Category Archives: 3 – 2018 March Highlights – Classroom Culture

Beyond Content Knowledge: The Importance of Self-Regulation and Self-Efficacy

You can lead students to knowledge, but you can’t make them understand it …

Undergraduate physiology education has been steadily morphing from a traditionally instructor-centered, didactic lecture format to a more inclusive array of practices designed to improve student engagement and therefore motivation to learn.  Many excellent resources are available regarding the theory and practice of active learning (4) as well as guidelines specific to teaching physiology (2).  Common questions instructors ask when redesigning courses to be student-centered, active learning environments are often along the lines of:

  1. What specific content areas should I teach, and to what depth?
  2. What active learning strategies are most effective and should be included in course design? Common methodologies may be in-class or online discussion, completion of case studies, team-based learning including group projects, plus many others.
  3. How do I align assessments with course content and course activities in order to gauge content mastery?
  4. How do I promote student “buy-in” if I do something other than lecture?
  5. How do I stay sane pulling all of this together? It seems overwhelming!

These last two questions in particular are important to consider because they represent a potential barrier to instructional reform for how we teach physiology– the balance between student investment and responsibility for their learning versus time and effort investment by the instructor.  All parties involved may exhibit frustration if instructor investment in the educational process outweighs the learner’s investment.  Instructors may be frustrated that their efforts are not matched with positive results, and there may be concerns of repercussions when it comes time for student course evaluations.  Students may perceive that physiology is “too hard” thus reducing their motivation and effort within the course and possibly the discipline itself.

To improve the likelihood of a positive balance between instructor and student investment, perhaps we should add one additional question to the list above: What is the learner’s role in the learning process?   

Students often arrive to a class with the expectation that the instructor, as the content expert,  will tell them “what they need to know” and perhaps “what they need do” to achieve mastery of the factual information included as part of course content.  This dynamic places the responsibility for student learning upon the shoulders of the instructor.  How can we redefine the interactions between instructors and students so that students are engaged, motivated, and able to successfully navigate their own learning?

 

Self-Regulated Learning: A Student-Driven Process

Self-regulated learning is process by which learners are proactive participants in the learning process.  Characteristics associated with self-regulated learning include (4):

  • an awareness of one’s strengths and weaknesses broadly related to efficacious learning strategies (e.g., note-taking)
  • the ability to set specific learning goals and determine the most appropriate learning strategies to accomplish goals
  • self-monitoring of progress toward achieving goals
  • fostering an environment favorable to achieving goals
  • efficient use of time
  • self-reflect of achievement and an awareness of causation (strategies à learning)

The last characteristic above, in particular, is vitally important for development of self-regulation: self-reflection results in an appreciation of cause/effect with regard to learning and mastery of content, which is then transferrable to achievement of novel future goals.  Applied to undergraduate physiology education, students learn how to learn physiology.

At one point recently I was curious about student perceptions of course design and what strategies students utilized when they had content-related questions.  The following question was asked as part of an anonymous extra credit activity:

The results of this informal survey suggest that, at least in this cohort , undergraduate students generally did have a strategy in place when they had content-related questions—utilization of online resources, the textbook, or the instructor via e-mail to review how others have answered the question.  The good news (if we can call it that) is that only one student reported giving up and did not attempt to find answers to questions.  However, it is interesting to see that only 14% of respondents reported using critical thinking and reasoning to independently determine an explanation for their original question.  Extrapolating to a professional setting, would I want my health care provider to be proficient at looking up information that correlates with signs and symptoms of disease, or would I prefer my health care provider capable of synthesizing a diagnosis?  Thus, self-regulation and having an action plan to determine the answer for a particular question (or at least where to find an answer) may only be part of the learning process.

 

Self-Efficacy: A Belief in One’s Ability to Achieve a Defined Goal

While self-regulation refers to a collection of self-selected strategies an individual may use to enhance learning, self-efficacy is the confidence that the individual possesses the ability to successfully apply them.

Artino (1) has posed the following practices associated with building self-efficacy in medical education.

  • Help students with the goal-setting process, which could be related to learning or the development of skills and competencies; facilitate the generation of realistic and achievable goals
  • Provide constructive feedback, identifying specific areas for which students are demonstrating high performance and areas for improvement
  • Provide mechanisms to compare self-efficacy to actual performance; this could take the form of instructor feedback, metacognitive strategies, self-assessments, and self-reflections
  • Use peer modeling and vicarious learning; best practices would be to use peers at a similar level of competence who are able to demonstrate successful achievement of a learning goal

I am interested in the relationships between self-regulated learning, self-efficacy, how students learn physiology, and tangentially student perceptions of my role as the instructor.   Thus, here is another example of a self-reflection activity that was offered in an online class-wide discussion forum as extra credit (Hint: extra credit seems to be a sure-fire way to promote student engagement in self-reflection).  Once students responded to the prompt shown below, they were able to review other student’s responses.  Following the due date, I diplomatically consolidated all responses into a “peer suggestions for how to learn physiology” handout.

Three outcomes were in mind when creating this activity:

  1. To encourage students to think about the control they have over their own learning and recognize specific practices they can utilize to empower learning; also peer modeling of learning strategies
  2. To set reasonable expectations for what I can do as the instructor to foster learning, and what I cannot do (I would make it easy to understand all physiological processes, if only I could…)
  3. To plant the seed that course activities build content knowledge applicable to a future career goal, which hopefully translates into increased motivation for active participation in course activities

 

Beyond Content Knowledge: Integration of Self-Regulation and Self-Efficacy into Course Design

Incorporation of activities to build self-regulation and self-efficacy can be included along with content knowledge in the active learning classroom environment.  Moving away from didactic lecture during class time to a more flexible and dynamic active learning environment provides opportunities to discuss and model different learning strategies.  If incorporated successfully, students may experience increased self-efficacy and self-confidence, setting the precedent for continued gains in academic achievement and subsequently the potential for professional success.

It is also important to consider that what we do in the classroom, in a single course, is just one piece of the undergraduate educational experience.  Currently there is a call for undergraduate physiology programmatic review and development of cohesive curricula to promote knowledge of physiology as well as professional/transferrable skills and competencies directed toward a future career (3).

If the overarching goal of an undergraduate education is development of knowledge, skills, and abilities transferrable to a future career, as well as life-long learning, it is vitally important that discussion of self-regulated learning and self-efficacy are included within the curriculum.   Although this seems a daunting task, it is possible to purposefully design course structure, and indeed programmatic structure, with appropriate activities designed to enhance learning and self-efficacy.  One key suggestion is to make the inclusion of knowledge, skills, and competencies transparent to boost awareness of their importance, throughout the educational experience.  Here is one example of what this could look like:

 

Students frequently focus upon content knowledge, and subsequently their grade as the primary outcome measure, rather than seeing the “big picture” for how the sum total of course activities most likely directly relate to their professional goals.

A second key component to building well-prepared and high achieving undergraduates is to involve your colleagues in this process.  It takes a village, as the saying goes. Talk to your colleagues, decide which course/s will emphasize specific attributes, and also be a united front.  If students hear the same message from multiple faculty, they are more likely to recognize its value.

Finally, course or curricular reform is time-consuming process.  Don’t expect the process to be complete within one semester.  There are many excellent resources related to backward course design, core concepts of physiology as conceptual frameworks for student learning, student-centered activities, etc.  Be purposeful in selecting 1-2 areas upon which to focus at a time.  Try it out for a semester, see how it goes, and refine the process for the next time around.

 

Jennifer Rogers, PhD, ACSM EP-C, EIM-2 received her PhD and post-doctoral training at The University of Iowa (Exercise Science).  She has taught at numerous institutions ranging across the community college, 4-year college, and university- level  higher education spectrum.  Jennifer’s courses have ranged from  small, medium, and large (300+ students) lecture courses, also online, blended, and one-course-at-a-time course delivery formats.  She routinely incorporates web-based learning activities, lecture recordings, student response activities, and other in-class interactive activities into class structure.  Jennifer’s primary teaching interests center around student readiness for learning, qualitative and quantitative evaluation of teaching  strategies, and assessing student perceptions of the learning process.

Dr. Rogers is a Lecturer in the Health & Human Physiology Department at The University of Iowa.  She is the course supervisor for the Human Physiology lecture and lab courses.  Jennifer also teaches Human Anatomy, Applied Exercise Physiology, and other health science-focused courses such as Understanding Human Disease and Nutrition & Health.

  1. Artino AR. Academic self-efficacy: from educational theory to instructional practice. Perspect Med Educ 1:76–85, 2012.
  2. Michael J, Cliff W, McFarland J, Modell H, Wright A. The Core Concepts of Physiology: A New Paradigm for Teaching Physiology. Published on behalf of The American Physiological Society by Springer, 2017.
  3. Wehrwein EA. Setting national guidelines for physiology undergraduate degree programs. Adv Physiol Educ 42: 1-4, 2018.
  4. Zimmerman BJ. Becoming a self-regulated learner: an overview. Theory Into Practice, 41(2): 64-70, 2002.
Stress and adaptation to curricular changes

 

 

 

…there was a teacher interested in enhancing the learning process of his students. He wanted to see them develop skills beyond routine memorization. With the support of colleagues and the education team at his university, he succeeded and chose a semi-flipped classroom approach that allowed him to introduce novel curricular changes that did not generate much resistance on the part of the students.

The change was made. The students apparently benefited from the course. They worked in groups and learned cooperatively and collaboratively. Students evaluated peers and learned to improve their own work in the process. They not only learned the topics of the class, but also improved their communication skills.

At some point the institution asked the teacher to teach another course. He happily did so, and based on his experience introduced some of the changes of his semi-flipped classroom into the new course. The students in this course were slightly younger and had not been exposed to education in biomedical sciences. To the teacher’s surprise, the students showed a lot of resistance to change. The sessions moved slowly, the test scores were not all that good, and students did not reach the expected outcomes. It was clear that the teacher and the students were going through a period of considerable stress, while adapting to the new model. Students and teachers worked hard but the results did not improve at the expected rate.

Some time ago this was my experience and as I wandered looking for solutions, I started to question the benefits of active learning and the role of stress in educational practice.

Advantages and challenges of active learning

Evidence says that active learning significantly improves student outcomes (higher grades and lower failure rates) and may also promote critical thinking and high level cognitive skills (1, 2). These are essential components of a curriculum that attempts to promote professionalism. However, it may be quite problematic to introduce active learning in settings in which professors and students are used to traditional/passive learning (2).

Some of the biggest challenges for teachers are the following:

  • To learn about backward design of educational activities
  • To think carefully about the expected accomplishments of students
  • To find an efficient way to evaluate student learning
  • To spend the time finding the best strategies for teaching, guiding, and evaluating students.
  • To recognize their limitations. For example, it is possible that despite their expertise, some teachers cannot answer the students’ questions. This is not necessarily bad; in fact, these circumstances should motivate teachers to seek alternatives to clarify the doubts of students. At this point, teachers become role models of professionals who seek to learn continuously.
  • To learn about innovations and disruptive technologies that can improve the teacher role.

Some of the challenges for students include:

  • Understanding their leading role in the learning process
  • Working hard but efficiently to acquire complex skills
  • Reflecting on the effectiveness of their learning methods (metacognition). Usually reading is not enough to learn, and students should look for ways to actively process the information.
  • Trusting (critically) on the methods made available by the teachers to guide their learning. For example, some tasks may seem simple or too complex, but teachers have the experience to choose the right methodology. A work from our team showed that strategies that seem very simple for the student (clay modeling) have a favorable impact on learning outcomes (3).
  • Seeking timely advice and support from teachers, tutors and mentors.

Working to overcome these challenges may generate a high level of stress on students and teachers. Without emphasizing that stress is a desirable trait, I do find that some disturbance in the traditional learning process and risk taking motivate teachers and students to improve their methods.

Intermediate disturbance hypothesis and stress in education

In the twentieth century, the work of Joseph H. Connell became famous for describing factors associated with the diversity of species in an ecosystem (4). Some of his observations were presented in Charles Duhigg’s book “Smarter Faster Better” which discusses circumstances related to effective teamwork (5). Duhigg reports that Connell, a biologist, found that in corals and forests there might be patches where species diversity increases markedly. Curiously, these patches appear after a disturbance in the ecosystem. For example, trees falling in a forest can facilitate the access of light to surface plants and allow the growth of species that otherwise could not survive (5). Connell’s work suggests that species diversity increases under circumstances that cause intermediate stress in the ecosystem. In situations of low stress, one species can become dominant and eradicate other species, whereas in situations of high stress, even the strongest species may not survive. But if, an intermediate stress where to appear, not very strong and not very weak, the diversity of species in an ecosystem could flourish.

I propose that the hypothesis of the intermediate disturbance can also be applied in education. In traditional learning, an individual (ecosystem) learns to react to the challenges presented and develops a method for passing a course. In situations of low stress, memorization (evaluated at the lower levels of Miller´s pyramid) may be enough to pass a course. In high stress level situations, students may drop out or feel inadequate. However, courses that involve active learning may include moderate challenges (intermediate disturbance). These well-managed challenges can motivate the student to develop more complex skills (diversity of species) that lead to effective learning and a broader professional development.

 

 

 

 

 

 

 

 

 

Figure 1. Intermediate disturbance hypothesis in education.

 

In the book “Problem-based learning, how to gain the most from PBL”, Donald Woods describes the challenges and stresses associated with the incorporation of active learning (PBL) in a curriculum (6). He describes the stages of grief that a student (and I add, a teacher) must go through while adapting to the new system. This adaptation can take months and generally is characterized by the following phases:

  • Shock
  • Denial
  • Strong emotion (including depression, panic and anger)
  • Resistance to change
  • Acceptance and resignation to change
  • Struggle to advance in the process
  • Perception of improvement in the expected performance
  • Incorporation of new habits and skills to professional practice

 

 

 

 

 

 

 

 

 

Figure 2. Performance adjustment after curricular changes. Adapted and modified from (6).

 

Properly managing stress and finding strategies to advance in the process are rewarded by achieving better performance once the students become familiar with the new method of active learning. However, to better adapt to curricular or pedagogical changes, it is important for all the education actors to recognize the importance of deliberate work and to have clear goals. In addition, students and teachers should have access to institutional strategies to promote effective time, and anger and frustration management.

Stress is not ideal, but some stress may motivate students and teachers to reevaluate their methods and ultimately work together for a classroom focused on professional excellence. The critical question is how big is the intermediate disturbance needed to improve learning outcomes. As is commonly concluded in papers, more research is needed to answer this question, and we can learn a lot from the theories and methods from our colleagues in Biology.

References

  1. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et al. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci U S A. 2014;111(23):8410-5.
  2. Michael J. Where’s the evidence that active learning works? Adv Physiol Educ. 2006;30(4):159-67.
  3. Akle V, Pena-Silva RA, Valencia DM, Rincon-Perez CW. Validation of clay modeling as a learning tool for the periventricular structures of the human brain. Anat Sci Educ. 2017.
  4. Connell JH. Diversity in Tropical Rain Forests and Coral Reefs. Science. 1978;199(4335):1302-10.
  5. Duhigg C. Smarter Faster Better: Random House; 2016.
  6. Woods DR. Problem Based Learning: How to gain the most from PBL. 2nd. ed1997.
Ricardo A. Peña-Silva M.D., PhD is an associate professor at the Universidad de los Andes, School of Medicine in Bogota, Colombia, where he is the coordinator of the physiology and pharmacology courses for second-year medical students. He received his doctorate in Pharmacology from The University of Iowa in Iowa City. His research interests are in aging, hypertension, cerebrovascular disease and medical education. He works in incorporation and evaluation of educational technology in biomedical education.

He enjoys spending time with his kids. Outside the office he likes running and riding his bicycle in the Colombian mountains.

Establishing rapport with your class BEFORE they are your class

shutterstock_124813237Think back to some of the best courses/semesters you’ve ever had teaching (or as a student). I can almost guarantee that you fondly remember several of the students who were in the class. You would recognize them today even if you have had thousands of students since they last sat in your classroom. You probably remember specific interactions that you had. Maybe (after they were out of your class and preferably graduated, you even accepted their Facebook friend requests) Why? What made those students so memorable? Maybe it was a common academic interest or passion, some sort of unique personality trait, or maybe some unexplainable, unseen force that developed organically that you can’t pinpoint and think you can never purposefully recreate in future courses. Well, I’m here to tell you that you just might be able to recreate it. In fact, you can actually manufacture it for your future courses. While it does sound like cheating, it will help make your class successful for all of the other students as well.

With the beginning of the fall semester approaching, the first few days of your course will set the stage for the next 16 weeks. Obviously being well-prepared with the syllabus, course objectives, and course schedule well organized and outlined for the students is necessary as Angelina eloquently outlined in the previous article. Further outlining the expectations of yourself as the instructor and the students as the learners will help to start your course on the right trajectory. But a classroom success strategy that is easy to overlook, especially in the hectic first days of the semester, is building an early rapport between yourself and the students. While building rapport with the students comes more easily for some than for others (we all have that colleague who seems to naturally have the right combination of wit, charm, and caring and who never seems to have a problem engaging students), numerous factors contribute to its development, and nearly all of them can be planned for and controlled, manufactured if you will. I did not realize to what extent this was true until very recently though.

Generally, I have a good rapport with most of my classes and my Individual Development and Educational Assessment (IDEA) evaluation scores seem to indicate that is the case. However, the impetus for this article came after I struggled through my recent summer session course. I was left questioning my teaching abilities after every one of the 20, 2-hour-long class meeting times. Since I had taught the course multiple times, in the same time slot, and used all of the same strategies and more in attempts to connect and engage with the students like I successfully had in previous courses, I was baffled as to what the difference might be. Why was this one section so much less engaged, less likely to ask questions, less enthusiastic about the various activities, less likely to stop by my office, and less likely to e-mail with non-course related physiology questions? I had done everything that the literature recommends to develop rapport with students, but after my own post-hoc course evaluation and some serious introspection, I have an idea of what went wrong. I had not laid the ground work to build rapport with even one single student BEFORE the class began. While great articles do exist on building rapport in the classroom (see Meyers 2009 and Buskist & Saville 2001), few of them discuss how to build rapport before you’re in the classroom. It’s easier than you realize.

Thinking back to some of the best classes I’ve ever taught, I realized that I have always had at least one “go-to” student from the very first day of class, a student who I knew was reasonably comfortable speaking up in front of the whole class. I would use this student as a bellwether for the whole class in the first couple of days, posing questions directly to him or her and asking for comments and feedback. Inevitably, this would show other students that it was okay to speak up, make comments, and ask questions. Usually this student is pretty outgoing, but not always. Usually this student is good academically, but not always. Sometimes this student could be defined as the “class clown,” but not always. Almost always, however, I have known or at least communicated with this student before the semester has begun. Sometimes the student was in a previous class I taught or was my advisee, but often it is just a student who had trouble registering or had a question that required coming to my office before the first day of class. How did these students become my go-to students? What did I do to make these my go-to students? What makes them different? I have no idea honestly, but something about that first interaction, however innocuous, enables it to occur. Considering my past go-to students, I’ve come up with the three main ways that you can make sure that this interaction occurs in your class.

  1. During the advising and registration period (often the semester before), encourage students that you know to enroll in your class.
    • If you’re an advisor for students who might take your course this is actually pretty easy. Identify several students who might be able to fit your course into their schedules. Encourage them. “I really would enjoy it if you were able to take my course.” I have found this to be a very effective way to get students who are already comfortable speaking with me into my class. Not an advisor? E-mail students you’ve had in other courses or you’ve worked with in some other capacity.
  2. Prior to the semester start, someone is bound to e-mail or stop by your office to ask about your course, tell you he/she is having trouble registering, ask about a textbook, etc. Use this as an opportunity.
    • Obviously in these situations learn the student’s name, but also ask a couple other questions. “How’s your semester going?” “How was your summer?” “What makes you interested in this class?” “Is that shirt from that local 5k? You like running?” These interactions might seem like meaningless chit-chat, but they can really lay the foundations for classroom rapport later on. Latch on to anything the student says that you might be able to use later in class. Now you know you have a runner that went to the beach over summer. Great! You teach a physiology class and now you have a wealth of information that can make your lecture relevant to that student…and likely many more. Mention the student by name when you bring up the topic.
  3. Once you receive your class roster, look at it! E-mail the students even if it is weeks before the course starts.
    • Scan through your roster looking for students you’ve had previously or otherwise know. Send them individual e-mails and tell them you’re glad they’ll be in your class. Look at each student’s major, minor, even club affiliations if you have access. Take note of anything you can use later. Craft an e-mail to all the students to introduce yourself. “Hi! I’m Ed Merritt and I’ll be your professor for exercise physiology. I’m really looking forward to meeting everyone. Looking at the roster I see we have several nutrition majors in this class. Remind me to tell you a story about the time I ate a doughnut right before a hard workout. I also see we have a British literature major. Don’t worry. I’ll find a good story for you too! Let me know if you have any questions or concerns before the first day, otherwise I’ll see you soon!”

These three strategies alone will almost always insure that you have a go-to student for the first day of class. Use this connection. Call on him or her by name and show the class that you care about that student. The class won’t know that this is your go-to student, but once you have your go-to student engaged the rest of the class is much more likely to engage. Rapport is contagious, and once you have it with the class, teaching the material is much more enjoyable, and the student outcomes are much better. And hopefully you won’t have to suffer through a semester questioning your teaching abilities after every class.

Good luck with the upcoming semester!

 

References

Meyers SA. Do Your Students Care Whether You Care about Them? College Teaching, v57 n4 p205-210. 2009.

Buskist W, Saville BK. Creating positive emotional contexts for enhancing teaching and learning. APS Observer. p12-13. 2001.

 

PECOP Merritt picture
 

 

Ed Merritt is an assistant professor in the Department of Health and Exercise Science at Appalachian State University in Boone, North Carolina. Ed received his doctorate in Kinesiology from the University of Texas at Austin and completed a postdoctoral fellowship in Cellular and Integrative Biology at the University of Alabama at Birmingham. Ed’s research focuses on the molecular underpinnings of skeletal muscle atrophy after trauma and with aging, but he is also equally involved in the scholarship of teaching and learning and melding educational outreach activities with service learning.