Category Archives: 7 – 2018 July Highlights – Active Learning

Why I’m a Clicker Convert

Recently I was faced with a teaching challenge: how to incorporate active learning in a huge Introductory Biology lecture of 400+ students. After searching for methods that would be feasible, cost effective, and reasonably simple to implement in the auditorium in which I was teaching, I came up with clickers. Our university has a site license for Reef Polling Software which means I wouldn’t add to the cost for my students—they could use any WiFi enabled device or borrow a handset at no cost. I incorporated at least 4 clicker questions into every class and gave students points for completing the questions. 10% of their grade came from clicker questions and students could get full credit for the day if they answered at least 75% of the questions. I did not give them points for correct answers because I wanted to see what they were struggling to understand.

I’m now a clicker convert for the following 3 reasons:

  • Clickers Increase Student Engagement and Attendance

In a class of 400+, it is easy to feel like there is no downside to skipping class since the teacher won’t realize you are gone. By attaching points to completing in-class clicker questions, about 80% of the class attended each day. While I would like perfect attendance, anecdotally this is much better than what my colleagues report for similar classes that don’t use clickers. Students still surfed the internet and slept through class, but there was now more incentive to pay a bit of attention so you didn’t miss the clicker questions. In my opinion, getting to class can be half the battle so the incentive is worth it. In my small classes I like to ask a lot of questions and have students either shout out answers or vote by raising their hands. Often, students won’t all vote or seem to be too embarrassed to choose an answer. I tested out clickers in my small class and found an increased response rate to my questions and that I was more likely to see the full range of student understanding.

  • Clickers Help Identify Student Misconceptions in Real Time

Probably the biggest benefit of clickers to my teaching is getting a better sense of what the students are understanding in real time. Many times I put in questions that I thought were ‘gimmes’ and was surprised to see half the class or more getting them wrong. When that happens, I can try giving them a hint or explaining the problem in a different way, having them talk with their group, and then asking them to re-vote. Since I don’t give points for correctness, students don’t feel as pressured and can focus on trying to understand the question. I’m often surprised that students struggle with certain questions. For instance, when asked whether the inner membrane of the mitochondria increases surface area, volume, or both, only half of the students got the correct answer the first time (picture). Since this is a fundamental concept in many areas of biology, seeing their responses made me take time to really explain the right answer and come up with better ways of explaining and visualizing the concept for future semesters.

  • Clickers Increase Student Learning (I hope)

At the end of the day, what I really hope any active learning strategy I use is doing is helping students better understand the material. To try to facilitate this, I ask students to work in groups to solve the problems. I walk around the class and listen while they solve the problem. This can help me get an idea of their misconceptions, encourage participation, and provide a less scary way for students to ask questions and interact with me. While working in groups they are explaining their reasoning and learning from each other. Interspersing clicker questions also helps to reinforce the material and make sure students stay engaged.

I’m convinced that clickers are helping to improve my teaching and students seem to agree. Of the 320 students who filled out course evaluations one semester, 76 included positive comments about clicker questions. Here are two of my favorites:

“I like how we had the in-class clicker questions because it made me think harder about the material we were learning about in that moment.”

“I enjoyed doing the clicker questions. If the class disagreed with something she would stop and reteach the main point and hope we would understand. That was really helpful on her part.”

I would be remiss if I didn’t end by thanking the many researchers who have studied how to incorporate clickers into your class to maximize learning. I decided to try them after hearing Michelle Smith talk at the first APS Institute on Teaching and Learning and highly recommend seeing her speak if you have the chance. If you only want to read one paper, I suggest the following:

Smith, Michelle K., et al. “Why peer discussion improves student performance on in-class concept questions.” Science 323.5910 (2009): 122-124.

I hope you will comment with how you use clickers or other strategies to engage large lecture classes. For more resources I’ve found helpful designing my classes click here.

Katie Wilkinson, PhD is a newly minted Associate Professor of Biological Sciences at San Jose State University. She completed her undergraduate work in Neuroscience at the University of Pittsburgh and her PhD in Biomedical Sciences at the University of California, San Diego. She was an NIH IRACDA Postdoctoral Fellow in Research and Scientific Teaching at Emory University. At SJSU her lab studies the function of stretch sensitive muscle proprioceptors. She teaches Introductory Biology, Vertebrate Neurophysiology, Integrative Physiology, Pain Physiology, and Cardiorespiratory Physiology to undergraduate and masters students.
BOOK REVIEW: Teach Students How to Learn: Strategies you can incorporate into any course to improve student metacognition, study skills, and motivation

I recently had a conversation with my son who teaches high school math and computer science at a Catholic college-prep girls high school in San Jose, CA about how his students did not realize that they were learning from his innovative standards-based teaching approach.  We had already discussed how mindset has a big impact on student learning at an early age; how K-12 students are not taught appropriate study skills for future educational experiences; and how students do not understand how they learn.  Thus, I went out looking for resources to help him deal with these learning issues.  By searching on Amazon, I found the book Teach Students How to Learn:  Strategies You Can Incorporate Into Any Course to Improve Student Metacognition, Study Skills, and Motivation by Saundra Yancy McGuire with Stephanie McGuire (ISBN 978-1-62036-316-4) which seemed to be just what we wanted.  Dr. McGuire taught chemistry and has worked for over 40 years in the area of support for teaching and learning.  She is an emerita professor of chemical education and director emerita of the Louisiana State University Center for Academic Success.  Her daughter Stephanie is a Ph.D. neuroscientist and performing mezzosoprano opera singer who lives in Berlin, Germany.

The book has interesting and self-explanatory chapters about Dr. Saundra McGuire’s own evolution as a teacher (and as a chemistry major I could really relate to her story), discussions about why students don’t already know how to learn when they come to college, what metacognition can do for students to help them become independent learners, how to introduce Bloom’s taxonomy and “the study cycle” to students, how to address student growth vs. fixed mindset status, and how both faculty and students can boost motivation, positive emotions, and learning.  The study cycle learning strategy proposed and used by Dr. McGuire over the years involves five steps for the students: preview before class, attend class and take meaningful notes, review after class, study by asking “why, how, and what if” questions in planned intense study sessions and weekend reviews, and assess their learning by quizzing or planning to teach it to others.  Especially helpful for teachers are the actual presentations as three online slide sets and a sample video lecture (styluspub.presswarehouse.com/Titles/TeachStudentsHowtoLearn.aspx), and a handout summarizing the entire process that Dr. McGuire uses to introduce her learning strategies to groups of students in as little as one 50-minute class period.  Throughout the book, there are summary tables, examples, activities, and success stories about students who have incorporated the learning strategies.

In Appendix D of the book (pp. 176-177), Dr. McGuire includes a handout entitled “Introducing Metacognition and Learning Strategies to Students: A Step-by-Step Guide” for the 50 minute session.

An abbreviated version of the 15 steps are repeated here:

  1. Wait until the students have gotten the scores of their first test back.
  2. Don’t tell the class in advance that there will be a presentation on learning strategies.
  3. Evaluate student career goals by clickers or show of hands at beginning of session.
  4. Show before and after results from other students.
  5. Define metacognition.
  6. Use exercise to show the power of various learning strategies.
  7. Ask reflection questions, like “What is the difference between studying and learning?
  8. Introduce Bloom’s taxonomy.
  9. Introduce the study cycle as way of ascending Bloom’s.
  10. Discuss specific learning strategies like improving reading comprehension (active reading) and doing homework as formative assessment.
  11. Discuss reasons students in the class may or may not have done well on the first test.
  12. Ask students how different the proposed learning strategies are to the ones that they have been using.
  13. Ask students to commit to using at least one learning strategy for the next few weeks.
  14. Direct students to resources at your campus learning center.
  15. Express confidence that if students use the learning strategies they will be successful.

Currently all of the students that I teach are either advanced undergraduate students planning to go to professional schools or graduate students, so that my current students do not have mindset or motivational issues and have mostly learned how they study best.  However after sharing this book review with you, I have convinced myself that I cannot give up my book to my son when he comes to visit next month and I will need to go and buy another one.  I hope that this book will help you facilitate the learning of your students too!

Barb Goodman received her PhD in Physiology from the University of Minnesota and is currently a Professor in the Basic Biomedical Sciences Department of the Sanford School of Medicine at the University of South Dakota. Her research focuses on improving student learning through innovative and active pedagogy.
Five lesson design tips to help your learners find their Happy Place (…with some help from Dr Seuss)

We’ve all been there, that unhappy place at the pointy end of some badly designed learning material. You know the place – it’s grim and grey and jammed full of text-laden power point slides, complicated jargon, and at least one terrifying pie graph with microscopic labeling. It’s a place that’s confusing, generic, and entirely unengaging for you as a learner. In the words of Dr. Seuss, “You will come to a place where the streets are not marked. Some windows are lighted. But mostly they’re darked.”[1]

And dark these places are. The challenge can be even greater when you’re creating online lessons for students to use away from the classroom. But that’s where thoughtful lesson design helps: it switches on the floodlights, clears the way, and points your students in the right direction by putting them at the center of the learning experience, whether a teacher is in the room with them or not.

So, here are five simple design tips for creating effective and engaging online lessons, so you can help your learners find their happy place and stay on track:

 

Tip 1: Keep it simple!

  • Define your learning outcomes and post them in the lesson.
  • If content doesn’t support your instructional goals, delete it!
  • Make notes of relevant, contextual examples that could bring “life” to the learning outcomes, and help students understand why they are learning it.
  • Some hacks specifically for Life Science teaching:

 

Tip 2: Break up the text

  • Use your learning outcomes to help guide you in dividing up / chunking your text.
  • Keep sentences and paragraphs short and simple.
  • Highlight the focal points using headings, text formatting, color, and contrast.
  • Intentionally leave blank space on your lesson pages – it can be a powerful design tool to give important concepts some buffer space to call attention to their importance.
  • Make use of lists, bullet points, and tables to present information:

 

Tip 3: Make it visual

Did you know the old saying, “A picture is worth a thousand words,” is backed by neuroscience? Research suggests that we remember more of what we see than what we read.[2]

Try these:

  • Use icons as virtual “signposts” for extra information. You can use these in multiple lessons to add cohesiveness.
  • Turn information into graphs or infographics for your lessons – you could even turn this into an assessment for students. This works especially well for conveying relationships or showing steps in a process:

Here’s another example of a complementary visual element:

 

These are some of our favorite free resources to help you create or add public domain or Creative Commons media to your lessons:

Note: While free, most of the sources above require proper attribution. Don’t forget to give the creator a virtual high-five by adding a citation to their media!

 

Tip 4: Ask questions

Adding practice and feedback to lessons is the most effective way to enhance the retention and recall of new material [3,4,5]. It also enables students to check their understanding and self-monitor for misconceptions early on in the learning process.

Test it out:

  • Distribute formative questions with feedback throughout lessons, not just at the end. (By making questions formative, the emphasis is placed on learning rather than earning or losing points.)
  • Mix up question types: categorizing, matching, ordering, and labeling exercises, MCQs, completing tables, free recall, etc. Variety in quizzing strengthens the ability to recall information down the road.
  • Are there still big blocks of text in your lessons? Try turning text into interactive questions! Students can order steps in a process, match terms and definitions, correct false statements into true statements, categorize by function, characteristic, etc.
  • Ask questions and create activities that check knowledge about the most important aspects of the instruction. Use your learning objectives to guide you!

 

Tip 5: Connect & reflect

Ask students to draw out new questions, connections, and conclusions through reflective activities. Actions like summarizing information into words or diagrams help students organize new information into preexisting schema, aiding the conversion of long-term memory [3,4].

 

Some reflective ideas:

  • Teach a new concept to friends or family members.
  • Brainstorm analogies that link new topics to well known ones.
  • Create a mind map or other visual or auditory representation that highlights the main points and connections between concepts.
  • Ask students how they would respond in a series of scenario-based questions.
  • Design a research project or critique a research paper.
  • Brainstorm what questions they still have about the subject, to encourage curiosity and further self-directed learning.

________

Ultimately, even simple tweaks to how you display information will have a big impact on students’ attitude toward and engagement with course materials. To help, download this cool infographic of our lesson design tips to keep handy when designing your lessons!
These design elements are a way to shift from instructor-led lessons to ones where the student is the center of the design and learning experience. If you can spend a small amount of time and effort on lesson design it can greatly enhance student motivation and increase time on task – turning them into the brainy, footsy, mountain-moving achievers they are destined to be.

 

The only question now is…will you succeed?

Yes! You will, indeed!

(98 and ¾ percent guaranteed) [1]

 

References:

[1] Seuss, Dr. (1990). Oh, the places you’ll go! New York: Random House.

[2] Medina, J. (2014). Brain rules: 12 principles for surviving and thriving at work, home and school. Seattle: Pear press.

[3] Brown, P. C., Roediger, H. L., & McDaniel, M. A. (2014). Make it stick: the science of successful learning. Cambridge, MA: The Belknap Press of Harvard University Press.

[4] Malamud, C. (2016, Oct 6). Strategies For Effective Online Instruction: A Conversation with Michelle D Miller. The eLearning Coach Podcast. [Audio podcast] Retrieved from http://theelearningcoach.com/podcasts/36/

[5] Larsen, D. P, Butler, A.C., and Roediger, H. L. (2008). Test-enhanced learning in medical education. Medical Education. 42: 959–966. doi:10.1111/j.1365-2923.2008.03124.x

 

Ellen Crimmins (MS) is an instructional designer and ocean enthusiast. She loves studying how people learn and working with educators to bring their online lessons to life. Away from the computer screen, you can find her exploring nature trails and 50s themed diners with her better thirds (husband and dog).
Sina Walker (MSciComm) is a writer and former natural history filmmaker. She has three little boys so doesn’t have time for many hobbies, but enjoys taking mom-dancing to new levels of awesome.
Marissa Scandlyn (PhD) is a product manager at ADInstruments by day, and a netballer by night. She’s researched new drug treatments for breast cancer and children’s leukemia with her pharmacology background, and was previously the coordinator of ADI’s team of Instructional Designers. Marissa enjoys reading, movie watching, and being mum to the cutest dog in the world, Charlie.