Category Archives: Medical Physiology

Protecting yourself means more than a mask; should classes be moved outside?
Mari K. Hopper, PhD
Associate Dean for Biomedical Science
Sam Houston State University College of Osteopathic Medicine

Disruption sparks creativity and innovation. For example, in hopes of curbing viral spread by moving classroom instruction outdoors, one Texas University recently purchased “circus tents” to use as temporary outdoor classrooms.

Although circus tents may be a creative solution… solving one problem may inadvertently create another. Moving events outdoors may be effective in reducing viral spread, but it also increases the skin’s exposure to harmful ultraviolet (UV) radiation from the sun. The skin, our body’s largest organ by weight, is vulnerable to injury. For the skin to remain effective in its role of protecting us from pollutants, microbes, and excessive fluid loss – we must protect it.

It is well known that UV radiation, including UVA and UVB, has deleterious effects including sunburn, premature wrinkling and age spots, and most importantly an increased risk of developing skin cancer.

Although most of the solar radiation passing through the earth’s atmosphere is UVA, both UVA and UVB cause damage. This damage includes disruption of DNA resulting in the formation of dimers and generation of a DNA repair response. This response may include apoptosis of cells and the release of a number of inflammatory markers such as prostaglandins, histamine, reactive oxygen species, and bradykinin. This classic inflammatory response promotes vasodilation, edema, and the red, hot, and painful condition we refer to as “sun burn.”1,2

Prevention of sunburn is relatively easy and inexpensive. Best practice is to apply broad spectrum sunscreen (blocks both UVA and UVB) 30 minutes before exposure, and reapply every 90 minutes. Most dermatologists recommend using SPF (sun protection factor) of at least 30. Generally speaking, an SPF of 30 will prevent redness for approximately 30 times longer than without the sunscreen. An important point is that the sunscreen must be reapplied to maintain its protection.

There are two basic formulations for sunscreen:  chemical and physical. Chemical formulations are designed to be easier to rub into the skin. Chemical sunscreens act similar to a sponge as they “absorb” UV radiation and initiate a chemical reaction which transforms energy from UV rays into heat. Heat generated is then released from the skin.3  This type of sunscreen product typically contains one or more of the following active ingredient organic compounds: oxybenzone, avobenzone, octisalate, octocrylene, homosalate, and octinoxate. Physical sunscreens work by acting as a shield. This type of sunscreen sits on the surface of the skin and deflects the UV rays. Active ingredients zinc oxide and/or titanium dioxide act in this way.4  It’s interesting to note that some sunscreens include an expiration date – and others do not. It is reassuring that the FDA requires sunscreen to retain their original “strength” for three or more years.

In addition to sunscreen, clothing is effective in blocking UV skin exposure. Darker fabrics with denser weaves are effective, and so too are today’s specially designed fabrics. These special fabrics are tested in the laboratory to determine the ultraviolet protection factor (UPF) which is similar to SPF for sunscreen.  A fabric must carry a UPF rating of at least 30 to qualify for the Skin Cancer Foundation’s Seal of Recommendation. A UPF of 50 allows just 1/50th of the UV rays to penetrate (effectively blocking 98%). Some articles of clothing are produced with a finish that will wash out over time. Other fabrics have inherent properties that block UV rays and remain relatively unchanged due to washing (some loss of protection over time is unavoidable) – be careful to read the clothing label.

Some individuals prefer relying on protective clothing instead of sunscreen due to concerns about vitamin D synthesis. Vitamin D activation in the body includes an important chemical conversion stimulated by UV exposure in the skin – and there is concern that sunscreen interferes with this conversion. However, several studies, including a recent review by Neale, et al., concluded that use of sunscreen in natural conditions is NOT associated with vitamin D deficiency.5,6 The authors did go on to note that at the time of publication, they could not find trials testing the high SPF sunscreens that are widely available today (current products available for purchase include SPFs over 100).

Additional concern about use of sunscreens includes systemic absorption of potentially toxic chemicals found in sunscreen. A recent randomized clinical trial conducted by Matta and colleagues investigated the systemic absorption and pharmacokinetics of six active sunscreen ingredients under single and maximal use conditions. Seven Product formulations included lotion, aerosol spray, non-aerosol spray, and pump spray. Their study found that in response to repeat application over 75% of the body surface area, all 6 of the tested active ingredients were absorbed systemically. In this study, plasma concentrations surpassed the current FDA threshold for potentially waiving some of the additional safety studies for sunscreen. The authors went on to note that the data is difficult to translate to common use and further studies are needed. It is important to note that the authors also conclude that due to associated risk for development of skin cancer, we should continue to use sunscreen.

Yet another concern for using sunscreen is the potential for harmful environmental and human health impact. Sunscreen products that include organic UV filters have been implicated in adverse reactions in coral and fish, allergic reactions, and possible endocrine disruption.8,9 In some areas, specific sunscreen products are now being banned (for example, beginning January of 2021, Hawaii will ban products that include oxybenzone and octinoxate). As there are alternatives to the use of various organic compounds, there is a need to continue to monitor and weigh the benefit verses the potential negative effects.

Although the use of sunscreen is being questioned, there is the potential for a decline in use to be associated with an increase in skin cancer. Skin cancer, although on the decline in recent years, is the most common type of cancer in the U.S. It is estimated that more than 3 million people in the United States are diagnosed with skin cancers each year (cancer.net). Although this is fewer than the current number of Americans diagnosed with COVID-19 (Centers for Disease Control and Prevention, July 20, 2020) – changes in human behavior during the pandemic (spending more time outdoors) may inadvertently result in an increase in the number of skin cancer cases in future years.  

While we responsibly counter the impact of COVID-19 by wearing masks, socially distancing, and congregating outdoors – we must also continue to protect ourselves from damaging effects of the sun. As physiologists, we are called upon to continue to investigate the physiological impacts of various sunscreen delivery modes (lotion, aerosol, non-aerosol spray, and pumps) and SPF formulations. We are also challenged to investigate inadvertent and potentially negative impacts of sunscreen including altered Vitamin D metabolism, systemic absorption of organic chemicals, and potentially adverse environmental and health outcomes.

Again, solving one problem may create another challenge – the work of a physiologist is never done!

Stay safe friends!

Mari

References:

  1. Lopes DM, McMahon SB. Ultraviolet radiation on the skin: a painful experience? CNS neuroscience & therapeutics. 2016;22(2):118-126.
  2. Dawes JM, Calvo M, Perkins JR, et al. CXCL5 mediates UVB irradiation–induced pain. Science translational medicine. 2011;3(90):90ra60-90ra60.
  3. Kimbrough DR. The photochemistry of sunscreens. Journal of chemical education. 1997;74(1):51.
  4. Tsuzuki T, Nearn M, Trotter G. Substantially visibly transparent topical physical sunscreen formulation. In: Google Patents; 2003.
  5. Passeron T, Bouillon R, Callender V, et al. Sunscreen photoprotection and vitamin D status. British Journal of Dermatology. 2019;181(5):916-931.
  6. Neale RE, Khan SR, Lucas RM, Waterhouse M, Whiteman DC, Olsen CM. The effect of sunscreen on vitamin D: a review. British Journal of Dermatology. 2019;181(5):907-915.
  7. Matta MK, Florian J, Zusterzeel R, et al. Effect of sunscreen application on plasma concentration of sunscreen active ingredients: a randomized clinical trial. Jama. 2020;323(3):256-267.
  8. Schneider SL, Lim HW. Review of environmental effects of oxybenzone and other sunscreen active ingredients. Journal of the American Academy of Dermatology. 2019;80(1):266-271.
  9. DiNardo JC, Downs CA. Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone‐3. Journal of cosmetic dermatology. 2018;17(1):15-19.

    All images from:
    Royalty Free Stock Pictures – Public Domain Images
    www.dreamstime.com/

Prior to accepting the Dean’s positon at Sam Houston State University, Dr Hopper taught physiology and served as the Director of Student Research and Scholarly Work at Indiana University School of Medicine (IUSM). Dr Hopper earned tenure at IUSM and was twice awarded the Trustees Teaching Award. Based on her experience in developing curriculum, addressing accreditation and teaching and mentoring of medical students, she was selected to help build a new program of Osteopathic Medicine at SHSU. Active in a number of professional organizations, Dr. Hopper is past chair of the Chapter Advisory Council Chair for the American Physiological Society, the HAPS Conference Site Selection Committee, and Past-President of the Indiana Physiological Society.

Backward planning of lab course to enhance students’ critical thinking
Zhiyong Cheng, PhD
Food Science and Human Nutrition Department
The University of Florida

Development of critical thinking and problem-solving skills hallmarks effective teaching and learning [1-2]. Physiology serves as a fundamental subject for students in various majors, particularly for bioscience and pre-professional students [1-8]. Whether they plan on careers in science or healthcare, critical thinking and problem-solving skills will be keys to their success [1-8].

Backwards course design is increasingly employed in higher education. To effectively accomplish specific learning goals, instructions are to begin course development with setting learning objectives, then backwardly create assessment methods, and lastly design and deliver teaching and learning activities pertaining to the learning objectives and assessment methods. In terms of development of critical thinking and problem-solving skills, a lab course constitutes an excellent option to provide opportunities for instructors and students to explore innovative paths to their desired destinations, i.e., to accomplish specific learning goals.

In a traditional “cookbook” lab setting, detailed procedures are provided for the students to follow like cooking with a recipe. Students are usually told what to do step-by-step and what to expect at the end of the experiment. As such, finishing a procedure might become the expected goal of a lab course to the students who passively followed the “cookbook”, and the opportunity for developing critical thinking skills is limited. In a backwards design of a lab course; however, the instructor may engage the students in a series of active learning/critical thinking activities, including literature research, hypothesis formulation, study design, experimental planning, hands-on skill training, and project execution. Practically, the instructor may provide a well-defined context and questions to address. Students are asked to delve into the literature, map existing connections and identify missing links for their project to bridge. With the instructor’s guidance, students work together in groups on hypothesis development and study design. In this scenario, students’ focus is no longer on finishing a procedure but on a whole picture with intensive synthesis of information and critical thinking (i.e., projecting from generic context to literature search and evaluation, development of hypothesis and research strategy, and testing the hypothesis by doing experiments).

An example is this lab on the physiology of fasting-feeding transitions. The transition from fasting to feeding state is associated with increased blood glucose concentration. Students are informed of the potential contributors to elevated blood glucose, i.e., dietary carbohydrates, glycogen breakdown (glycogenolysis), and de novo glucose production (gluconeogenesis) in the liver. Based on the context information, students are asked to formulate a hypothesis on whether and how hepatic gluconeogenesis contributes to postprandial blood glucose levels. The hypothesis must be supported by evidence-based rationales and will be tested by experiments proposed by students with the instructor’s guidance. Development of the hypothesis and rationales as well as study design requires students to do intensive information extraction and processing, thereby building critical thinking and problem-solving skills. Students also need to make sound judgments and right decisions for their research plans to be feasible. For instance, most students tend to propose to employ the hyper-insulinemic-euglycemic clamp because the literature ranks it as a “gold standard” method to directly measure hepatic gluconeogenesis. However, the equipment is expensive and not readily accessible, and students have to find alternative approaches to address these questions. With the instructor’s guidance, students adjust their approaches and adopt more accessible techniques like qPCR (quantitative polymerase chain reaction) and Western blotting to analyze key gluconeogenic regulators or enzymes. Engaging students in the evaluation of research methods and selection helps them navigate the problem-solving procedure, increasing their motivation (or eagerness) and dedication to learning new techniques and testing their hypotheses. Whether their hypotheses are validated or disproved by the results they acquire in the end, they become skillful in thinking critically and problem solving in addition to hands-on experience in qPCR and Western blotting.

Evidently, students can benefit from backwards planning in different ways because it engages them in problem-based, inquiry-based, and collaborative learning — all targeted to build student problem solving skills [1-8]. For a typical lab course with pre-lab lectures; however, there is only 3-6 hours to plan activities. As such, time and resources could be the top challenges to implement backwards planning in a lab course. To address this, the following strategies will be of great value: (i) implementing a flipped classroom model to promote students’ pre- and after-class learning activities, (ii) delivering lectures in the lab setting (other than in a traditional classroom), where, with all the lab resources accessible, the instructor and students have more flexibility to plan activities, and (iii) offering “boot camp” sessions in the summer, when students have less pressure from other classes and more time to concentrate on the lab training of critical thinking and problem solving skills. However, I believe that this is a worthwhile investment for training and developing next-generation professionals and leaders.

References and further reading

[1] Abraham RR, Upadhya S, Torke S, Ramnarayan K. Clinically oriented physiology teaching: strategy for developing critical-thinking skills in undergraduate medical students. Adv Physiol Educ. 2004 Dec;28(1-4):102-4.

[2] Brahler CJ, Quitadamo IJ, Johnson EC. Student critical thinking is enhanced by developing exercise prescriptions using online learning modules. Adv Physiol Educ. 2002 Dec;26(1-4):210-21.

[3] McNeal AP, Mierson S. Teaching critical thinking skills in physiology. Am J Physiol. 1999 Dec;277(6 Pt 2):S268-9.

[4] Hayes MM, Chatterjee S, Schwartzstein RM. Critical Thinking in Critical Care: Five Strategies to Improve Teaching and Learning in the Intensive Care Unit. Ann Am Thorac Soc. 2017 Apr;14(4):569-575.

[5] Nguyen K, Ben Khallouq B, Schuster A, Beevers C, Dil N, Kay D, Kibble JD, Harris DM. Developing a tool for observing group critical thinking skills in first-year medical students: a pilot study using physiology-based, high-fidelity patient simulations. Adv Physiol Educ. 2017 Dec 1;41(4):604-611.

[6] Bruce RM. The control of ventilation during exercise: a lesson in critical thinking. Adv Physiol Educ. 2017 Dec 1;41(4):539-547.

[7] Greenwald RR, Quitadamo IJ. A Mind of Their Own: Using Inquiry-based Teaching to Build Critical Thinking Skills and Intellectual Engagement in an Undergraduate Neuroanatomy Course. J Undergrad Neurosci Educ. 2014 Mar 15;12(2):A100-6.

[8] Peters MW, Smith MF, Smith GW. Use of critical interactive thinking exercises in teaching reproductive physiology to undergraduate students. J Anim Sci. 2002 Mar;80(3):862-5.

Dr. Cheng received his PhD in Analytical Biochemistry from Peking University, after which he conducted postdoctoral research at the University of Michigan (Ann Arbor) and Harvard Medical School. Dr. Cheng is now an Assistant Professor of Nutritional Science at the University of Florida. He has taught several undergraduate- and graduate-level courses (lectures and lab) in human nutrition and metabolism (including metabolic physiology). As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively developing and implementing new pedagogical approaches to build students’ critical thinking and problem-solving skills.

Emerged Idea Led to a Unique Experience in Elephant’s City
Suzan A. Kamel-ElSayed, VMD, MVSc, PhD
Associate Professor, Department of Foundational Medical Studies
Oakland University

In May 2019, the physiology faculty at the Oakland University William Beaumont School of Medicine Department of Foundational Medical Studies received an email from Dr. Rajeshwari, a faculty member in JSS in a Medical College in India.

While Dr. Rajeshwari was visiting her daughter in Michigan, she requested a departmental visit to meet with the physiology faculty. Responding to her inquiry, I set up a meeting with her and my colleagues where Dr. Rajeshwari expressed her willingness to invite the three of us to present in the 6th Annual National Conference of the Association of Physiologists of India that was held from Sept. 11-14, 2019, in Mysuru, Karnataka, India.

The conference theme was: “Fathoming Physiology: An Insight.” My colleague then suggested a symposium titled “Physiology of Virtue,” where I could present the physiology of fasting since I fast every year during the month of Ramadan for my religion of Islam. To be honest, I was surprised and scared at my colleague’s suggestion. Although I fast every year due to the Quranic decree upon all believers, I was not very knowledgeable of what fasting does to one’s body. In addition, I faced the challenge of what I would present since I did not have any of my own research or data related to the field of fasting. Another concern was the cultural aspect in talking about Ramadan in India and how it would be received by the audience. However, willing to face these challenges, I agreed and admired my colleague’s suggestion and went forward in planning for the conference.

After Dr. Rajeshwari sent the formal invitation with the request for us to provide an abstract for the presentation, I started reading literature related to fasting in general. Reading several research articles and reviews, I was lost in where to begin and what to include. I began to ponder many questions: How will I present fasting as a virtue? Should I bring in religious connections? Will I be able to express spiritual aspects from a Muslim’s perspective? I decided that the aim of my presentation would be to describe how a healthy human body adapts to fasting, and the outcomes that practicing fasting has on an individual level and on the society as a whole. In addition, I found that focusing on the month of Ramadan and etiquettes of fasting required from Muslims had many physiological benefits and allowed me to have a real-world example in which fasting is present in the world.

Visiting India and engaging with physiologists from all over India was a really rich experience. The hospitality, generosity and accommodation that were provided was wonderful and much appreciated. The conference’s opening ceremony included a speech from the University Chancellor who is a religious Hindu Monk, along with Vice Chancellors, the organizing chair, and the secretary. In addition, a keynote speech on the physiological and clinical perspectives of stem cell research was presented by an Indian researcher in New Zealand. I was also able to attend the pre-conference workshops “Behavioral and Cognitive Assessment in Rodents” and “Exercise Physiology Testing in the Lab and Field” free of charge.

For my presentation, I included the definition, origin and types of fasting. In addition, I focused on the spiritual and physical changes that occur during Ramadan Intermittent Fasting (RIF). Under two different subtitles, I was able to summarize my findings. In the first subtitle, “Body Changes During RIF,” I listed all the changes that can happen when fasting during Ramadan. These changes include: activation of stress induced pathways, autophagy, metabolic and hormonal changes, energy consumption and body weight, changes in adipose tissue, changes in the fluid homeostasis and changes in cognitive function and circadian rhythm. In the second subtitle, “Spiritual Changes During RIF,” I presented some examples of spiritual changes and what a worshipper can do. These include development of character, compassion, adaptability, clarity of mind, healthy lifestyle and self-reflection. To conclude my presentation, I spoke of the impacts RIF has on the individual, society, and the global community.

In conclusion, not only was this the first time I visited India, but it was also the first time for me to present a talk about a topic that I did not do personal research on. Presenting in Mysuru not only gave me a chance to share my knowledge, but it allowed me to gain personal insight on historical aspects of the city. It was a unique and rich experience that allows me to not hesitate to accept similar opportunities. I encourage that we, as physiology educators, should approach presenting unfamiliar topics to broaden our horizons and enhance our critical thinking while updating ourselves on research topics in the field of physiology and its real-world application.  Physiology education is really valued globally!

Suzan Kamel-ElSayed, VMD, MVSc, PhD, received her bachelor of Veterinary Medicine and Masters of Veterinary Medical Sciences from Assiut University, Egypt. She earned her PhD from Biomedical Sciences Department at School of Medicine in Creighton University, USA. She considers herself a classroom veteran who has taught physiology for more than two decades. She has taught physiology to dental, dental hygiene, medical, nursing, pharmacy and veterinary students in multiple countries including Egypt, Libya and USA. Suzan’s research interests are in bone biology and medical education. She has published several peer reviewed manuscripts and online physiology chapters. Currently, she is an Associate Professor in Department of Foundational Medical Studies in Oakland University William Beaumont School of Medicine (OUWB) where she teaches physiology to medical students in organ system courses. Suzan is a co-director of the Cardiovascular Organ System for first year medical students. Suzan also is a volunteer physiology teacher in the summer programs, Future Physicians Summer Enrichment Program (FPSP) and Detroit Area Pre-College Engineering Program (DAPCEP) Medical Explorers that are offered for middle and high school students. She has completed a Medical Education Certificate (MEC) and Essential Skills in Medical Education (ESME) program through the Association for Medical Education in Europe (AMEE) and Team-Based Learning Collaborative (TBLC) Trainer- Consultant Certification. She is also a member in the OUWB Team-Based Learning (TBL) oversight team. Suzan is an active member in several professional organizations including the American Physiological Society (APS); Michigan Physiological Society (MPS); International Association of Medical Science Educators (IAMSE); Association of American Medical Colleges (AAMC); Team Based Learning Collaborative (TBLC); Egyptian Society of Physiological Sciences and its Application; Egyptian Society of Physiology and American Association of Bone and Mineral Research (ASBMR).

An inventory of meaningful lives of discovery

by Jessica M. Ibarra

I always had this curiosity about life. Since the very beginning, always wanting to understand how animals’ breathe, how they live, how they move. All that was living was very interesting. – Dr. Ibarra

“I always had this curiosity about life and I wanted to become a doctor, but my parent told me it was not a good idea,” Lise Bankir explained in her interview for the Living History Project of the American Physiological Society (APS).  The video interview (video length: 37.14 min.) is part of a rich collection over 100 senior members of the APS who have made outstanding contributions to the science of physiology and the profession. 

The archive gives us great insight into how these scientists chose their fields of study.  As Dr. Bankir, an accomplished renal physiologist, explain how she ended up “studying the consequences of vasopressin on the kidney.”  She describes her work in a 1984 paper realizing “high protein was deleterious for the kidney, because it induces hyperfiltration,” which of course now we accept that high protein accelerates the progression of kidney disease. Later she describes her Aha! moment, linking a high protein diet to urea concentration, while on holiday. 

“It came to my mind that this adverse effect of high protein diet was due to the fact that the kidney not only to excrete urea (which is the end product of proteins), but also to concentrate urea in the urine.  Because the plasma level of urea is already really low and the daily load of urea that humans excrete need that urea be concentrated about 100-fold (in the urine with respect to plasma).” 

Other interviews highlight how far ahead of their time other scientists were.  As is the case when it comes to being way ahead of teaching innovations and active learning in physiology with  Dr. Beverly Bishop.  In her video interview, you can take inspiration from her 50 years of teaching neurophysiology to physical therapy and dental students at SUNY in New York (video length: 1 hr. 06.09 min.).  Learn about how she met her husband, how she started her career, and her time in Scotland.  Dr. Bishop believed students could learn better with experimental laboratory activities and years ahead of YouTube, she developed a series of “Illustrated Lectures in Neurophysiology” available through APS to help faculty worldwide.

She was even way ahead of others in the field of neurophysiology.  Dr. Bishop explains, “everyone knows that they (expiratory muscles) are not very active when you are sitting around breathing quietly, and yet the minute you have to increase ventilation (for whatever reason), the abdominal muscles have to play a part to have active expiration.  So, the question I had to answer was, “How are those muscles smart enough to know enough to turn on?” Her work led to ground breaking work in neural control of the respiratory muscles, neural plasticity, jaw movements, and masticatory muscle activity.

Another interview shed light on a successful career of discovery and their implications to understanding disease, as is the case with the video interview of Dr. Judith S. Bond. She describes the discovery of meprins proteases as her most significant contribution to science (video length: 37.38 min.), “and as you know, both in terms of kidney disease and intestinal disease, we have found very specific functions of the protease.  And uh, one of the functions, in terms of the intestinal disease relates to uh inflammatory bowel disease.  One of the subunits, meprin, alpha subunit, is a candidate gene for IBD and particularly ulcerative colitis. And so that opens up a window to – that might have significance to the treatment of ulcerative colitis.”

Or perhaps you may want to know about the life and research of Dr. Bodil Schmidt-Nielsen, the first woman president of the APS (video length: 1 hr. 18.07 min.) and daughter of August and Marie Krogh.  In her interview, she describes her transition from dentistry to field work to study water balance on desert animals and how she took her family in a van to the Arizona desert and while pregnant developed a desert laboratory and measured water loss in kangaroo rats.  Dr. Schmidt-Nielsen was attracted to the early discoveries she made in desert animals, namely that these animals had specific adaptations to reduce their expenditure of water to an absolute minimum to survive. 

The Living History Project managed to secure video interviews with so many outstanding contributors to physiology including John B. West, Francois Abboud, Charles TiptonBarbara Horwitz, Lois Jane Heller, and L. Gabriel Navar to name a few.  For years to come, the archive provides the opportunity to learn from their collective wisdom, discoveries, family influences, career paths, and entries into science. 

As the 15th anniversary of the project approaches, we celebrate the life, contributions, dedication, ingenuity, and passion for science shared by this distinguished group of physiologists.  It is my hope you find inspiration, renewed interest, and feed your curiosity for science by taking the time to watch a few of these video interviews. 

Dr. Jessica M. Ibarra is an Assistant Professor of Physiology at Dell Medical School in the Department of Medical Education of The University of Texas at Austin.  She teaches physiology to first year medical students.  She earned her B.S. in Biology from the University of Texas at San Antonio.  Subsequently, she pursued her Ph.D. studies at the University of Texas Health Science Center in San Antonio where she also completed a postdoctoral fellowship.  Her research studies explored cardiac extracellular matrix remodeling and inflammatory factors involved in chronic diseases such as arthritis and diabetes.  When she is not teaching, she inspires students to be curious about science during Physiology Understanding Week in the hopes of inspiring the next generation of scientists and physicians. Dr. Ibarra is a native of San Antonio and is married to Armando Ibarra.  Together they are the proud parents of three adult children – Ryan, Brianna, and Christian Ibarra.

Medical Physiology for Undergraduate Students: A Galaxy No Longer Far, Far Away

The landscape of medical school basic science education has undergone a significant transformation in the past 15 years.  This transformation continues to grow as medical school basic science faculty are faced with the task of providing “systems based” learning of the fundamental concepts of the Big 3 P’s: Physiology, Pathology & Pharmacology, within the context of clinical medicine and case studies.  Student understanding of conceptual basic science is combined with the growing knowledge base of science that has been doubling exponentially for the past century.  Add macro and microanatomy to the mix and students entering their clinical years of medical education are now being deemed only “moderately prepared” to tackle the complexities of clinical diagnosis and treatment.  This has placed a new and daunting premium on the preparation of students for entry into medical school.  Perhaps medical education is no longer a straightforward task of 4 consecutive years of learning.  I portend that our highest quality students today, are significantly more prepared and in many ways more focused in the fundamentals of mathematics, science and logic than those of even 30 years ago.  However, we are presenting them with a near impossible task of deeply learning and integrating a volume of information that is simply far too vast for a mere 4 semesters of early medical education.

 

To deal with this academic conundrum, I recommend here that the academic community quickly begin to address this complex set of problems in a number of new and different ways.  Our educators have addressed the learning of STEM in recent times by implementing a number of “student centered” pedagogical philosophies and practices that have been proven to be far more effective in the retention of knowledge and the overall understanding of problem solving.  The K-12 revolution of problem-based and student-centered education continues to grow and now these classroom structures have become well placed on many of our college and university campuses.  There is still much to be done in expanding and perfecting student-centered learning, but we are all keenly aware that these kinds of classroom teaching methods also come with a significant price in terms of basic science courses.

 

It is my contention that we must now expand our time frame and begin preparing our future scientists and physicians with robust undergraduate preprofessional education.  Many of our universities have already embarked upon this mission by developing undergraduate physiology majors that have placed them at the forefront of this movement.  Michigan State University, the University of Arizona and the University of Oregon have well established and long standing physiology majors.  Smaller liberal arts focused colleges and universities may not invest in a full majors program, but rather offer robust curricular courses in the basic medical sciences that appropriately prepare their students for professional medical and/or veterinary education.  Other research 1 universities with strong basic medical science programs housed in biology departments of their Colleges of Arts and Sciences may be encouraged to develop discipline focused “tracks” in the basic medical sciences.  These tracks may be focused on disciplines such as physiology, pharmacology, neuroscience, medical genetics & bioinformatics and microbiology & immunology.  These latter programs will allow students to continue learning with more broad degrees of undergraduate education in the arts, humanities and social sciences while gaining an early start on advanced in depth knowledge and understanding of the fundamentals of medical bioscience.  Thus, a true undergraduate “major” in these disciplines would not be a requirement, but rather a basic offering of focused, core biomedical science courses that better prepare the future professional for the rigors of integrated organ-based medical education.

 

In the long term, it is important for leaders in undergraduate biomedical education to develop a common set of curriculum standards that provide a framework from which all institutions can determine how and when they choose to prepare their own students for their post-undergraduate education.  National guidelines for physiology programs should become the standard through which institutions can begin to prepare their students.  Core concepts in physiology are currently being developed.  We must carefully identify how student learning and understanding of basic science transcends future career development, and teach professional skills that improve future employability.  Lastly, we must develop clear and effective mechanisms to assess and evaluate programs to assure that what we believe is successful is supported by data which demonstrates specific program strengths and challenges for the future.  These kinds of challenges in biomedical education are currently being addressed in open forum discussions and meetings fostered by the newly developed Physiology Majors Interest Group (P-MIG) of the APS.  This growing group of interested physiology educators are now meeting each year to discuss, compare and share their thoughts on these and other issues related to the future success of our undergraduate physiology students.  The current year will meet June 28-29 at the University of Arizona, Tucson, AZ.  It is through these forums and discussions that we, as a discipline, will continue to grow and meet the needs and challenges of teaching physiology and other basic science disciplines of the future.

Jeffrey L. Osborn, PhD is a professor of biology at the University of Kentucky where he teaches undergraduate and graduate physiology. He currently serves as APS Education Committee chair and is a former medical physiology educator and K12 magnet school director. His research focuses on hypertension and renal function and scholarship of teaching and learning. This is his first blog.
Teaching Physiology in an Integrated Curriculum

Culmination of the 2016-17 academic year allows time for reflection and planning for the next year.   This past academic year, I was involved in the delivery of a new medical curriculum to an inaugural class of osteopathic medical students.   In keeping with current medical education trends, physiology and all other basic sciences were integrated throughout the year in individual systems based courses.  It is against this backdrop that I have decided to share a few observations and offer a few suggestions on delivering physiology content in a completely integrated teaching environment.

 

  • Delivery of an integrated curriculum is very time intensive for faculty. The idea of incorporating the teaching of anatomy, biochemistry, cell biology, physiology and microbiology/immunology of an organ system in a single course is conceptually attractive and to many medical practitioners the best way to educate the next generation of physicians.   Curricular challenges center on time limitations and the blurring of boundaries between the basic science disciplines.  Successful courses result when faculty are able to connect relevant information.   For example, my preparation for classroom discussions involved gaining an awareness of what was being taught in other disciplines and to incorporate appropriate synergies with the teaching materials developed by my colleagues in other disciplines.   The challenge was not to re-teach material.
  • Learning for the majority of students is not integrative. The development and delivery of an interdisciplinary integrated curriculum does not instantly result in students who are higher order problem solvers.   Learning is sequential, iterative, and cumulative.   Integration of concepts takes time and a firm foundation.   Guiding students along towards higher learning dimensions requires careful planning on behalf of the educator and can be accomplished through various pedagogical approaches.  Central to any approach should be basic questions for the educator to consider such as: 1) What is/are the basic fact(s) that the student should know? 2) Why does the student need to know this particular material?  and 3) How will the particular material be used in the problem solving process?   The answers to these and similar questions should then be used to introduce material in the classroom environment that keeps study groups discussing content after the session ends.
  • The true effectiveness of an integrated systems based curriculum should be measured by assessments that include questions designed specifically to high levels of integration. Data from both multidisciplinary and comprehensive formative as well as summative assessment instruments will provide a basis for future curricular decisions.

In the preceding discourse I have attempted to share a few views based on a year long teaching experience in a systems based medical curriculum.   My overall impression is that an integrated curriculum is a great way to teach physiology.   I also have learned that I am at the beginning of a new teaching journey that is sequential, iterative, and cumulative.   Sound familiar?  In preparation for next year, I know what I will be doing this summer to refine my previous year’s work in ways that facilitate student learning next year.    I am sure that I am not alone and wish you the best for a productive summer.

Joseph N. Benoit, PhD is Professor of Physiology and Director of Research & Sponsored Programs at the Burrell College of Osteopathic Medicine.   He has served in various higher education positions over the past 30 years including faculty, graduate school dean, college president and most recently founding faculty at a new medical school.   His current scholarly interests center on student learning, curriculum development, and regulatory compliance.  He lives and works in Las Cruces, NM.
Simulation as a Component of First-year Medical Physiology

cardiac simulationbIf you’ve spent any time around soon-to-retire, senior physiologists, you’ve probably heard nostalgic talk of the old dog labs.  I am a member of what may be the last generation that participated in these in a medical/graduate school environment.  The old-timers will tell you that there was no better way to teach physiology than by demonstration and experimentation with an anesthetized dog.  The experience was dramatic, and the various concepts were obviously relevant.  Nevertheless, time marches on, and with changes in economics and societal values, we are unlikely to ever see the return of the dog labs in medical or graduate school.

For the purposes of teaching physiology in a medical environment, much of the impact and value of the dog labs can be obtained through simulation.  Centers that use high-fidelity manikins and other simulation technology are becoming more and more common, and if your institution doesn’t have one yet, there is probably one in the pipeline.  However, you may be skeptical of the high-price tag that the equipment carries and its relevance to bench scientists.  After all, most of us teaching physiology aren’t clinicians, and we have neither the expertise nor the experience to teach medicine.  I was firmly of that opinion when the Texas Tech University Health Sciences Center first opened its simulation center, but I’ve tried to keep an open mind, and I’m happy to say that I’ve learned to incorporate these resources into my teaching.  More importantly, simulation works for the same reason the old dog labs worked:  it provides a clear and dramatic demonstration of fundamental physiological concepts.

Although the equipment available in most simulation centers is capable of reproducing some pretty sophisticated disorders, there is little need for such advanced capability during the pre-clinical years of medical training. The basics are more than adequate, and they can be covered adequately without obtaining a medical degree.   Cardiovascular physiology was my entry point using this new approach to teaching.  There are few things in life more fundamental than a heartbeat, and nearly every simulation center will have cardiopulmonary manikins that allow the student to practice auscultation.  This is not to say that heart sounds can’t be taught with alternatives, such as good digital recordings, but the use of manikins adds an important degree of realism.  I first ask the students to practice positioning the stethoscope for optimal detection of the various heart sounds in a healthy individual.  Demonstrating where to best hear the sound associated with pulmonary valve closure, for example, draws the connection between cardiac anatomy and physiology more closely together.  I then ask the students to explore various valve pathologies and illustrate what they would expect to see on Wiggers diagrams and pressure-volume loops.  The four murmurs that are most relevant to first-year medical students, aortic valve stenosis and regurgitation and mitral valve stenosis and regurgitation, are great starting points for illustrating the relevant changes in pressure that are associated with these defects.  For example, the combined use of auscultation and Wiggers diagrams make it easier to appreciate the excessive pressures developed in the left ventricle as a consequence of aortic valve stenosis.  It also makes it easier to understand how the high velocities of flow and resulting turbulence can cause the distinctive murmur.  In my class, I follow up the auscultation activity with standardized patients and ultrasonography, allowing the students to correlate the sounds that they hear with the coordinated movements in the heart, as visualized with the ultrasound probe.

The cardiopulmonary manikins provide a great resource for showing the practical relevance of hemodynamics to the clinical setting, but we must turn to high-fidelity manikins if we are truly to recapture the drama of the old dog labs.  I remember vividly the effects on an anesthetized dog when, as a student, I infused a sympathetic agonist or antagonist.  Now, as an instructor, I achieve a similar memorable effect with a full-blown simulation of hemorrhagic shock.  This is the capstone event in the cardiovascular physiology section of our course, when the students must recognize the problem and come up with a solution.  Our simulation center has rooms like you would find in the emergency department in which we place the manikins.  The potential “treatments” available for use by the students include a muscarinic antagonist, a sympathetic agonist, and the infusion of normal saline.  As I did with the dogs back in the day, today’s students apply various drugs or treatments to the manikin, and, from the attached control room, I can simulate the appropriate physiological response.  There are few things that bring home the importance of preload and stressed volume like the “recovery” evoked by rapid infusion of saline, especially if this follows unsuccessful attempts at treatment with various drugs.  Later in our class, we have additional simulations that illustrate fundamental principles associated with respiratory physiology and endocrinology.   I admit that it took some persuasion to convince my bench-investigator colleagues that they had sufficient experience to facilitate these activities.  However, after trying it a time or two, they usually find that the activities require more physiological knowledge and deductive reasoning than clinical skill, and, as an added bonus, they have fun.

So why not take advantage of that high-priced center that your medical school just built or is in the process of developing?  You’ll find that simulations provide hard-to-ignore demonstrations of physiology’s relevance to the clinics.  If my experience is any indication, your dean will be happy that you’re trying new things, and you’ll be rewarded by students who respond enthusiastically.

The nitty-gritty to get you started:

My colleagues and I have boiled down the use of simulation to a few key points that can provide a good start to your own efforts.

1)  Keep it simple.  You’re teaching physiology, not a subspecialty.  As described above, we require the students to recognize a loss of blood volume as the fundamental problem in hemorrhagic shock.

2)  Require a decision or intervention.  The students must follow a problem logically, putting into practice the physiology that they are learning.  In the hemorrhage scenario, they treat the “patient” with a rapid intravenous administration of saline.

3)  Provide some background material.  You’re providing a value-added experience that goes beyond simple lecture, but the students need some guidance to prepare.   For the shock simulation, they study a 20-minute online presentation focusing on low cardiac output the night before the activity.

4)  Do a debrief.  If things work well, there will be a lot of excitement and keyed-up emotion.  You’ll want to give the students a chance to talk things out and assess their performance as a team.

Good luck!

Pressley head shot

 

Thomas A Pressley is a Professor in the Department of Medical Education at Texas Tech University Health Sciences Center. After earning his undergraduate degree at Johns Hopkins University, he entered the graduate program in biochemistry at the Medical University of South Carolina. His postdoctoral training was in the College of Physicians and Surgeons at Columbia University. He was recruited by the University of Texas Medical School in Houston in 1987, and he transferred to Texas Tech in 1995. Tom has served as an interim dean, a visiting professor at multiple institutions, a member of grant review committees, and the chair of the Education Committee of the American Physiological Society. He is the current chair of the APS Career Opportunities in Physiology Committee. He has also developed numerous courses, and he has reviewed degree programs at several institutions.