level he did, and becoming the G.O.A.T.

We need glucose to create ATP, during exercise, especially at high intensities as humans depend on the ability to spare glucose, the only fuel for the central nervous system. Your brain is like a selfish boss, everybody (in this case every organ) must work to keep it happy and functioning. To keep your brain “happy” the rest of your organs need to make sure enough glucose is in the blood for the brain to have the energy for all of its intricate functions.

This glucose homeostasis happens by the orchestrated actions of several hormones including glucagon, cortisol, catecholamines and GH. One of the major adaptations of training is the decrease reliance on carbohydrates for energy and a shift to fat metabolism. At rest and low intensity exercise, we use mostly fats as “fuel” however, when we go above 50-60% of the maximum, we switch to carbohydrates for metabolism. This phenomenon is called the “crossover point”. Endurance exercise training shifts this crossover point to higher intensities, sparing glucose and decreasing the accumulation of lactic acid. When a person exercises and experience the “hit the wall” phenomenon (i.e., the sudden loss of energy during an endurance event like a race) it is due to low blood glucose levels. GHD probably could have played a role on Messi’s metabolism if not treated.

What else makes the G.O.A.T the best?

There is much to talk about Messi, from the endocrine system to his extraordinary neural activity that makes him very fast and coordinated. From his tolerance to fatigue, high maximal oxygen consumption and lactate threshold to the muscle fiber type to motor unit recruitment and synchronization, we are going to focus only on the metabolic adaptations of training of this elite athlete, and we promise a part 2 of this blog post to talk about the rest of the adaptations of training that makes the G.O.A.T the best!

Maximal Oxygen Consumption (VO2max)

Oxygen consumption refers to the amount of oxygen being taken up by the tissues per minute to oxidize substrates (like carbohydrates and fats). Maximal oxygen consumption (or VO2max) refers to the amount of oxygen used during an incremental exercise to exhaustion. The higher the VO2max the higher the endurance capacity of the person, and their “fuel” utilization. This oxygen is being taken up by skeletal muscle and used in the mitochondria to create ATP. One adaptation of endurance training is having higher VO2max values. While sedentary males range between 25- 45 ml/kg/min, and distance runners could be between 65- 85 ml/kg/min,  the values for professional soccer players can range between 59.2 to 63.2 ml/kg/min, and mid-fielders and attackers have higher values than defenders and goalies [7].

A limitation of this test is that it is conducted in standardized conditions in a laboratory, and fails to replicate the actual consumption, often supra-maximal, that occurs during a game. Nevertheless, this is the gold standard measurement for cardiovascular fitness, and we speculate that the G.O.A.T. may have high VO2max values. We also think that Messi has a high lactate threshold, or the point in which lactate production exceeds clearance during this incremental maximal exercise test to exhaustion. High lactate threshold and crossover point can be related, as the endurance-trained person has better ability to spare glucose (carb reserves) and thus creates less lactic acid. Also, higher oxidative metabolism results in higher ability to oxidize lactate during the athletic event and use it as fuel.  Athletes like Messi usually have all the biochemical adaptations that make their skeletal muscle fibers more resistant to fatigue. This is due to mitochondrial proliferation and capillary recruitment. Messi is also a very explosive and fast player, due to a combination of nature (his genetic makeup) and nurture (his training), probably with a high number of Type II fast-oxidative muscle fibers with high levels of Myosin-ATPase activity. These fibers have intermediate resistance to fatigue, high oxidative phosphorylation capacity, fast speed of contraction, many capillaries and mitochondria and high myoglobin content.

Why is Messi the G.O.A.T?

The chances of a young boy from the countryside of Argentina with GHD to be even considered for any major international soccer club are very slim. This is because in Argentina everybody plays soccer and there are numerous soccer players and too much competition. In fact, Messi was rejected from giant club “River Plate” in Buenos Aires, Argentina, before signing his agreement on a napkin with Barcelona.  The economic disparities also play a role on the odds of any young player to become a professional soccer player if any medical treatment is needed. However, there was something special about this boy, and it only took a trained eye to envision a wonderful professional career. Without the hormonal supplementation, Messi would have probably never had a shot. Fortunately for soccer fans all over the world, advances in biomedical research made it possible for Messi to reach his full potential and become this phenomenon adored by all.

References:

  1. Hawkey, I. Lionel Messi on a mission. 2008 [cited 2023 March 5]; Available from: http://www.timesonline.co.uk/tol/sport/football/european_football/article3779961.ece.
  2. Endocrine_Society. Growth Hormone Deficiency. 2023 [cited 2023 March 6th]; Available from: https://www.endocrine.org/patient-engagement/endocrine-library/growth-hormone-deficiency.
  3. Hew, F.L., et al., Growth hormone deficiency and cardiovascular risk. Baillieres Clin Endocrinol Metab, 1998. 12(2): p. 199-216.
  4. Gertner, J.M., Growth hormone actions on fat distribution and metabolism. Horm Res, 1992. 38 Suppl 2: p. 41-3.
  5. Lombardi, G., et al., The cardiovascular system in growth hormone excess and growth hormone deficiency. J Endocrinol Invest, 2012. 35(11): p. 1021-9.
  6. Karachaliou, F.H., et al., Association of growth hormone deficiency (GHD) with anxiety and depression: experimental data and evidence from GHD children and adolescents. Hormones (Athens), 2021. 20(4): p. 679-689.
  7. Slimani, M., et al., Maximum Oxygen Uptake of Male Soccer Players According to their Competitive Level, Playing Position and Age Group: Implication from a Network Meta-Analysis. J Hum Kinet, 2019. 66: p. 233-245.
Benjamin Puppato is a junior in the International Baccalaureate program at Floyd Central High School. He loves playing soccer, and also he is interested in statistics and facts about soccer, particularly of Argentinean players and teams.

 

 

 

 

Dr. Terson de Paleville is an associate professor of Physiology at the University of Louisville’s School of Medicine. She teaches Exercise Physiology and Human Physiology courses. Dr. Terson de Paleville has investigated the effects of activity-based therapy on respiratory muscles, body composition and autonomic function after spinal cord injury. Additional research project involves research on best practices for teaching physiology.

Designing asynchronous learning material: the Pomodoro way

This post shares my reflection on making asynchronous learning materials during COVID19. I taught physiology to years 1 and 2 medical students at Newcastle University Medicine Malaysia. My usual approach in the classroom is: passive – active – passive i.e. I would first clarify the concepts in which students listen passively, ask questions to push students to think actively, back to passive again, and so forth.

 

When the pandemic hit Malaysia and the country went into complete lockdown, teachers were asked to decide if they wanted to make their teaching session synchronous or asynchronous. It was a stressful time as it was just my third year of teaching, and I still had a lot to learn about teaching. Fortunately, this happened during the semester break, and I had time to ponder these potential issues. Synchronous online sessions happen in real time, just like an in-person teaching session but online. Asynchronous sessions, on the other hand, allow students to go through the learning materials at their convenience.

 

I chose to make all my teaching sessions asynchronous after reflecting on several issues which the students and I might encounter if they were synchronous sessions. The student demography in the university consists of both local (Malaysian) and international students (ranging from Australia, to South Asia, and all the way to Canada). Considering where the students were from, the first problem with conducting synchronous sessions would be the time difference. After making adjustments, we had only a couple of hours a day where the schedule was appropriate for everyone.

 

Using Zoom for teaching was my first time, I needed to take into consideration student engagement, internet connectivity (both students’ and mine), glitches etc. Taken together, I realized that there were more things that were not within my control for a synchronous session, so asynchronous session was the better choice: the students could just go through the materials at their convenience. They could learn at their own pace without the need to stress themselves (and myself) about internet connectivity during a synchronous session or waking up at 5 in the morning; And I could avoid real-time technical issues in the middle of a teaching session. What’s left is student engagement. How do I engage students during asynchronous teaching? What can I do to motivate the students to complete the seemingly ‘boring’ hour-long lectures when they were on their own? Once I decided to make asynchronous materials, I actually felt relief in a way as I just needed to focus on making the materials rather than worried about other issues.

 

When I started working from home during the semester break, I had productivity anxiety which I had not experienced before. I began watching videos and reading articles which people shared on how to be more productive. This was when I discovered the Pomodoro technique. In general, this time management technique improves productivity by breaking down the work day into 25-minute blocks (also called Pomodoro’s) with 5-minute breaks in between the blocks. This actually gave me the idea on how I could help the students to go through the asynchronous learning materials with ‘less suffering’, as well as to achieve more when they were on their own.

 

I divided an hour-long lecture into three parts: Part 1, Part 2 and Summary which mimicked the block mentioned above. Parts 1 and 2 were recorded lectures that were 20-25 minutes long, and the Summary was a short, 5-minute roundup of what had been mentioned. Within the recorded lectures, I also prepared activities for students to assess their own understanding (active learning). For instance, after describing the structure of the skeletal muscle, I inserted another diagram of muscle fibers and asked students to pause the video to try and label the diagram. After explaining the two-neuron model, receptors and the neurotransmitters in the autonomic nervous system lecture, I prepared another diagram and students were asked to pause the video to fill in the blanks. When students resumed the video, I explained the answers. The videos were uploaded into Microsoft Stream and the links to the videos were shared on the university learning management system. I could easily track the number of views of the videos.

 

In between the two parts, there was a 5-minute-long interlude that mimicked the break in Pomodoro technique. A variety of activities was used in the interlude, including a short reading or fun fact related to the previous part. For instance, a question that required students to apply what they learned from the previous part; or games such as crossword puzzles, drag-and-drop for students to match the meanings with the terminology; or in the muscle physiology lecture, a short reading on rigor mortis were given in the interlude. Students could skip this if they wanted to but I encouraged them to follow the activities in the interlude to take a break from the passive listening, and do something active.

 

Other small things I did with this ‘Pomodoro arrangement’ of the learning materials included a clear instruction and the estimated time required to complete it. These are common if one is familiar with taking online courses. Clear instructions and estimated time of completion helped setting goals and expectations for the students the moment they opened the asynchronous learning materials. This might seem trivial, but it’s one of the keys of getting things done.

 

I included captions to all my videos to improve accessibility. Particularly for the new students, they might need time to get used to my accent and certain terminology. On top of that, captions could also be useful to English speakers to improve comprehension (1). PLYmedia found that videos with captions are more engaging and the viewers tend to watch until the end (1). These are something that I wanted for my videos as well. In fact, the sound quality, the accent of the teachers, the internet connection, and whether English is the student’s first language, could all affect the quality of synchronous teaching without proper captions. I would acknowledge that adding captions could be troublesome. When I first tried to edit the caption generated automatically by Microsoft Stream, I was amused by how bizarre it was, full of errors. However, I was actually glad as it reminded me to put efforts into my speaking and pronunciation (especially if you do not have a good microphone). One thing that I learned was that YouTube actually has a better AI system in terms of generating captions, the accuracy rate was high. After getting used to recording videos and adjusting how I speak, I didn’t have to do much editing in my subsequent videos. I also took caption-editing as an additional step to assess the contents of my videos.

 

The completion rate of the videos was 100% based on the number of views recorded in Microsoft Stream and students showed great appreciation about the captions in their feedback. When I asked them privately how they felt about the ‘Pomodoro arrangement’, some students said that they felt accomplished whenever they finished the 20-plus-minutes long videos and were motivated to continue. I believe this is the effect of the original Pomodoro method. Although COVID19 is pretty much ‘over’ in most countries and in-person teaching has resumed, I think this ‘Pomodoro arrangement’ could still be beneficial in blended learning. One might argue that there is no need to deliberately include the ‘breaks’ for the students since the students can just pause an hour-long video on their own. But I see no reason why we can’t actively make this happen by breaking up the lectures into smaller chunks and inserting fun active learning in between.

References:

[1] Albright, Dann. “7 Reasons Your Videos Need Subtitles [Infographic].” Uscreen, 18 Nov. 2020, www.uscreen.tv/blog/7-reasons-videos-need-subtitles-infographic/.

Dr. Tan received his BSc and MMedSc from the University of Malaya, Malaysia, and his Ph.D. from the National University of Singapore. He then worked at Newcastle University Medicine Malaysia (2018-2021) as lecturer, teaching physiology to years 1 and 2 medical students. Currently, he is a lecturer at the Chinese University of Hong Kong (Shenzhen), teaching physiology and histology to years 1 & 2 medical students.
The Great Student Disengagement

With excitement and anticipation for a “return to normal,” faculty, staff and administrators were especially excited to launch Spring semester 2022.  People were vaccinated, students would be attending class with their peers on campus, and extracurricular activities would return to campus. However, it was soon discovered that a return to campus would not mean a return to “normal.”

In addition to the period of “great resignation” and “great retirement,” we soon discovered that a return to campus could be described as the “great student disengagement.”  Faculty observed concerning student behaviors that impacted academic success. Students on our campus have been vocal about their desire to remain at home and on MS TEAMS/ZOOM©. Classroom sessions were required to shift and were often a mixed modality (high flex) as students and faculty underwent COVID protocols that required remote attendance. In a curriculum in which all sessions are mandatory (approximately 20 hours each week in a flipped environment), students requested far more absences in the spring semester than ever before. Even when students were physically present in class, blatant disengagement was observed by faculty.  Attempts to appeal to students’ sense of responsibility and professionalism had little impact in changing behavior.

In attending the Chairs of Physiology meeting at Experimental Biology (EB), student disengagement was an impactful topic of discussion. Somewhat surprisingly, it quickly became apparent that the environment on our campus was somewhat ubiquitous across all institutions of higher education represented in the room that day. Although we shared similar observations, few potential solutions were offered.

Serendipitously, on the final day of EB meetings, the Chronicle of Higher Education published an article by Beth McMurtrie titled “A Stunning Level of Student Disconnection.”  The article shared insight gained from faculty interviews representing a wide range of institutions:  community colleges, large public universities, small private colleges, and some highly selective institutions. Ms. McMurtrie shared stories of faculty who described how students’ brains are “shutting off” and limiting their ability to recall information. The article reports that far fewer students show up to class, those who do attend often avoid speaking, and many students openly admit that they do not prepare for class or complete assignments. Faculty commonly described students as defeated, exhausted, and overwhelmed.

Although specific causes of the “great student disengagement” have not been substantiated, many believe it is the after-math of the pandemic. It seems plausible that the learning environment became more individualized and flexible with fluid deadlines and greater accommodations during the pandemic. Thus, a return to normal expectations has been difficult.

It also seems reasonable that amid the more pressing issues of life (deaths within families, financial struggles, spread of disease), students are reporting high levels of stress, anxiety and general decline in mental health. Perhaps being absent or disengaging while in class (being on cell phones/computers, frequently leaving the room) are simply avoidance mechanisms that allow the student to cope.

Although post pandemic conditions have brought student disengagement to our awareness, some faculty have seen this coming for years.  In a 2020 Perspectives on Medical Education article by Sara Lamb et al. titled “Learning from failure: how eliminating required attendance sparked the beginning of a medical school transformation,” the authors reported low attendance rates, at times as low as 10%, which they attempted to fix with a mandatory attendance policy.  However, over the next six years, student dissatisfaction rose due to the inflexible and seemingly patronizing perception of the policy. This led students to strategize ways to subvert the policies while administration spent significant time attempting to enforce them.  To address the situation, the school transitioned away from required to “encouraged” and “expected” for learning activities.  This yielded both positive and negative results, including but not limited to: increased attendance to non-recorded activities which students deemed beneficial to their learning; reduced attendance to activities that were routinely recorded and posted leading to increased faculty discouragement; reduced administrative burden and tension; and increased student failure rate and feelings of isolation and loneliness.  The authors go on to describe efforts to mitigate the negative outcomes including empowering faculty with student engagement data, and training in active learning pedagogies to enhance student engagement.

As the definitions and root causes of student disengagement pre-date COVID and are somewhat ambiguous, finding effective solutions will be difficult. Perhaps the rapid evolution of teaching and learning brought about by COVID now dictates an evolution of the academic experience and the rise of scholarly projects to address both causes and solutions.

Suggestions on solving the disengagement crisis were published by Tobias Wilson-Bates and a host of contributing authors in the Chronicle of Higher Education dated May 11, 2022. Although we will leave it up to the reader to learn more by directly accessing the article, a list of topics is helpful to recognize the variety of approaches:

  1. Make Authentic Human Connections
  2. Respect Priorities
  3. Provide Hope
  4. Require Student Engagement
  5. Acknowledge that Students are Struggling
  6. Fight Against Burnout

Although we rely on faculty to address student disengagement, it is also useful to consider the stressful environment of faculty. In addition to experiencing the same COVID conditions that students experience, faculty are being asked to continue to provide up-to-date content, utilize engaging teaching modalities, become skillful small group facilitators, as well as advise, coach and provide career counseling.  It is perhaps not surprising that faculty may also feel stressed, isolated, and burned out, surmising that nothing they do makes much difference – opting instead to remain hopeful that students will bounce back.

Regardless of the learning environment on your campus, it is safe to say that now is the time to come together as faculty, students and administrators to discuss the best path forward. Collectively we can work together to set solutions into motion and gather evidence for our effectiveness. It is time to leverage our shared experiences and lessons learned over the past several years of transitioning away from and back into face-to-face classroom instruction. Such reflection and study will support teaching and learning as we all seek to find a “new normal” that meets the needs of students, faculty, and administration alike.

Lamb, Sara & Chow, Candace & Lindsley, Janet & Stevenson, Adam & Roussel, Danielle & Shaffer, Kerri & Samuelson, Wayne. (2020). Learning from failure: how eliminating required attendance sparked the beginning of a medical school transformation. Perspectives on Medical Education. 9. 10.1007/s40037-020-00615-y.

A Stunning Level of Student Disconnection  https://www.chronicle.com/article/a-stunning-level-of-student-disconnection

How to Solve the Student Disengagement Crisis https://www.chronicle.com/article/how-to-solve-the-student-disengagement-crisis

 

Mari Hopper, PhD, is an Associate Dean for Pre-Clinical Education at Ohio University Heritage College of Osteopathic Medicine where she facilitates the collaboration of faculty curricular leadership and their engagement with staff in curricular operations.  Dr Hopper’s areas of professional interest include curricular development, delivery and management; continuous quality improvement including process efficiency and the development of positive learning environments and work culture; and mentorship of trainees in medical education.
Leah Sheridan, PhD, is a Professor of Physiology Instruction at Ohio University Heritage College of Osteopathic Medicine where she serves in curriculum innovation, development and leadership. Dr. Sheridan’s areas of professional interest include the scholarship of teaching and learning, physiology education, and curriculum development.
From a Group to a Team: Medical Education Orientation Curriculum for Building Effective Teams

I am part of a small team of Core Educators in the pre-clerkship undergraduate medical education program at the Lewis Katz School of Medicine at Temple University (LKSOM).  Last year we introduced a new curriculum to our medical students.  Part of this restructuring involved changing the format of the week-long orientation for first year students.  Operating under the new title of Transition to Medical School (TTMS), we introduced education programming amongst traditional orientation activities in which we specifically address the importance of teamwork, while providing a three-part series of 1.5- to 2-hour sessions given over three days to allow the students to get to know each other, learn about team dynamics in education and medicine, and develop their small teams; practice with patient cases to get experience with a type of active learning activities which form part of the backbone of their pre-clerkship education; reflect on the previous two sessions as part of their team’s norming process.  The focus of this blog is to describe the first session of this series, which was designed to dismantle preconceived notions of team learning, highlight the potential impact of high functioning teams, and participate in asset mapping to aid in forming of teams.

A problem which we identified as we transitioned to more case-based learning leading up to the curricular change, and that was particularly highlighted during the transition to virtual and then hybrid teaching and learning during the Covid-19 pandemic, was that medical students often struggle to learn in dysfunctional small groups if they do not first gain the skills to create and sustain high functioning, collaborative teams. Ineffective group dynamics led to limitations in students learning the material and resulted in less buy-in of the value of the case-based activities.  In addition, the downstream effects of dysfunctional team dynamics are well documented and include poor patient outcomes1. This is important as our competencies include preparing students for working in patient care teams.

We began the first education session with a word cloud activity to allow students and faculty to learn about the students’ pre-conceived ideas regarding group work.  Students were asked to submit using software (we used mentimeter.com) a word or phrase that came to mind when we said “group work”; the app then collated and displayed their responses in a figure composed of words.  Words which were submitted by multiple participants appeared larger in the word cloud (see figure for an example of a word cloud).  In our word cloud (not shown) the most frequently submitted words included “collaboration”, “communication”, “stressful”, “teamwork”, “frustrating”, and “compromise”.  Other words and phrases which appeared included “painful”, “judgment”, “overwhelming”, “open minded”, “unequal effort”, “hearing every voice”, “more work”, “understanding”, “innovative”, “constructive”, “helpful” “divide and conquer”, and “mixed bag”.  It was evident and probably not surprising that there was a range of responses from the more skeptical or negative to the more positive and enthusiastic.

Next, we shared information gathered from the literature with regards to the importance of small group, active learning in medical education.  The literature indicates that students who participate in small group learning activities demonstrate improved levels of critical thinking as compared with their peers who participate in lecture-based activities only2-4.  It has also been shown that small group work promotes communication skills5, active learning, cooperation, engagement, and retention of material6.

We then spent a few minutes reviewing the importance of diverse, effective teams in medicine.  The literature indicates that vulnerable patients with multiple chronic conditions have many doctors on their care team.  The number of people involved in a patient’s care is also increased by the nature of interprofessional roles in medicine.  Care teams include physicians (attendings, fellows, residents), medical students, nurses, physician assistants, nurse practitioners, medical assistants, pharmacists, case managers, social workers, physical and occupational therapists, technicians, pathologists, lab specialists, front desk personnel, billing specialists, and many more.  Therefore, it is imperative that students practice their communication and teamwork skills to provide their patients with the best possible care.

We also described to the students the difference between a “group” and a “team”.  A “group” can be defined as a number of people who are associated together in work or activity and has a set leader.  The group members may not work with each other but report directly to that leader, only hold themselves accountable, and rarely assess progress or celebrate successes7.  Revisiting the list above from our students’ word cloud activity, “unequal effort”, “divide and conquer”, and “more work” may be used to describe this kind of group.  In contrast, a “team” includes a small number of people with complimentary skills, who are committed to a common goal and purpose, who set performance goals and hold themselves mutually accountable.  They may share leadership and value open-ended discussion and active problem-solving7.  The terms “open minded”, “hear every voice”, “collaboration”, and “communication” from our students’ word cloud are aspects of a team.

Next, we asked the students to move into their assigned teams of 6-7 students for an asset mapping activity.  The goal of asset mapping is to create more equitable team dynamics by having students identify their own assets and share them with their team.  Each team was assigned to stay together for their first semester courses, so this experience not only allowed the students to think about their contributions to the team, but also served as an icebreaker in a classroom setting for the students before they began their first course.  We used an asset map (see figure) we adapted from George Pfeifer and Elisabeth Stoddard from Worcester Polytechnic Institute, who authored “Equitable and Effective Teams: Creating and Managing Team Dynamics for Equitable Learning Outcomes”8 and from Cliff Rouder of Temple University’s Center for the Advancement of Teaching, who authored “Asset Mapping: An Equity-Based Approach to Improving Student Team Dynamics”9.  Students were given time individually to complete their asset map, and then were instructed to share parts of their maps with their teammates.  Anecdotally, we were impressed with the depth of conversations, the degree of engagement and participation with each team, and the enthusiasm the students shared with each other.  An anonymous RedCap survey was given to the students after TTMS ended, and 87% of responding students indicated they found the asset mapping session useful (response rate was 97% of the class).

The Association of American Medical Colleges (AAMC) reports 11% of students in medical schools identify as historically underrepresented in medicine.  At LKSOM, our current M1 and M2 classes are both comprised of ~30% students who are historically underrepresented in medicine.  Our students come from a diversity of backgrounds and lived experiences, and have varying interests, skills, passions, and responsibilities.  Asset mapping provided a mechanism by which our students could initially learn about and from each other, and later led to conversations which allowed the teams to set their goals and expectations, and hopefully work towards providing a more equitable experience.  Asset mapping can be used to reassess team dynamics and for forming new teams as students progress through the curriculum.  This tool can also be used to help students optimize team dynamics for those who are struggling or underperforming.

This is an example of how sharing the literature with respect to the value of small group learning, team dynamics, and the role of asset mapping was useful in the building of teams in the first semester of medical school.  However, these tools could be adapted and used for learners at any level, or for team building within our departments.

The LKSOM Core Educator Team includes: Jill Allenbaugh MD, Bettina Buttaro PhD, Linda Console-Bram PhD, Anahita Deboo MD, Jamie Garfield MD, Lawrence Kaplan MD, David Karras MD, Karen Lin MD, Judith Litvin PhD, Bill Robinson PhD DPT, Rebecca Petre Sullivan PhD

 

References:

  1. Mitchell R, Parker V, Giles M, Boyle B. The ABC of health care team dynamics: understanding complex affective, behavioral, and cognitive dynamics in interprofessional teams. Health Care Manage Rev. 2014 Jan-Mar;39(1):1-9. doi: 10.1097/HCM.0b013e3182766504. PMID: 24304597.
  2. Tiwari, Agnes & Lai, Patrick & So, Mike & Yuen, Kwan. (2006). A Comparison of the Effects of Problem-Based Learning and Lecturing on the Development of Students’ Critical Thinking. Medical education. 40. 547-54. 10.1111/j.1365-2929.2006.02481.x.
  3. Charles Engel (2009) An Internet Guide to Key Variables for a Coherent Educational System Based on Principles of Problem-Based Learning, Teaching and Learning in Medicine, 21:1, 59-63, DOI: 10.1080/10401330802384888
  4. Kamin, Carol & O’Sullivan, Patricia & Younger, Monica & Deterding, Robin. (2001). Measuring Critical Thinking in Problem-Based Learning Discourse. Teaching and learning in medicine. 13. 27-35. 10.1207/S15328015TLM1301_6.
  5. Walton H. Small group methods in medical teaching. Med Educ. 1997 Nov;31(6):459-64. doi: 10.1046/j.1365-2923.1997.00703.x. PMID: 9463650.
  6. Van Amburgh JA, Devlin JW, Kirwin JL, Qualters DM. A tool for measuring active learning in the classroom. Am J Pharm Educ. 2007 Oct 15;71(5):85. doi: 10.5688/aj710585. PMID: 17998982; PMCID: PMC2064883.
  7. Katzenbach, JR & Smith, DK. (2005). The discipline of teams. Harvard business review. 83. 162-+.
  8. Pfeifer, Geoffrey and Elisabeth A. Stoddard (2019). “Equitable and Effective Teams: Creating and Managing Team Dynamics for Equitable Learning Outcomes” in Kristin Wobbe and Elisabeth A. Stoddard, eds. Beyond All Expectations: Project-Based Learning in the First Year.
  9. Rouder, C (2021). Asset Mapping: An Equity-Based Approach to Improving Student Team Dynamics.  Temple University Center for the Advancement of Teaching.  https://teaching.temple.edu/edvice-exchange/2021/03/asset-mapping-equity-based-approach-improving-student-team-dynamics.
Dr. Rebecca Petre Sullivan earned her Ph.D. in Physiology from the Lewis Katz School of Medicine at Temple University and completed a Post-Doctoral Fellowship in the Interdisciplinary Training Program in Muscle Biology at the University of Maryland School of Medicine.  She taught undergraduate biology courses at Ursinus College and Neumann University.  As an Associate Professor of Physiology in the Department of Biomedical Education and Data Science and the Department of Cardiovascular Sciences, and as a Core Basic Science Educator, she is currently course director in the Pre-Clerkship curriculum at LKSOM and at the Kornberg School of Dentistry; in addition to teaching medical and dental students, she also teaches physiology in Temple’s podiatry school, in the biomedical sciences graduate program, and in the physician assistant program.  She is a member of Temple University’s Provost’s Teaching Academy.  She was the recipient of the Mary DeLeo Prize for Excellence in Basic Science Teaching in 2020, the Golden Apple Award in 2017 and 2021, and the Excellence in Education Award, Year 2 in 2020 from LKSOM, and the Excellence in Undergraduate Teaching Award from Neumann University in 2012.
Expanding “normal” in physiology

We are not formal authorities, rather informal allies who have enacted a few small classroom and content related changes related to diversity and inclusivity in our medical school. We hope that our experience will help you in your pursuits in the education of all students.

It took someone in power (a Departmental Leader and Course Director) to act. Author KSC recognized that key person group diversity content was missing and that societal and student sentiment had shifted. This was in the early fall following the 2020 “Black Lives Matter” demonstrations.  Knowing that even with firm institutional commitment, change would take time, author KSC inserted intentional diversity and inclusivity curricular time into the Cardiovascular Systems course (USA medical year 2, 5-week Fall course) in 2020. The social determinants of healthcare and related topics received some curricular coverage but were less present in foundational coursework. Three required elements were added to the course that would both have learning objectives and corresponding assessment items, as assessment often indicates importance in coverage and content to students.

Having passion and insight does not mean that this person must deliver the content. Author TEW was the person selected to deliver the material since the topic of “normal” had been informing his teaching for several years, especially in developing physiology content for Pediatrics and Gerontology medical blocks and an understanding that 50% of people could be excluded if sex as a biological variable is not included.  In 2017, author TEW also led a teaching workshop at the International Union of Physiological Sciences in Brazil with the goal of challenging physiology educators from across physiology societies to include sex and lifespan material in physiology education and to teach these differences not as special topics but as “normal” physiology.

The three elements covered included: sex, lifespan (older and younger), and USA person groups with historic health disparities. One lecture (“Normal” physiology and how it changes across the lifespan and between sexes – covering respiratory, renal, and cardiovascular systems) and 6 podcasts (Selected sex-specific issues in BP control & hypertension, Selected race & ethnicity issues in BP control & hypertension, An innovative approach to hypertension care in African American males, Sex-specific physiology: CV signs and symptoms, Sex-specific physiology: Heart disease, and CV epidemiology delineated by race and ethnicity) were incorporated and spaced within an integrative organ-based content.  We attempted to have material that was race/culture-informed but not race/culture based, which allows some separation of social constructs, the individual vs. person group, and a determinant vs. prevalence. In other Year 2 medical courses, Department physiologists added information on historical bias in normative prediction equations (pulmonary function testing and glomerular filtration rate) as well as environmental justice and air quality.  These other additions were in the form of one to a few formally presented slides, part of a case presentation, or as a brief class discussion topic.

Were the additions easy? No. It took curricular time, administrative support, and a great deal of learning on our part. Documents such as APS Medical Physiology Learning Objectives do not directly address diversity and inclusivity to guide the field in what is important to include.  Perhaps as a Society this is a change we can implement.  Some take-homes for physiology educators: 1) no matter your background, you can contribute (very few people have formal training in this area), 2) collaborate with other faculty, 3) obtain feedback from all person groups and from students, as perception and intent can be quite different, 4) be intentional and precise with wording, and 5) implement small changes. We encourage you to expand “normal” physiology in one or two ways this upcoming semester, but do not be surprised if students are quite interested and request more.

 

 

 

 

 

Ken Campbell is a Professor and Director of Graduate Studies in the Department of Physiology. He also in the Co-course Director of the Cardiovascular Course in the Year 2 medical curriculum University of Kentucky College of Medicine.

 

 

Thad Wilson is a Professor and Director of the Graduate Certificate in Physiology Teaching in the Department of Physiology. He also is the Co-course Director of the Respiratory Course in the Year 2 medical curriculum and teaches physiology in several of the other medical courses at University of Kentucky College of Medicine.

 

 

Physiology as an Interpretive Lens for the Clinician’s Dilemma

Clinicians are faced with a dilemma – the need to make decisions based on a universal set of evidence and experience that usually does not explicitly include that individual. My understanding of the clinician’s dilemma germinated while working toward my professional Master’s in Physical Therapy and became clear during graduate course work in epidemiology. I didn’t have a chance to write about it and propose some vague abstract solutions until 2005,[i] and didn’t propose tangible solutions until 2014 which are embedded into a curriculum I developed for a new Doctor of Physical Therapy (DPT) program at Plymouth State University (2015-2017) and were then published in 2018.[ii] And to be clear, no one has solved this dilemma. At best we have some inkling of the types of reasoning that make it less poignant, or at least enable a clinician to have a rationale for decisions. There’s a gulf between a clinical researcher saying “Your practice is not evidence based”, and the clinician saying in response “Your research isn’t practice based”. A hardline stance of evidence-based practice not including mechanistic causal reasoning and only including (or giving strong priority to) randomized controlled trials that focus on outcomes as the primary determinant of the best treatment is not practice based.[iii]

The CauseHealth[iv] project considers the problem in their book Rethinking Causality, Complexity and Evidence for the Unique Patient[v]. Clinicians must be able to inquire and reason about unique situations and consider what, whether, how, when, and to what extent clinical practice guidelines and evidence from systematic reviews and randomized controlled trials apply in that particular situation. Clinicians consider mechanisms as causes underlying particular situations even when they are part of a unique arrangement of a complex system and when the observation of prior situations exist, or the ability to repeat the situation is limited.

In physical therapy this requires a depth and breadth of physiological understanding that starts with the core concepts and proceeds to integrated, complex, mechanistic causal relationships. Physical therapists “diagnose and treat individuals of all ages, from newborns to the very oldest, who have medical problems or other health-related conditions that limit their abilities to move and perform functional activities in their daily lives” (APTA).[vi] A core component to the knowledge used in practice for this profession is physiological knowledge. Beyond understanding pathophysiology, physical therapists must be able to reason through the consequences of various situations – when is physiology as expected vs. not as expected and how does a set of expectations (or non expectations) influence our understanding of the current particular situation. In other words, clinicians are reasoning through causal models, either implicitly or explicitly. And often, much of what happens at the causal model level of knowledge for practice includes physiology.

My writing and teaching promote the use of causal models as representations of knowledge for clinical reasoning, and the use of graphical causal models for the clear articulation and sharing of such knowledge. This approach is helpful for the consideration of how universal concepts learned through an empirical process and thought to be true for a population can be applied in a particular situation. When teaching DPT students how to use physiology in clinical reasoning we approach causal models of physiological mechanisms as an interpretive lens for the clinician’s dilemma.

Clinical research utilizes statistical inference to estimate, from a sample, what a population characteristic or cause-effect relationship may be. The cause-effect relationship may be intervention-outcome, or it may be exposure-disease. The patient in front of a clinician was usually not in the original sample. The question then becomes, is this patient part of the population that this study (or these studies) represent via statistical inference? And is this patient part of that population in a manner that is important given the physiological mechanisms involved in the cause-effect relationship? This is a physiological question. We immediately can consider whether the inclusion and exclusion criteria of the research includes or excludes this particular patient. Those are obvious reasons to question whether the patient you are working with is part of the same population to which these studies inferred. We naturally look at age, sex, comorbidities and severity of the situation. All of these considerations imply variation in the underlying physiological state of the particular patient from the inferred population. But even if the particular patient is similar to the inferred population on all of these considerations, underlying physiological assumptions based on the mechanisms remain and should be considered.

For example, research demonstrates that electrical stimulation of the major skeletal muscles involved in walking is causally associated with positive outcomes in people with chronic heart failure such as maximum oxygen consumption (VO2max), six minute walk distance (6MWD) and even, to a lesser extent, health related quality of life (HRQOL).[vii]  Figure 1 depicts the simple graphical causal models that the clinical research (randomized controlled trials) has investigated as part of an evidence-based practice empirical approach to understanding the relationship between interventions and outcomes (made with DAGitty).[viii] Even when assuming a particular patient would be included (based on meeting inclusion criteria and not meeting exclusion criteria for these studies), there are several very poignant physiological mechanisms when considering the use of electrical stimulation in practice that impact the probability of the intended outcome.

No one assumes that electrical simulation directly improves health related quality of life, or six minute walk distance, or even oxygen consumption. There are physiological and even psycho-physiological, behavioral and cultural mechanisms involved in the connection between electrical stimulation and these three outcomes, and these three outcomes are very likely connected to one another.  Figure 2 is one possible graphical causal model that fills in some of the possible mechanisms.2

The clinician is working with many competing hypotheses, and is “faced with all sources of variation at the same time and must deal constantly with the full burden of the complex system.”Let’s take a closer look at the many causal assumptions of the model in Figure 2. As a graphical causal model, the first thing to realize is that all edges in the graph with an arrow encode the knowledge that one variable causes the other (and the lack of an arrow implies no causal connection). This does not have to be a definite causal connection; in fact, most of them are probabilistic and can be stated as conditional probabilities. For example, this graph encodes the knowledge that ES acts as a cause on muscle function. Which can be stated as a conditional probability: the probability of improved muscle function given ES is greater than the probability of improved muscle function given no ES. The model in Figure 2 also includes additional interventions since ES would rarely be considered the only intervention available. In fact, the patient in the condition where ES is the only intervention available probably would not be in the inferred population (for example, there are no studies on the use of electrical stimulation with patients with chronic heart failure that were not ambulatory or were unable to do other forms of exercise). This model includes aerobic training (AT), resistance training (RT), ES, adaptive equipment (AE), inspiratory muscle training (IMT), all as possible interventions for improving 6MWD, VO2max, and HRQOL in people with HF.

The characterization of the intervention (exposure, cause) in this model is discrete (yes/no), but it does not need to be discrete; it can be continuous and can include any of the considered important parameterizations of ES. Also, the effect muscle function is discrete but can be continuous and include any of the important parameterizations of muscle function. In other words, the causal model can encode as much of the ontological information about reality (its variables) as the user would have it encode. As attributed to George Box, “All models are wrong, some models are useful.”

The mathematical and logical implications of the causal model go on to include the multivariable considerations such as the chain rule of conditional probabilities (VO2max), identification of confounders (balance as a confounder), blocking variables (anaerobic threshold), and adjustment sets (6MWD).

My point here is to answer the question—“Isn’t this the same as concept map?” No. Causal models depicted as graphs are based on graph theory and adhere to a set of logical and mathematical rules that allow logical and mathematical implications to be proposed and tested. But they do share concepts. We could say that all causal models are concept maps, but not all concept maps are causal models; therefore, they are not equivalent since equivalence implies bidirectional implication.

Concept maps of physiological mechanisms are great teaching and learning tools. The next step, to use physiology as an interpretive lens for the clinician’s dilemma, is to consider encoding them as graphical causal models. In fact, this is the logical step from the core physiology concept of causation.

Another consideration for the clinician is that no single study has confirmed these causal connections all at the same time. But, a corpus of studies has tested these causal associations. The model in Figure 2 represents knowledge for practice; practicing based on this model is an example of using physiology to help in reasoning through whether to use an intervention with a particular patient. For example, if a particular patient has a problem with balance unrelated to muscle function then the probability of ES improving their 6MWD and even HRQOL is likely lower than in a particular patient without such a problem. And if a particular patient’s problem is mostly from the direct reduction in cardiac output associated with chronic heart failure, then a change in muscle function from ES may have less of an impact than in a particular patient with stronger contribution of muscle function in their reduction in oxygen consumption. And if the particular patient has low inspiratory muscle strength (IS), then IMT may be the best approach to start with – despite the fact that there are no clinical trials that investigate the intricacies of when to use ES vs. IMT. Thus, causal models of physiological mechanisms are an interpretive lens for applying clinical research in clinical practice. And this involves reasoning through causal models of complex physiological mechanisms.

The question is not whether this is already being done in practice (because it is, though usually implicitly not explicitly). The question is how are we teaching future clinicians and students? Is there a way to teach it that expedites the transition from classroom reasoning to clinic reasoning? Effective teaching often includes pulling back the curtain and explicitly revealing that which has been implicitly occurring. When a student asks me how their Clinical Instructor was able to come to some particular conclusion, the answer is usually that they were implicitly reasoning through some assumed causal model. Causal models can explicitly bridge the gap between learning physiology from a standard medical physiology textbook, doing a case study in a clinical course, and seeing a patient in a clinic.

The next step in my journey of using causal models for clinical pedagogy is the relationship between narratives, stories and causal models. If causal models are a more complex depiction of the reality underlying evidence-based causal claims; then narratives and stories are a more complex depiction of the reality underlying causal models. If you’re interested in discussing this further, please let me know.

Thank you to all of my colleagues (which includes all of the DPT students) at Plymouth State University for trusting this vision enough to take a chance on a new DPT program; and thank you to my closest dialogue partners in this and my upcoming work in the causal structure of narratives, Drs. Kelly Legacy and Stephanie Sprout (Clinical Assistant Professors of Physical Therapy); and Dr. Elliott Gruner (Professor of English/Director of Composition).

[i] Collins SM. Complex System Approaches: Could They Enhance the Relevance of Clinical Research? Physical Therapy. 2005;85(12):1393-1394. doi:10.1093/ptj/85.12.1393

[ii] Collins SM. Synthesis: Causal Models, Causal Knowledge. Cardiopulmonary Physical Therapy Journal. 2018;29(3):134-143.

[iii] Howick JH. The Philosophy of Evidence-Based Medicine. John Wiley & Sons; 2011.

[iv] CauseHealth Blog https://causehealthblog.org/ (Accessed 10/15/2021)

[v] Anjum RL, Copeland S, Rocca E. Rethinking Causality, Complexity and Evidence for the Unique Patient: A CauseHealth Resource for Healthcare Professionals and the Clinical Encounter. Springer Nature; 2020.

[vi] American Physical Therapy Association https://www.apta.org/your-career/careers-in-physical-therapy/becoming-a-pt (Accessed 10/15/2021)

[vii] Shoemaker MJ, Dias KJ, Lefebvre KM, Heick JD, Collins SM. Physical Therapist Clinical Practice Guideline for the Management of Individuals With Heart Failure. Physical Therapy. 2020;100(1):14-43. doi:10.1093/ptj/pzz127

[viii] Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GT. Robust causal inference using directed acyclic graphs: The R package “dagitty.” International Journal of Epidemiology. 2016;45(6):1887-1894. doi:10.1093/ije/dyw341

Figure Legends

Figure 1: Simplified Causal Associations Tested in Clinical Trials (Abbreviations: ES, electrical stimulation; 6MWD, 6-minute walk distance; VO2_max, maximum oxygen consumption; HRQOL, health-related quality of life)

Figure 2: Complex Causal Associations Necessary for Clinical Practice (Abbreviations: AT, aerobic training; (a-v)O2, arteriovenous oxygen difference; IMT, inspiratory muscle training; IMS, inspiratory muscle strength; PaO2, partial pressure of oxygen in the arterial blood; RT, resistance training; Ve, minute ventilation; VQ matching, ventilation perfusion matching )

Sean Collins is a Professor of Physical Therapy at Plymouth State University and was the founding chair and director of the Doctor of Physical Therapy Program.  He earned an ScD in Ergonomics (work physiology focus) and epidemiology at the University of Massachusetts Lowell. He teaches a three-course series on Clinical Inquiry, as well as a course in Clinical Physiology and a course on physical therapy practice with patients that have complex medical and cardiopulmonary conditions. From 2015 through 2021 he served as the Editor of the Cardiopulmonary Physical Therapy Journal, was co-leader and co-author of the American Physical Therapy Association (APTA) Heart Failure Clinical Practice Guideline from 2014-2019, and in 2018 was honored with the Linda Crane Lecture Award by the Cardiovascular and Pulmonary Section of the APTA for his work on using causal models as tools to teach and to join clinical research and practice.

 

Pandemic, Physiology, Physical Therapy, Psychology, Purpose, Professor Fink, Practical Exams, and Proficiency!

Pandemic

To say that the COVID-19 pandemic has affected education would be an understatement.  Physical distancing measures that were introduced across the world to reduce community spread of SARS-CoV-2 (the COVID-19 pathogen), necessitated a cessation or reduction of in-person instruction, and the introduction of what has come to be known as “emergency remote education”(1, 2).  Emergency remote education or teaching (ERE or ERT) is different from remote or online education in that, it is not planned and optional, but rather, a response to an educational emergency (3).

Physiology for Physical Therapy Students

Against the backdrop of the COVID-19 pandemic, as I was trying to keep my primary research program on regenerative and rehabilitative muscle biology moving forward (4), engaging with the scientific community on repurposing FDA-approved drugs for COVID-19 (5, 6), and working on the Biomaterials, Pharmacology, and Muscle Biology courses that I teach each year; I was requested to take on a new responsibility.  The new responsibility was to serve as the course master and sole instructor for a 3-credit, 15-week course on Physiology and Pathophysiology for Professional Year One (PY1) Doctor of Physical Therapy (DPT) students.  I had foreseen taking on this responsibility a couple of years down the road, but COVID-19 contingencies required that I start teaching the course in January 2021.  I had always believed that within the Physical Therapy curriculum, Anatomy, Physiology and Neuroscience, were courses that could only be taught by people who were specialists – i.e. you had to be born for it and should have received a level of training needed to become a master of Shaolin Kung Fu (7).  With less than a year to prepare for my Physiology and Pathophysiology course, and with the acknowledgment that I was not trained in the martial art of Physiology instruction, I looked for inspiration.  The Peter Parker Principle from Spider-Man came to mind – “With great power comes great responsibility” (8).  Unfortunately, I realized that there was no corollary that said “With great responsibility comes great power”.  Self-doubt, anxious thoughts, and frank fear of failure abounded.

Psychology and Purpose

Call it coincidence, grace, or anything in between; at the time when I started preparing to teach Physiology and Pathophysiology, I had been working with a psychological counselor who was helping me process my grief following my father’s passing a couple of months before COVID-19 was declared a pandemic.  In addition to processing my grief, through counseling, I had also started learning more about myself and how to process anxious thoughts, such as the fear of failing in my new superhero role of teaching Physiology and Pathophysiology to Physical Therapy students.  Learning how to effectively use my “wise mind” (an optimal intersection of the “emotional mind” and “reasonable mind”), writing out the possible “worst outcomes” and “likely outcomes”, practicing “self-compassion”, increasing distress tolerance, working on emotional regulation, and most importantly embracing “radical acceptance” of the things I cannot change, helped me work through the anxiety induced by my new teaching responsibility.  This does not mean that my anxiety vanished, it just means that I was more aware of it, acknowledged it, and worked my way through it to get to what I was supposed to do.  I also learned through counseling that purpose drives motivation.  I realized that my anxiety over teaching Physiology was related to the value I placed on the teaching and learning of Physiology in Physical Therapy and other health professions.  Being a Physical Therapist and Physiologist who is committed to promoting movement-centered healthcare, I found motivation in the prospect of training Physical Therapists to serve as health educators with the ultimate goal of improving human movement.  Therefore, the idea of developing a course that would give my students a solid foundation in the Physiology and Pathophysiology of Human Movement began to excite me more than intimidate me.  The aspects of my personality that inspired me to publish a paper on the possible pathophysiological mechanisms underlying COVID-19 complications (5), stirred in me the passion to train the next generation of Physical Therapists, who through their sound knowledge of Physiology would likely go on to transform healthcare and promote healthier societies through movement (9).

The point about purpose being a positive driver of motivation, mentioned above, has been known to educational psychologists for a while.  When students see that the purpose of learning something is bigger than themselves, they are more motivated to learn (10).  So, rather than setting up my course as a generic medical physiology course, I decided to set it up as a Physiology and Pathophysiology of Human Movement course that is customized for human movement experts in training – i.e. Student Physical Therapists.  I set my course up in four modules – Moving the Body (focused on muscle and nerve), Moving Materials Around the Body (focused on the cardiovascular and pulmonary systems), Fueling Movement (focused on cellular respiration and the ATP story), and Decoding the Genetics of Human Movement (focused on how genetic information is transcribed and translated into proteins that make movement possible).

Professor Fink

For those of you who have not heard of Professor Steven Fink, you should look him up (11).  A Ph.D.-trained Physiologist and former member of the American Physiological Society (APS), Professor Fink has posted over 200 original educational videos on YouTube, covering Anatomy, Physiology, Pharmacology, and other subjects.  I had found his YouTube videos several years ago, while looking for good resources for my Pharmacology course, and never stopped watching them ever since then.  I would watch his videos while exercising, and listen to them during my commute (and sometimes even during my ablutions!).  There were two topics in Physiology that scared me the most – cellular respiration and genetics.  I had learned these topics just well enough to get me through high school, four years of Physical Therapy School, one year of Post-Professional Physical Therapy training, six years of Ph.D. training in a Physiology laboratory, six years as a Postdoctoral Fellow (also in a Physiology laboratory), and several years as an Assistant Professor in Physical Therapy.  However, despite the “few years” I had spent in academia and my 10+ years being a member of the APS, I never felt that I had gained mastery over the basic physiology of cellular respiration and genetics.  So, when I started preparing to teach Physiology, I decided to up my number of views on Professor Fink’s videos on cellular respiration and genetics.  Furthermore, I reached out to Professor Fink and asked him if he would serve as a teaching mentor for my new course and he very kindly agreed.  I am fortunate to be a teacher-scholar in a department and university, which places a high priority on teaching, and supports training in pedagogy and the scholarship of teaching and learning through consultation with experts within and outside the university.  As part of our mentoring relationship, Professor Fink gave feedback on my syllabus, course content, testing materials and pedagogical strategies.  He also introduced me to “Principles of Anatomy and Physiology, 16th Edition, by Gerard J. Tortora, Bryan H. Derrickson, which proved to be a useful resource (ISBN: 978-1-119-66268-6).  Through all these interactions, Professor Fink demonstrated that a person can be a “celebrity professor” and still be a kind and gentle human being.  Having him as my teaching mentor played a significant role in building my confidence as a physiology teacher.  Research shows that academic mentoring is related to favorable outcomes in various domains, which include behavior, attitudes, health, interpersonal relations, motivation, and career (12).

Practical Exams

As the COVID-19 pandemic rolled on through the Winter, Spring/Summer, and Fall semesters of 2020, it became certain that I would have to teach my Physiology and Pathophysiology course in a virtual environment come January 2021.  I had to figure out a way to make sure that the learning objectives of my course would be met despite the challenges posed by teaching and testing in a virtual environment.  Therefore, I came up with the idea of virtual practical exams for each of the four modules in my course.  These practical exams would be set up as a mock discussion between a Physical Therapist and a referring health professional regarding a patient who had been referred for Physical Therapy.  Students would take the exam individually.  On entering the virtual exam room, the student would introduce themselves as a Student Physical Therapist and then request me (the referring healthcare professional) to provide relevant details regarding the patient, in order to customize assessment, goal setting and treatment for the patient.  With the patient’s condition as the backdrop, I would ask the student questions from the course content that was relevant to the patient’s condition.  A clear and precise rubric for the exam would be provided to the students in keeping with the principles of transparency in learning and teaching (13).

Proficiency

As we went through the course, the virtual practical exams proved to be an opportunity to provide individualized attention and both summative and formative feedback to students (14).  As a teacher, it was rewarding to see my Physical Therapy students talk about cellular respiration and gene expression with more confidence and clarity than I could do during my prior 12+ years as a Ph.D.-trained Physiologist.  It was clear to me that my students had found a sense of purpose in the course content that was bigger than themselves – they believed that what they were learning would translate to better care for their patients and would ultimately help create healthier societies through movement.

In the qualitative feedback received through a formal student evaluation of teaching (SET) survey, one student wrote “Absolutely exceptional professor.  Please continue to do what you are doing for future cohorts.  You must keep the verbal practical examinations for this class.  Testing one’s ability to verbally explain how the body functions and how it is dysfunctional is the perfect way to assess if true learning has occurred.”  Sharing similar sentiments, another student wrote “I really enjoyed the format of this class. The virtual exams in this class forced us to really understand the content in a way that we can talk about it, rather than learning to answer a MC question. I hope future students are able to learn as much as I did from this class.”

Closing Remarks

When I meet students for the first time during a course, I tell them that even though I am their teacher, I am first a student.  I let them know that in order to teach, I first need to learn the content well myself.  Pandemic pedagogy in the time of COVID-19-related emergency remote education has reinforced my belief that, the best way to learn something is to teach it.  Thanks to my Physiology and Pathophysiology of Human Movement course, I learned more about myself, about teaching and learning, and of course about cellular respiration and genetics.  Do I now consider myself a master of Physiology instruction?  No!  Am I a more confident physiology teacher?  Yes!  Has writing this article made me reflect more on what worked well and what needs to be fine-tuned for the next iteration of my Physiology and Pathophysiology course?  Yes!

REFERENCES:

  1. Williamson B, Eynon R, Potter J. Pandemic politics, pedagogies and practices: digital technologies and distance education during the coronavirus emergency. Learning, Media and Technology. 2020;45(2):107-14.
  2. Bozkurt A, Jung I, Xiao J, Vladimirschi V, Schuwer R, Egorov G, et al. A global outlook to the interruption of education due to COVID-19 pandemic: Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education. 2020;15(1):1-126.
  3. Hodges C, Moore S, Lockee B, Trust T, Bond A. The difference between emergency remote teaching and online learning. Educause review. 2020;27:1-12.
  4. Begam M, Roche R, Hass JJ, Basel CA, Blackmer JM, Konja JT, et al. The effects of concentric and eccentric training in murine models of dysferlin-associated muscular dystrophy. Muscle Nerve. 2020.
  5. Roche JA, Roche R. A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. FASEB J. 2020;34(6):7265-9.
  6. Joseph R, Renuka R. AN OPEN LETTER TO THE SCIENTIFIC COMMUNITY ON THE POSSIBLE ROLE OF DYSREGULATED BRADYKININ SIGNALING IN COVID-19 RESPIRATORY COMPLICATIONS2020.
  7. Wikipedia contributors. Shaolin Kung Fu – Wikipedia, The Free Encyclopedia 2021 [Available from: https://en.wikipedia.org/w/index.php?title=Shaolin_Kung_Fu&oldid=1026594946.
  8. Wikipedia contributors. With great power comes great responsibility – Wikipedia, The Free Encyclopedia 2021 [Available from: https://en.wikipedia.org/w/index.php?title=With_great_power_comes_great_responsibility&oldid=1028753868.
  9. American Physical Therapy Association (APTA). Transforming Society – American Physical Therapy Association [Available from: https://www.apta.org/transforming-society.
  10. Yeager DS, Henderson MD, Paunesku D, Walton GM, D’Mello S, Spitzer BJ, et al. Boring but important: a self-transcendent purpose for learning fosters academic self-regulation. Journal of personality and social psychology. 2014;107(4):559.
  11. Fink S. ProfessorFink.com [Available from: https://professorfink.com/.
  12. Eby LT, Allen TD, Evans SC, Ng T, Dubois D. Does Mentoring Matter? A Multidisciplinary Meta-Analysis Comparing Mentored and Non-Mentored Individuals. J Vocat Behav. 2008;72(2):254-67.
  13. Winkelmes M. Transparency in Learning and Teaching: Faculty and students benefit directly from a shared focus on learning and teaching processes. NEA Higher Education Advocate. 2013;30(1):6-9.
  14. Alt D. Teachers’ practices in science learning environments and their use of formative and summative assessment tasks. Learning Environments Research. 2018;21(3):387-406.
Joseph A. Roche, BPT, PhD.  Associate Professor.  Physical Therapy Program.  Eugene Applebaum College of Pharmacy and Health Sciences.  

I am an Associate Professor in the Physical Therapy Program at Wayne State University, located in the heart of “Motor City”, Detroit, Michigan.  My research program is focused on developing regenerative and rehabilitative interventions for muscle loss arising from neuromuscular diseases, trauma and aging.  I have a clinical background in Physical Therapy and have received intensive doctoral and postdoctoral research training in muscle physiology/biology.

https://www.researchgate.net/profile/Joseph-Roche-2

https://scholar.google.com/citations?user=-RCFS6oAAAAJ&hl=en


Repurposing the notecard to create a concept map for blood pressure regulation

One amazing aspect of physiology is the coordinated, almost choreographed function of millions of moving parts.  The body has mastered multitasking, maintaining hundreds of parameters within narrow and optimal ranges at the same time.  This very aspect of physiology fuels our passion and enthusiasm for teaching physiology and piques the interests of students.  The networks of numerous overt and subtle interdependent mechanisms and signaling pathways between multiple organs and tissues that regulate plasma calcium or energy intake, for example, also represent major challenges to understanding and learning physiology for students.  We ask our students to combine the wisdom of two old sayings: “You can’t see the forest for the trees’, and “The devil is in the details.”  They need to understand both the bigger picture of the whole animal and the nuanced interlinking of mechanisms, and even molecules, that seamlessly and dynamically maintain different parameters within narrow ranges.  It can be frustrating and discouraging for students.  Furthermore, passing with high marks in systems physiology or anatomy-physiology II is a criterion for eligibility to apply to various health profession programs.  As educators we must acknowledge the complexity of physiology and find ways to help our students literally see and master smaller sections of the larger regulatory network so they can recreate and master the larger network.

For even the best prepared student, as well as the student who cannot take all recommended prerequisite courses for A&P-II or basic physiology, the collection of numerous parts, mechanisms, equations and connections, principles, and laws can represent an obstacle to learning.  Student comments such as, “There is so much to know.”, “It’s so complicated.”, and “Physiology is hard.” are accurate and fair, but also warrant validation.  A little bit of validation and communicating the challenges we encountered as students goes a long way in helping our students’ willingness to endure and continue to strive.  Physiology courses are not impossible, but they are difficult and might well be the most difficult courses a student takes.  I will not pretend or lie to my students.  If I were to dismiss physiology as a whole or a given concept as easy and simple, I risk my student thinking they should be learning principles effortlessly or instinctively and begin to doubt themselves and give up.  It helps to confess apprehensions you yourself felt when first learning various physiological concepts or phenomena.  As a novice physiology student, I had many moments at which I wanted to tap out.  ne major example was my introduction to the beautiful, albeit daunting display of all the electrical and mechanical events that occur in only the heart during a single cardiac cycle in just 0.8 seconds, i.e., the Wiggers diagram.  Every time I project this diagram on the screen, I give students a moment to take it in and listen for the gasps or moans.  I admit to my students that upon seeing that diagram for the first time I looked for the nearest exit and thought to myself, ‘Are you kiddin’ me?”  Students laugh nervously.  They sigh in relief when I tell them that my professor broke down the diagram one panel at a time before putting all together; his approached worked, and that is what I will do for them.  Dr. Carl Wiggers was committed to teaching physiology and developed the diagram over 100 years ago as a teaching tool for medical students (1).  The diagram is instrumental in teaching normal cardiac physiology, as well as pathophysiology of congenital valve abnormalities and septal defects.  Nevertheless, students still need help to understand the diagram.  Again, here an example of the function of just one organ, the heart, being a central element to a larger network that regulates a major parameter – blood pressure.  Learning regulation of blood pressure can be an uphill battle for many students.

Cardiovascular physiology is typically a single unit in an undergraduate physiology course, and it is often the most challenging and difficult exam of the semester.  Several years ago, when preparing to teach this section in an AP-II course I felt compelled to find ways to help students break-down and reconstruct pieces of complex regulation of blood pressure.  I considered the many high-tech digital learning resources and online videos available to our students but wondered whether those resources help or hinder students.  I was also looking for tools that would facilitate multisensory learning, which is shown to yield better memory and recall (2).  Despite all these high-tech resources, I noticed students were still avid users of notecards and were convinced they held the secret to success in AP-I and thus, must also be the key to success in AP-II or systems physiology.  I found this quite amusing, because we used notecards back when I was in college in the 80s – when there were no digital learning platforms and highlighters only came in yellow.  Students tote around stacks of hand-written, color coded notecards that grow taller as the semester progresses, but often their comprehension and ability to connect one concept or mechanism to the next does not increase with the height of the stack.  Students often memorize terms on note cards but cannot readily connect the mechanism listed on one card to that on the next card or explain the consequence of that mechanism failing.  Around this time a non-science colleague was talking to me about her successful use of concept maps with her students.  To me, concept maps look a lot like biochemical pathways or physiological network diagrams.  It dawned on me.  I did not need to reinvent the wheel or make a newer better teaching tool.  I simply needed to help my students connect The Notecards and practice arranging them to better pattern regulatory networks.  Students were already writing a term on one side of the card and a definition and other notes on the back.  Why not build on that activity and more deliberately guide students to use cards to build a concept map of the network for regulation of blood pressure which is central to cardiovascular physiology?

 

Blood pressure is a physiological endpoint regulated by a nexus of autoregulatory, neural and hormonal mechanisms and multiple organs and tissues.  Blood pressure is directly dependent on cardiac output, vascular peripheral resistance, and blood volume, but can be altered by a tiered network of numerous neural, hormonal and cellular mechanisms that directly or indirectly modulate any one of the three primary determinants.  The expansive network, e.g., numerous organs and tissues, and multiple and intersecting effects of different mechanisms within the network, e.g., the renin-angiotensin-aldosterone system modulates both vascular resistance and blood volume) make it difficult to see the network in its entirety.  Nevertheless, students must understand and master the entire network, the individual mechanisms, and the nuances.  Thus, in preparing for the cardiovascular section and planning how to implement the concept map, I made a list of all components that comprised the regulatory network for blood pressure with the first terms being blood pressure, cardiac output, vascular peripheral resistance, and blood volume.  At this point in the semester, the students had learned the basics of cellular respiration and metabolism.  I began the very first cardiovascular lecture with an illustration of the human circulatory system projected on the screen as I worked at the white board.  In the center of the board, I drew a cell with a single mitochondrion and three simple arrows to indicate the use of glucose and oxygen to convert ADP to ATP.  Guided through a series of questions and answers, students collectively explained that the heart must pump blood through arteries and veins to deliver oxygen and glucose and fat needed to generate ATP, as well as to remove carbon dioxide and other wastes.  Using the illustration of the human circulatory system, I then carefully explained the human circulatory system is a closed system comprised of the blood (the medium carrying oxygen, nutrients, CO2 and other wastes), the heart (the pump), and the arterial and venous vessels (the conduits in which blood flows from the heart to the tissues where oxygen and nutrients are delivered and CO2 and other wastes are removed).  If adequate pressure is sustained, blood continues to flow through veins back through the heart and to the lungs to unload CO2 and reoxygenate blood and then back to the heart to make another round.  I further explained blood pressure must be regulated to ensure blood flow to tissues optimally matches both metabolic need for oxygen and nutrients and production of CO2.  On the board, I then wrote “Blood Pressure (BP)” and stated that because this is a closed circulatory system, blood pressure changes in direct response and proportion to cardiac output or volume of blood pumped out of heart into systemic vessels in one minute, the total volume of blood in the system, and the vascular resistance that opposes flow and will be predominantly dependent vasoconstriction and vasodilation.  I wrote the terms “Cardiac Output (CO), Blood Volume (BV), and Vascular or Total Peripheral Resistance (VPR) one at a time underneath BP, each with an arrow pointing directly to BP.  I stated that any factor that changes cardiac output, blood volume, or vascular resistance can indirectly alter blood pressure.  For example, a change in heart rate can change cardiac output and thus, alter blood pressure.  I then distributed the series of hand drawn diagrams shown below.  As I pass out the sheets and display on slides, I tell them they will be learning about all these various factors and mechanisms and will be able to recreate the network and use it as a study aid.

To get students started, I handed out the list of cardiovascular terms, hormones, equations, etc. and several small pieces of paper, e.g., 2”x2” plain paper squares, to each student.  [I found free clean scratch paper in various colors in the computer lab and copy room recycling bins.]  Students can also take their trusty 3”x5” cards and cut each in half or even quarters or use standard-size Post-It® notes.  I explained that as I introduce a term or mechanism they will write the term or conventional abbreviation on one side of the paper and the definition and pertinent information on the other in pencil for easier editing.  [I emphasized the importance of using conventional abbreviations.]  For example, Blood Pressure would be written on one side of the paper and ‘pressure exerted against vessel wall’ on other, along with ‘mm Hg’, and later the equation for mean arterial pressure (MAP) can be added.  I had my own set of terms written on Post-It® notes and arranged BP, CO, BV, VPR and other terms on a white board so they could see the mapping of functional relationships take shape.  As new concepts were taught and learned, e.g., CO = Stroke Volume (SV) x Heart Rate (HR), the respective terms were added to the concept map to reflect the physiological relationships between and among the new mechanism to the existing mechanisms or phenomena already in the concept map.  In that case, on the back of the CO paper or card one might write “volume of blood ejected from ventricle in one minute into aorta”, “CO = HR x SV“, “If HR is too fast, CO will decrease!”, “Right CO must equal Left CO!”  I explained students can lay out their terms on a table, floor, their bed, etc.  I reminded students how important it was to say the terms out loud as they wrote the terms in their best penmanship.  This helps students slow down and deliberately think about what they are writing and refer to their lecture notes or textbook (be it an actual book or e-book).  I had given students copies of the complete concept map of all terms but did not dictate exactly what they should write on the back of the cards.  The small size of the paper or card, almost forces students to annotate explanations; this helped them better encapsulate their ideas.  I was open to checking their annotation and reflecting back to students the apparent meaning of their word choice.  While studying alone or with study partners, students were encouraged to audibly define terms and relationships among mechanisms as they arranged their maps in the correct configuration.  They were encouraged to ‘shuffle the deck’ and recreate subsections of the network to understand mechanistic connections at different points in the network.  Because I had given them the diagrams or concept maps for cardiac output, blood volume, and vascular resistance, students were able to check their work and conduct formative assessments alone or in groups in an accurate and supportive manner.

Students expressed that manually arranging components allowed them to literally see functional and consequential relationships among different mechanisms.  The activity complemented and re-enforced quizzes and formative assessments already in use.  It’s not a perfect tool and certainly has room for improvement.  There are quite a few pieces of paper, but students found ways to keep the pieces together, e.g., binder clips, Zip-lock bags, rubber bands.  Nonetheless, it is simple, portable, and expandable concept map students can use to learn cardiovascular physiology and represents a tool that can be applied to teach and learn other regulatory networks, such as those of the digestion-reabsorption-secretion in the GI tract and calcium homeostasis.

  1. Wiggers C. Circulation in Health and Disease. Philadelphia, PA: Lea & Febiger, 1915.
  2. http://learnthroughexperience.org/blog/power-of-context-learning-through-senses/
Alice Villalobos, Ph.D., is an assistant professor in the Department of Medical Education at the Texas Tech Health Sciences Center in Lubbock, Texas.  She received her B.S.in biology from Loyola Marymount University and her Ph.D. in comparative physiology from the University of Arizona-College of Medicine.  Her research interests are the comparative aspects of the physiology and stress biology of organic solute transport by choroid plexus.  She has taught undergraduate and graduate courses in integrative systems physiology, nutrition and toxicology.  However, her most enjoyable teaching experience has been teaching first-graders about the heart and lungs!  Her educational interests focus on tools to enhance learning of challenging concepts in physiology for students at all levels.  She has been actively involved in social and educational programs to recruit and retain first-generation college students and underrepresented minorities in STEM.

 

Protecting yourself means more than a mask; should classes be moved outside?
Mari K. Hopper, PhD
Associate Dean for Biomedical Science
Sam Houston State University College of Osteopathic Medicine

Disruption sparks creativity and innovation. For example, in hopes of curbing viral spread by moving classroom instruction outdoors, one Texas University recently purchased “circus tents” to use as temporary outdoor classrooms.

Although circus tents may be a creative solution… solving one problem may inadvertently create another. Moving events outdoors may be effective in reducing viral spread, but it also increases the skin’s exposure to harmful ultraviolet (UV) radiation from the sun. The skin, our body’s largest organ by weight, is vulnerable to injury. For the skin to remain effective in its role of protecting us from pollutants, microbes, and excessive fluid loss – we must protect it.

It is well known that UV radiation, including UVA and UVB, has deleterious effects including sunburn, premature wrinkling and age spots, and most importantly an increased risk of developing skin cancer.

Although most of the solar radiation passing through the earth’s atmosphere is UVA, both UVA and UVB cause damage. This damage includes disruption of DNA resulting in the formation of dimers and generation of a DNA repair response. This response may include apoptosis of cells and the release of a number of inflammatory markers such as prostaglandins, histamine, reactive oxygen species, and bradykinin. This classic inflammatory response promotes vasodilation, edema, and the red, hot, and painful condition we refer to as “sun burn.”1,2

Prevention of sunburn is relatively easy and inexpensive. Best practice is to apply broad spectrum sunscreen (blocks both UVA and UVB) 30 minutes before exposure, and reapply every 90 minutes. Most dermatologists recommend using SPF (sun protection factor) of at least 30. Generally speaking, an SPF of 30 will prevent redness for approximately 30 times longer than without the sunscreen. An important point is that the sunscreen must be reapplied to maintain its protection.

There are two basic formulations for sunscreen:  chemical and physical. Chemical formulations are designed to be easier to rub into the skin. Chemical sunscreens act similar to a sponge as they “absorb” UV radiation and initiate a chemical reaction which transforms energy from UV rays into heat. Heat generated is then released from the skin.3  This type of sunscreen product typically contains one or more of the following active ingredient organic compounds: oxybenzone, avobenzone, octisalate, octocrylene, homosalate, and octinoxate. Physical sunscreens work by acting as a shield. This type of sunscreen sits on the surface of the skin and deflects the UV rays. Active ingredients zinc oxide and/or titanium dioxide act in this way.4  It’s interesting to note that some sunscreens include an expiration date – and others do not. It is reassuring that the FDA requires sunscreen to retain their original “strength” for three or more years.

In addition to sunscreen, clothing is effective in blocking UV skin exposure. Darker fabrics with denser weaves are effective, and so too are today’s specially designed fabrics. These special fabrics are tested in the laboratory to determine the ultraviolet protection factor (UPF) which is similar to SPF for sunscreen.  A fabric must carry a UPF rating of at least 30 to qualify for the Skin Cancer Foundation’s Seal of Recommendation. A UPF of 50 allows just 1/50th of the UV rays to penetrate (effectively blocking 98%). Some articles of clothing are produced with a finish that will wash out over time. Other fabrics have inherent properties that block UV rays and remain relatively unchanged due to washing (some loss of protection over time is unavoidable) – be careful to read the clothing label.

Some individuals prefer relying on protective clothing instead of sunscreen due to concerns about vitamin D synthesis. Vitamin D activation in the body includes an important chemical conversion stimulated by UV exposure in the skin – and there is concern that sunscreen interferes with this conversion. However, several studies, including a recent review by Neale, et al., concluded that use of sunscreen in natural conditions is NOT associated with vitamin D deficiency.5,6 The authors did go on to note that at the time of publication, they could not find trials testing the high SPF sunscreens that are widely available today (current products available for purchase include SPFs over 100).

Additional concern about use of sunscreens includes systemic absorption of potentially toxic chemicals found in sunscreen. A recent randomized clinical trial conducted by Matta and colleagues investigated the systemic absorption and pharmacokinetics of six active sunscreen ingredients under single and maximal use conditions. Seven Product formulations included lotion, aerosol spray, non-aerosol spray, and pump spray. Their study found that in response to repeat application over 75% of the body surface area, all 6 of the tested active ingredients were absorbed systemically. In this study, plasma concentrations surpassed the current FDA threshold for potentially waiving some of the additional safety studies for sunscreen. The authors went on to note that the data is difficult to translate to common use and further studies are needed. It is important to note that the authors also conclude that due to associated risk for development of skin cancer, we should continue to use sunscreen.

Yet another concern for using sunscreen is the potential for harmful environmental and human health impact. Sunscreen products that include organic UV filters have been implicated in adverse reactions in coral and fish, allergic reactions, and possible endocrine disruption.8,9 In some areas, specific sunscreen products are now being banned (for example, beginning January of 2021, Hawaii will ban products that include oxybenzone and octinoxate). As there are alternatives to the use of various organic compounds, there is a need to continue to monitor and weigh the benefit verses the potential negative effects.

Although the use of sunscreen is being questioned, there is the potential for a decline in use to be associated with an increase in skin cancer. Skin cancer, although on the decline in recent years, is the most common type of cancer in the U.S. It is estimated that more than 3 million people in the United States are diagnosed with skin cancers each year (cancer.net). Although this is fewer than the current number of Americans diagnosed with COVID-19 (Centers for Disease Control and Prevention, July 20, 2020) – changes in human behavior during the pandemic (spending more time outdoors) may inadvertently result in an increase in the number of skin cancer cases in future years.  

While we responsibly counter the impact of COVID-19 by wearing masks, socially distancing, and congregating outdoors – we must also continue to protect ourselves from damaging effects of the sun. As physiologists, we are called upon to continue to investigate the physiological impacts of various sunscreen delivery modes (lotion, aerosol, non-aerosol spray, and pumps) and SPF formulations. We are also challenged to investigate inadvertent and potentially negative impacts of sunscreen including altered Vitamin D metabolism, systemic absorption of organic chemicals, and potentially adverse environmental and health outcomes.

Again, solving one problem may create another challenge – the work of a physiologist is never done!

Stay safe friends!

Mari

References:

  1. Lopes DM, McMahon SB. Ultraviolet radiation on the skin: a painful experience? CNS neuroscience & therapeutics. 2016;22(2):118-126.
  2. Dawes JM, Calvo M, Perkins JR, et al. CXCL5 mediates UVB irradiation–induced pain. Science translational medicine. 2011;3(90):90ra60-90ra60.
  3. Kimbrough DR. The photochemistry of sunscreens. Journal of chemical education. 1997;74(1):51.
  4. Tsuzuki T, Nearn M, Trotter G. Substantially visibly transparent topical physical sunscreen formulation. In: Google Patents; 2003.
  5. Passeron T, Bouillon R, Callender V, et al. Sunscreen photoprotection and vitamin D status. British Journal of Dermatology. 2019;181(5):916-931.
  6. Neale RE, Khan SR, Lucas RM, Waterhouse M, Whiteman DC, Olsen CM. The effect of sunscreen on vitamin D: a review. British Journal of Dermatology. 2019;181(5):907-915.
  7. Matta MK, Florian J, Zusterzeel R, et al. Effect of sunscreen application on plasma concentration of sunscreen active ingredients: a randomized clinical trial. Jama. 2020;323(3):256-267.
  8. Schneider SL, Lim HW. Review of environmental effects of oxybenzone and other sunscreen active ingredients. Journal of the American Academy of Dermatology. 2019;80(1):266-271.
  9. DiNardo JC, Downs CA. Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone‐3. Journal of cosmetic dermatology. 2018;17(1):15-19.

    All images from:
    Royalty Free Stock Pictures – Public Domain Images
    www.dreamstime.com/

Prior to accepting the Dean’s positon at Sam Houston State University, Dr Hopper taught physiology and served as the Director of Student Research and Scholarly Work at Indiana University School of Medicine (IUSM). Dr Hopper earned tenure at IUSM and was twice awarded the Trustees Teaching Award. Based on her experience in developing curriculum, addressing accreditation and teaching and mentoring of medical students, she was selected to help build a new program of Osteopathic Medicine at SHSU. Active in a number of professional organizations, Dr. Hopper is past chair of the Chapter Advisory Council Chair for the American Physiological Society, the HAPS Conference Site Selection Committee, and Past-President of the Indiana Physiological Society.

Backward planning of lab course to enhance students’ critical thinking
Zhiyong Cheng, PhD
Food Science and Human Nutrition Department
The University of Florida

Development of critical thinking and problem-solving skills hallmarks effective teaching and learning [1-2]. Physiology serves as a fundamental subject for students in various majors, particularly for bioscience and pre-professional students [1-8]. Whether they plan on careers in science or healthcare, critical thinking and problem-solving skills will be keys to their success [1-8].

Backwards course design is increasingly employed in higher education. To effectively accomplish specific learning goals, instructions are to begin course development with setting learning objectives, then backwardly create assessment methods, and lastly design and deliver teaching and learning activities pertaining to the learning objectives and assessment methods. In terms of development of critical thinking and problem-solving skills, a lab course constitutes an excellent option to provide opportunities for instructors and students to explore innovative paths to their desired destinations, i.e., to accomplish specific learning goals.

In a traditional “cookbook” lab setting, detailed procedures are provided for the students to follow like cooking with a recipe. Students are usually told what to do step-by-step and what to expect at the end of the experiment. As such, finishing a procedure might become the expected goal of a lab course to the students who passively followed the “cookbook”, and the opportunity for developing critical thinking skills is limited. In a backwards design of a lab course; however, the instructor may engage the students in a series of active learning/critical thinking activities, including literature research, hypothesis formulation, study design, experimental planning, hands-on skill training, and project execution. Practically, the instructor may provide a well-defined context and questions to address. Students are asked to delve into the literature, map existing connections and identify missing links for their project to bridge. With the instructor’s guidance, students work together in groups on hypothesis development and study design. In this scenario, students’ focus is no longer on finishing a procedure but on a whole picture with intensive synthesis of information and critical thinking (i.e., projecting from generic context to literature search and evaluation, development of hypothesis and research strategy, and testing the hypothesis by doing experiments).

An example is this lab on the physiology of fasting-feeding transitions. The transition from fasting to feeding state is associated with increased blood glucose concentration. Students are informed of the potential contributors to elevated blood glucose, i.e., dietary carbohydrates, glycogen breakdown (glycogenolysis), and de novo glucose production (gluconeogenesis) in the liver. Based on the context information, students are asked to formulate a hypothesis on whether and how hepatic gluconeogenesis contributes to postprandial blood glucose levels. The hypothesis must be supported by evidence-based rationales and will be tested by experiments proposed by students with the instructor’s guidance. Development of the hypothesis and rationales as well as study design requires students to do intensive information extraction and processing, thereby building critical thinking and problem-solving skills. Students also need to make sound judgments and right decisions for their research plans to be feasible. For instance, most students tend to propose to employ the hyper-insulinemic-euglycemic clamp because the literature ranks it as a “gold standard” method to directly measure hepatic gluconeogenesis. However, the equipment is expensive and not readily accessible, and students have to find alternative approaches to address these questions. With the instructor’s guidance, students adjust their approaches and adopt more accessible techniques like qPCR (quantitative polymerase chain reaction) and Western blotting to analyze key gluconeogenic regulators or enzymes. Engaging students in the evaluation of research methods and selection helps them navigate the problem-solving procedure, increasing their motivation (or eagerness) and dedication to learning new techniques and testing their hypotheses. Whether their hypotheses are validated or disproved by the results they acquire in the end, they become skillful in thinking critically and problem solving in addition to hands-on experience in qPCR and Western blotting.

Evidently, students can benefit from backwards planning in different ways because it engages them in problem-based, inquiry-based, and collaborative learning — all targeted to build student problem solving skills [1-8]. For a typical lab course with pre-lab lectures; however, there is only 3-6 hours to plan activities. As such, time and resources could be the top challenges to implement backwards planning in a lab course. To address this, the following strategies will be of great value: (i) implementing a flipped classroom model to promote students’ pre- and after-class learning activities, (ii) delivering lectures in the lab setting (other than in a traditional classroom), where, with all the lab resources accessible, the instructor and students have more flexibility to plan activities, and (iii) offering “boot camp” sessions in the summer, when students have less pressure from other classes and more time to concentrate on the lab training of critical thinking and problem solving skills. However, I believe that this is a worthwhile investment for training and developing next-generation professionals and leaders.

References and further reading

[1] Abraham RR, Upadhya S, Torke S, Ramnarayan K. Clinically oriented physiology teaching: strategy for developing critical-thinking skills in undergraduate medical students. Adv Physiol Educ. 2004 Dec;28(1-4):102-4.

[2] Brahler CJ, Quitadamo IJ, Johnson EC. Student critical thinking is enhanced by developing exercise prescriptions using online learning modules. Adv Physiol Educ. 2002 Dec;26(1-4):210-21.

[3] McNeal AP, Mierson S. Teaching critical thinking skills in physiology. Am J Physiol. 1999 Dec;277(6 Pt 2):S268-9.

[4] Hayes MM, Chatterjee S, Schwartzstein RM. Critical Thinking in Critical Care: Five Strategies to Improve Teaching and Learning in the Intensive Care Unit. Ann Am Thorac Soc. 2017 Apr;14(4):569-575.

[5] Nguyen K, Ben Khallouq B, Schuster A, Beevers C, Dil N, Kay D, Kibble JD, Harris DM. Developing a tool for observing group critical thinking skills in first-year medical students: a pilot study using physiology-based, high-fidelity patient simulations. Adv Physiol Educ. 2017 Dec 1;41(4):604-611.

[6] Bruce RM. The control of ventilation during exercise: a lesson in critical thinking. Adv Physiol Educ. 2017 Dec 1;41(4):539-547.

[7] Greenwald RR, Quitadamo IJ. A Mind of Their Own: Using Inquiry-based Teaching to Build Critical Thinking Skills and Intellectual Engagement in an Undergraduate Neuroanatomy Course. J Undergrad Neurosci Educ. 2014 Mar 15;12(2):A100-6.

[8] Peters MW, Smith MF, Smith GW. Use of critical interactive thinking exercises in teaching reproductive physiology to undergraduate students. J Anim Sci. 2002 Mar;80(3):862-5.

Dr. Cheng received his PhD in Analytical Biochemistry from Peking University, after which he conducted postdoctoral research at the University of Michigan (Ann Arbor) and Harvard Medical School. Dr. Cheng is now an Assistant Professor of Nutritional Science at the University of Florida. He has taught several undergraduate- and graduate-level courses (lectures and lab) in human nutrition and metabolism (including metabolic physiology). As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively developing and implementing new pedagogical approaches to build students’ critical thinking and problem-solving skills.