Category Archives: Professional Development

Letter to my trainee-self: translating my research from the bench to…classroom?

I love to read quotes by Greek philosophers. They were wise individuals and did not have access to immediate “knowledge” as we do today thanks to available technologies. After all, the internet would not be created for thousands of years later. What this did afford them the opportunity to do is to engage in what we call critical thinking. It is all they did! Today, their quotes help to keep me grounded; my favorites are the quotes attributed to Aristotle. Aristotle was a scientist, a biologist, an intellectual, and a philosopher, just like us! Yes, it is hard to consider ourselves “philosophers.” However, we are — and among those of us with a Philosophy Doctorate (Ph.D.) represent  2% of the population in the United States (less than 1% worldwide) (OECD, 2021). Earning our doctoral degrees required years, sweat and tears working through graduate training. Most of us have spent countless hours conducting research, analyzing, and interpreting data; our contributions to the field of study are meaningful and novel.

We know a lot of things, so any recent graduate should be ready to land their dream job and hit the ground running, right? Unfortunately, for most trainees this is not the case. The bottom line is that our training did not prepare us for the job, at least not fully prepare for it. In most of the classical doctoral programs in the U.S. you will be trained to be a great research scientist. Chances are you will be teaching, managing lab personnel, and juggling with grant budgets, without any training in pedagogy, human resources, or accounting, respectively. So, how are we supposed to be successful? I wish somebody had told me these things when I was a trainee! I can’t change the past, and I have learned a lot since I was a trainee, so here I am listing some of my learned lessons, using Aristotle’s words of wisdom. This could have helped my younger self, and I am writing this with the hope that my experience helps other young scientists beginning their careers in academia.

The more you know, the less you know

Aristotle was right about this one! The more immersed in your research you are, the more you realize you are missing information. That is, the beauty of research, it never ends, we never know all the answers or mechanisms. No matter what research you are conducting, you are the absolute expert on your study. It is very specific to that one population, system, enzyme, or molecule. Chances are that your first job involves teaching, in some cases a lot of teaching, and it can be intimidating.

Unfortunately, like most of faculty in biomedical sciences, my doctoral studies in physiology didn’t include pedagogy or evidence-based practices in teaching. Yet, most of us are expected to teach high quality courses with large enrollment and be proficient at it. I knew I had a lot to learn, and I wanted to create my identity as an instructor, but I didn’t know how. I had this feeling that I knew a lot of “stuff” about my research and how it could be translated into clinical practice, but not much about teaching physiology!

I dedicated, and I still dedicate long hours and effort to become the best professor I could be, in the classroom, in the lab and in the community. Thankfully, there are resources for you to implement the best evidence-based practices in your classroom:

1-           Join the Teaching section of your professional association. In my case, The American Physiological Society Teaching Section has been my main source of information and training in teaching physiology. “The American Physiological Society Teaching Section promotes excellence in physiology education through educational research and scholarship in physiology.” Most people join other sections because it closely aligns with their research interests. However, you can make the teaching section your secondary or tertiary section and be able to access all of the benefits in training, workshops, mentoring, and generous awards for trainees, early and mid-career, and senior professionals!

2-           Consider attending conferences dedicated to teaching. In my case, attending the APS Institute on Teaching and Learning allowed me to become a better classroom instructor, which changed the trajectory of my career, as I was exposed for the first time to the possibility of conducting research in teaching physiology. Not only did I learn a lot, but also I was able to learn how to incorporate research in teaching into my workplan, increasing productivity and career satisfaction.

3-           Join the newly created Center for Physiology Education. The center was developed with input from more than 500 educators in the field, and it is structured around five interconnected themes: evidence-based teaching practices, inclusive teaching, teaching, and learning integrative physiology, physiology education research and curriculum development.  Together, these components provide a comprehensive approach to advancing physiology education and learning.

4-           Attend as many workshops on teaching as you can! At the University of Louisville, we are fortunate to have UofL Delphi Center for Teaching and Learning, many institutions have similar centers or support for teaching faculty, find yours and attend every workshop possible!

5-           Participate in professional development opportunities for mentoring, depending at what point of your career you are, you can participate as either as a mentee or a mentor, you will be gaining invaluable experience that can be easily transferred to your students in class or research students and trainees in your lab. In my case, I learned a lot about teaching and my mentoring style as a mentor of the Teaching Experiences for Bioscience Educators Fellows and Mentors.

“Those who know, do. Those who understand, teach.”

This is another quote attributed to Aristotle that relates to my teaching philosophy. You can “do” by giving a lecture, or you can teach using critical thinking. In order to teach you have to fully understand the concept, of course! But also, you have to understand the environment, your classroom, department, college and university cultures. To teach, you need to know your students. Not at a personal level necessarily, but understanding the idiosyncrasy of your class is going to be the key for success. Expectations for a class with non-traditional students will be very different than with traditional 18-year-old first year students. You always must know your audience, and how to engage diverse students. You will also learn about your students and community if you are out and engaged. Be out in the community, help or organize science fairs or outreach programs to local schools. Be engaged in your community, this will make you a better teacher too!

To facilitate critical thinking, use data or applied problems. For instance, consider using real life cases to teach mechanisms! After teaching thousands of students, I realized that learning happens by doing, by experimenting, by solving problems. When I teach physiology, I want my students to remember the previously learned system, and the interrelationships among systems. There is nothing better than the work of more seasoned colleagues! The national center for case study teaching in science, now part of the national science teaching association provides thousands of case studies and assignments with the keys and rubrics, that have been previously peer-reviewed with a high level of scrutiny.

Even if teaching is not the core of your identity as a scientist, chances are that at some point you will be teaching trainees, the community, or potential investors, you need to learn how to engage students. Mentoring workshops are very helpful to find your mentoring styles and how to manage your research team. I am going to end this blog with one of my favorite quotes “Excellence is never an accident. It is always the result of high intention, sincere effort, and intelligent execution; it represents the wise choice of many alternatives – choice, not chance, determines your destiny.”

1-           OECD. (2021). Educational attainment of 25-64 year-olds (2020).

Dr. Terson de Paleville teaches Advanced Exercise Physiology, Neuromuscular Exercise Physiology, and Human Physiology courses. Her research interests include motor control and exercise-induced neuroplasticity. In particular, Dr. Terson de Paleville has investigated the effects of activity-based therapy on respiratory muscles, trunk motor control and autonomic function in people with chronic spinal cord injury. Additionally, Dr. Terson de Paleville investigate the effectiveness of team-based active learning in physiology courses.

Daniela Terson de Paleville, PhD

Associate Professor

University of Louisville

Incorporating Conference-Based Assignments into Coursework

Attending professional conferences is an excellent opportunity for students to network, learn, and gain a greater understanding of how science works. Undergraduate students often attend conferences because they are presenting their work; however, attendance at professional conferences even if not presenting can open a variety of opportunities for students (Gopalan et al., 2018). Potential benefits of participation include content knowledge or application gains, exposure to different ideas, better understanding of how different areas of a field integrate, networking building, career exploration, and practice with professional interactions.

 

Prior to attending the conference, instructors should consider preparing students for attendance. Instructors should explain the purpose of professional conferences, highlighting the importance of the exchange of ideas and building professional networks. First time undergraduate attendees, especially, may be unsure of what to expect and how to interact with others professionally. Just as faculty mentors would practice with student presenters, practicing with and mentoring non-presenting student attendees can optimize the student conference experience. Holding a pre-conference information session with students will help them be prepared and make the most of their experience. Informational session topics can include: how to ask questions, talking to poster presenters, what to expect from grad school admissions tables, how to earn continuing education credits, developing or revising a resume to have on hand, identifying presenters in attendance to connect with, and creating a conference schedule. Additionally, instructors can help students create and practice an “elevator pitch” to describe their work and professional goals (Das & Spring, 2022). Das and Spring (2022) recommend students set goals for the conference in advance so their time at the meeting is intentional. In addition to pre-conference instruction and conference-based assignments, a general follow up with students after the conference can provide insight into what students learned, what challenges they encountered, and what they found interesting. Student insight can be helpful in planning for future meetings.

 

Incorporating conference attendance into a course can significantly add to the student course experience. Using conferences to augment a course is a great opportunity to help students integrate course content with development of professional and communication skills. What follows is a list of potential assignments instructors might consider to encourage student participation in conferences. Many of the suggestions below would work well for in person or virtual conferences. The assignments can be implemented for any type of conference; however, encouraging students to attend smaller, regional conferences first is an excellent way to prepare them for larger, national and international conferences. Conference- based assignments could be evaluated for credit, extra credit, or as an additional demonstration of engagement or understanding.

 

 

  1. Make a spotlight box, similar to one you would find in your textbook, about one of the conference presentations. Include background context, important points from the speaker’s talk, and practical applications. Add relevant figures or graphs from other research papers or the speaker’s presentation to frame the spotlight and make it visually appealing to the reader. Be sure to cite your sources.
  2. Make a short YouTube video that summarizes the general topic presented by one speaker. After summarizing the broader content area, highlight information from the speaker’s presentation. Feel free to be creative- present it as a news story or host a debate with fellow classmates! (Heffernan, 2020)
  3. Design a proposal for a talk for next year’s meeting. Choose an area of exercise science you are interested in learning more about. Describe 3-5 learning objectives of the presentation and identify 3 experts in the field who would serve as your speakers. (Heffernan, 2020)
  4. Tell a young child about what you learned at the conference. Choose one of the keynote speakers’ presentations and make a short children’s story about the topic. Make the content fun and easy to understand. Include illustrations which help kids visualize the ideas you present.
  5. Watch/read 3 poster presentations. For each one, summarize the presentation. What are the strengths and limitations of each study? What would you do differently if you were the researcher? Why? What would your next study be and why? (Heffernan, 2020)
  6. Take visual notes on one of the presentations you watch. Your goal is to make your notes about the content visually appealing and make connections between ideas. Because you are connecting ideas, the notes do not need to be in top to bottom order, but organized according to themes. Include questions asked by the audience members and the speaker responses in your notes. (Google “visual note taking” for some cool ideas and pictures).
  7. Write a 2 page scientific summary of a presentation, locate 2-3 peer reviewed resources (preferably by the speaker) related to the talk and infuse them into the summary. (Heffernan, 2020)
  8. Make an infographic (Try programs like Canva, for example) about one of the presentations- include the main points, supporting evidence, conclusions, and practical applications. Be sure the infographic includes figures, is easy to read, and is visually appealing.
  9. Write a poem or song about one of the presentations. For example, write a series of haiku or use a rhyming scheme in a poem. Put your own song lyrics about the talk or content area to the music of another song or use refrains/verses to your own lyrics. For example: “you’re a vein” to “You’re so vain”.
  10. Create a movie trailer (iMovie works great and has pre-made templates) about one of the talks. Use open access videos and pictures from the internet in the movie or make your own with 2-3 classmates (groups of 4 or less). Include info about the presentation as if you were publicizing the talk. Be sure to include the main ideas or conclusions and relevant contextual information.
  11. Ask one or more of the speakers about their career path(s). Write up a 1-page summary of their responses to the following questions. How did they get to where they are? Did their path change and how? Did their interests change as they moved through their careers and if so, why? Was it different or the same as what they expected at your stage in your career? Why is it important to recognize our paths might take different directions than expected?
  12. Create a “BINGO” style card or scavenger hunt to encourage students to communicate with people or investigate different aspects of the conference. (Gopalan et al., 2018)
  13. Use twitter to react to the presentation. Tweet key points from the talk. Tag the speaker or use the conference hashtags in your tweet. (Heffernan, 2020)
  14. Write a short reflection, 1-2 pages, on what you learned about HOW science works. You may want to think about the following: What is the purpose of a conference like the one you attended? How do different presentation types advance research in the field or clinical practice? Why is dissemination of research important?
  15. After learning about different areas of research, what might you be interested in researching? What new ideas were sparked for you from the presentations you attended?

Professional conference attendance is an important opportunity for presenting and non-presenting students. Conference attendance can easily be integrated into various courses from introductory level courses which may encourage students to develop research later in their college careers to upper-level students who may be interested in building professional networks for graduate or professional school. Conference-based assignments are useful ways for instructors to integrate course content, professional development, and conference attendance into their courses.

References

Das, B., & Spring, K. (2022, September 22). 11 Tips for Instructors Bringing Students to ACSM Regional Chapter Meetings. ACSM_CMS. https://www.acsm.org/home/featured-blogs—homepage

Gopalan, C., Halpin, P. A., & Johnson, K. M. S. (2018). Benefits and logistics of nonpresenting undergraduate students attending a professional scientific meeting. Advances in Physiology Education, 42(1), 68–74. https://doi.org/10.1152/advan.00091.2017

Heffernan, K. (2020). MARC in the Classroom. https://www.acsm.org/docs/default-source/regional-chapter-individual-folders/mid-atlantic/marc-acsm_integrating-into-classroom.pdf?sfvrsn=503ff16e_0

Dr. Mary Stenson earned her B.S. in Biology from Niagara University and her M.S. and Ph.D. in Exercise Physiology from Springfield College. She is an Associate Professor of Exercise and Rehabilitation Science at the University of Minnesota Duluth. Dr. Stenson teaches exercise physiology, metabolism, and nutrition. Her research focuses on recovery from exercise and improving the health of college students. Dr. Stenson mentors undergraduate research students each year and considers teaching and mentoring the most important and fulfilling parts of her work.
Pandemic Adaptations for PECOP and the 2022 ITL!

The American Physiological Society (APS) Physiology Educators Community of Practice (PECOP) and Institute on Teaching and Learning (ITL) were created to build connections among physiology educators and to promote the sharing of evidence-based teaching practices in physiology education. Due to the COVID-19 pandemic, the 2020 ITL and other PECOP activities were shifted to a virtual format. Virtual ITL Week included daily two-hour interactive sessions. Session topics and speakers were selected from the original conference schedule, with emphasis on topics that would assist educators during the pandemic. Registration was free, attracting nearly 500 registrants, a five-fold increase over normal ITL attendance. International educator participation was more than double that of previous ITL meetings. Long-term impacts of this unplanned “experiment” include plans for virtual components at some future ITL meetings, a PECOP webinar series open to the public, and an online professional skills training course for new physiology educators. An editorial describing these outcomes has recently been published in Advances in Physiology Education (https://journals.physiology.org/doi/full/10.1152/advan.00245.2020).  Please join PECOP for free by registering your email at the LifeSciTRC (https://www.lifescitrc.org) and select “PECOP Member” in your user profile.  The 2022 APS Institute on Teaching and Learning will be June 21-24 in Madison, WI (https://www.physiology.org/professional-development/meetings-events/itl-2022?SSO=Y).  The institute will engage educators in interactive sessions on best practices in teaching, learning and assessment.  Whether you are an experienced educator or new to teaching, ITL will challenge you to gain the skills needed to design and implement educational research in your classroom and learn how to share your findings with colleagues.  The institute includes plenary talks, concurrent workshops, poster sessions and time to network and connect with your colleagues.  Please keep checking the website to see when registration is ready!

Barbara E. Goodman, Ph.D., Professor of Physiology

Fellow of the American Physiological Society

Editor-in-Chief, Advances in Physiology Education

Division of Basic Biomedical Sciences

Room 224 Lee Medicine

Sanford School of Medicine of the University of South Dakota

 

The Capstone Experience: Implementing lessons learned from a pandemic educational environment to create inspirational real-world educational experiences
Historically, physiology undergraduate students across the world have undertaken a laboratory-based, fieldwork or critical review research project, their educational purpose for students to gain research experience. However, decreasing numbers of physiology graduates are going onto careers in research, many are leaving science altogether. It is therefore imperative that we, as educators, better prepare the majority of our students, through their projects, for the diverse range of careers they go onto.

Pre-pandemic opportunities

Over the last twenty years, physiology and the broader global bioscience educator community, recognizing this diversity of graduate career destinations, have been expanding the range of projects available to their students, introducing for example, public engagement, educational development or enterprise projects.  However, the focus and purpose of these projects remained for students to gain research experience. They were traditional research projects but outside of the laboratory. The literature and Accrediting Bodies project criterion still talked about students undertaking “hypothesis-driven research” and “project/research-based assignments”.

Whilst these traditional research projects may have been relevant fifty years ago, they do not enable the majority of current Bioscience graduates to be “work-place ready”. The world is currently going through its fourth industrial revolution (4IR), a world and workplace governed by robotics, artificial intelligence, digitization and automation. Graduate recruiters require graduates with different skillsets, the so-called 4th Industrial Revolution (4IR) skills1.

I recognized that radical change was required, not only in my School of Biomedical Sciences, but across bioscience Higher Education globally. Collectively, bioscience educators needed to rethink the purpose, practices and outcomes of undergraduate research projects in order to better prepare our students for an increasingly challenging 21st Century global workplace.

My solution was to introduce project-based capstone experiences into my program. their purpose to provide students with opportunities for personal and professional development, and to gain real life work experience.

A highly experienced science communicator, I facilitated ethical debates in High Schools.  I realized that this would make an ideal opportunity for my undergraduates – something different as their research project. Starting small, I collaborated with one of my project mentees to co-create and co-deliver an ethics-focused workshop for High School students at the 2005 Leeds Festival of Science2. The capstone experience, as an alternative to traditional research projects, was born.

Over the last sixteen years, I have progressively expanded the range of capstone opportunities in my course. Colleagues within my School of Biomedical Sciences at the University of Leeds (UK), recognizing the benefits of capstones to students, joined me. In partnership with our students, we have created a sector-leading portfolio of traditional research projects offered alongside science or industry-focused capstones, and those with a civic or societal focus in the same course (Figure 1)3. Students select the project that best addresses their individual developmental needs and/or future career intentions. By offering this broad portfolio of sixteen opportunities, it is inclusive, there is something for each and every student to realize their full academic potential and personal goals.

 

Figure 1: Research and capstone project opportunities available to students

My students have wholeheartedly grasped this opportunity, excelling academically.  Their course marks are significantly higher than students undertaking traditional research projects (2020: mean ± SD = 71.4±4.4% vs 68.4±5.8%, p<0.05).  In 2020-21, 27% selected capstones as their first choice of project, a massive cultural shift given we are a research-intensive (R1) Institution where laboratory projects have traditionally been viewed by both students and Faculty as the “gold-standard”.

Our work as a team has resulted in the award of a prestigious national (UK) higher education prize, an Advance HE Collaborative Award for Teaching Excellence.

My work came to the attention of other Bioscience educators. I was invited to run workshops at Institutions across the UK seeking to introduce capstones into their program. I re-wrote one of the two UK Bioscience Accrediting Bodies project accreditation criteria, incorporating my capstone ideas.

And then Covid struck!

With restricted or no access to research facilities, Bioscience educators globally struggled to provide alternatives to traditional research projects.  To support colleagues across the world, in partnership with Sue Jones (York St John University, UK) and Michelle Payne (University of Sunderland, UK), I ran virtual workshops, sharing my capstone ideas and resources.  I created and shared globally, guides for students4 and educators5, and resource repositories6,7. The workshops were attended by over 1000 educators from as far afield as Australia, Africa and America. The resources viewed 12,000 times from over 50 countries.

A year on, we surveyed both students and Faculty globally. All responding institutions had introduced capstone projects into their programs in 2020-21. More importantly, they are here to stay. Recognizing the benefits to their future employability and careers, a massive 94% of students wanted capstones to be provided alongside traditional research projects. Faculty thought the same. All are not only keeping capstones, but more importantly, are broadening their portfolios going forward. Each new format developing different skill sets and attributes, and therefore preparing students for additional career destinations. We have inspired sector-wide curriculum change!

Going forward, we cannot return to our old ways!

As the world opens up and returns to a new “normal”, we cannot go back to our old ways of just offering traditional research projects. We would be massively letting our students and wider Society down. We need to take the best from what we have learnt and achieved, both before and during the pandemic, and continue to develop and evolve our collective capstone provision going forward.

We are at the start of an exciting Global journey.  Capstones across the world are predominantly conservative in nature, for example taught courses, senior seminar series or extended essays. Educators globally have yet to fully realize the transformative (massive uplift in skills and attributes) and translational (preparation for the workplace) potential of capstones.

We need to create capstones that are more representative of the work place for example, multi-disciplinary teams and sub-teams working on the same capstone, and capstones that run over multiple years, with current students taking the previous year’s project outputs and outcomes to the next stage.  The events of the past two years have made Universities realize they need to better address their local and global civic and societal responsibilities and missions, so capstones that facilitate societal engagement. We need to move away from traditional dissertations or reports to more authentic real-world assessments.

Within my School of Biomedical Sciences and the broader University of Leeds, we have started down this journey. Ninety percent of the capstones in my course are now team-based. Students choose their primary assessment method (e.g. academic paper, commercial report, e-portfolio) – the one most suited to their particular capstone format and which best showcases their knowledge, skills and attributes. I have introduced Grand Challenges capstones where students work as to teams to create evidence-driven solutions to global Grand Challenges or UN Sustainable Development Goals (SDG). The intention to develop these into trans-national educational opportunities, where students from the Global North and South work collaboratively on the same SDG or Grand Challenge capstone. We have an Institutional requirement that all undergraduate students, regardless of discipline, must undertake a major research-based assignment in their final year of study. I have been awarded a Leeds Institute of Teaching Excellence to work with Faculty across the University to introduce capstones into their programs and to create pan-university multi-disciplinary capstone opportunities for our students.

I do not do things by halves. My vision is not just limited to Leeds, the UK or the Biosciences, but Global!

I have created a global Community of Practice for stakeholders across the world to work collaboratively together, sharing ideas, expertise and resources, to co-create and introduce inspirational multi-disciplinary, multi-national team-based capstone projects that address globally relevant issues into undergraduate and taught postgraduate degree programs across the world.  I want to make it a truly global and inclusive community, to include all stakeholders- students, alumni, educators, employers, NGOs, social enterprise, Global North or South, all disciplines or sectors….The list is endless.

If you would like to join this Community of Practice and be part of this exciting journey, please email me (d.i.lewis@leeds.ac.uk). Please share this opportunity amongst your colleagues, networks and across your Institution. The broader the membership, the greater the collective benefits for all.

If we pull this off, the benefits for students, other stakeholders and Society will be phenomenal. Our graduates would be truly global graduates, equipped with the skills and attributes to become leaders in whatever field they enter. As Faculty, we would be providing an exceptional educational experience for our students, properly preparing them for the workplace. Universities, through student capstones, would be better able to address their civic and societal responsibilities and missions. Employers would have graduates able to take their businesses forward and to thrive in an increasingly competitive global marketplace. We would be creating solutions to some of the complex problems facing mankind.

Figure 1: Research and capstone project opportunities available to students

1.    Gray, A. (2016). The 10 skills you need to thrive in the Fourth Industrial Revolution. World Economic Forum. https://www.weforum.org/agenda/2016/01/the-10-skills-you-need-to-thrive-in-the-fourth-industrial-revolution/

2.    Lewis DI (2011) Enhancing student employability through ethics-based outreach activities and OERs. Bioscience Education 18, 7SE https://www.tandfonline.com/doi/full/10.3108/beej.18.7SE

3.    Lewis DI (2020a). Final year or Honours projects: Time for a total re-think? Physiology News 119: 10-11.

4.    Lewis DI (2020b). Choosing the right final year research, honours or capstone project for you. Skills career pathways & what’s involved. https://bit.ly/ChoosingBioCapstone

5.    Lewis DI (2020c). Final year research, honours or capstone projects in the Biosciences. How to Do it Guides. https://bit.ly/BiosciCapstones

6.    Lewis DI (2020d) E-Biopracticals (Collection of simulations & e-learning resources for use in Bioscience practical education. Available at: https://bit.ly/e-BioPracticals

7.    Lewis DI (2020e) Open access data repositories (Collection of large datasets, data analysis & visualization tools).  Available at: https://bit.ly/OADataRep.

 

Dr. Dave Lewis is currently a Senior Lecturer (Associate Prof) in Pharmacology and Bioethics in the School of Biomedical Sciences, University of Leeds, UK. A student education focused colleague, he creates inspirational educational and professional educational interventions designed to promote learner personal and professional development, and prepare them for the workplace.  He is the architect of the introduction of capstone projects into Bioscience programs across the UK and beyond.  He also Chairs the International Union of Basic & Clinical Pharmacology’s Integrative & Organ Systems Pharmacology Initiative, working with Professional and Regulatory Bodies, and NGOs in India, China and across Africa to co-create and co-deliver professional education in research animal sciences and ethics.

In recognition of his exceptional contribution to Bioscience Higher Education globally, he has received multiple prestigious education awards including a UK Advance HE National Teaching Fellowship and its Collaborative Teaching Excellence Award, the (UK) Biochemical Society’s Teaching Excellence Award, the (UK) Physiological Society’s Otto Hutter Teaching Prize, and Fellowship of the British Pharmacological Society & its Zaimis Prize.

Considering Student Evaluations of Your Teaching

After a long and trying academic year, student evaluations of your teaching will soon be in your inbox. A bit of courage is required to take a first glance at student comments about your course. Given the substantial increase in time and effort this academic year has required, critical comments may feel even more harsh.

When you do look over your student evaluations, take a few minutes to copy or write down some of the positive comments. Believe and appreciate these comments. Students value your knowledge, talents, and hard work. Then, put the evaluations away for a few days. Come back to them when you have time and energy for self-reflection.

The act of teaching is extremely personal, and it is difficult not to take critical comments as a personal attack. To compound these feelings, student evaluations are often central to the reappointment, promotion, and tenure processes. While some institutions have taken proactive measures to mitigate the effect of the pandemic on these processes, uncertainty about how review committees will consider student teaching evaluations from these terms can increase anxiety for educators.

There are other problematic issues with student evaluations. Current tools used to survey student opinions about their learning experiences are flawed. Meta-analysis indicates there is little to no relationship between what students learn and how they evaluate their teachers (1, 2). Common evaluation survey methods also have well-established biases against women and people of color (3). There are clear steps institutions can take to mitigate these issues, including educating students on the important aspects of teaching evaluations (4), adapting evaluation tools to decrease bias (5), and adopting multi-faceted evaluation methods (6).

Addressing these systemic issues around teaching evaluations is critical. However, what can you do now with your current teaching evaluations to help shape and improve your teaching? Here are a few things for you to consider:

 

  1. Are they venting? This has been a difficult time for all of us, including your students. Are they using this evaluation to release some of their frustrations? If so, attempt to disconnect the intensity of the complaint from constructive points.
  2. What are the common themes? What are your students saying? Do you see similar comments across your student evaluations? Are comments focused on specific lectures or activities? Course design? Grading? Communication? Take note of these themes.
  3. What are the institutional expectations for teaching? What aspects of your teaching are most important to your institution? Conversations with your department chair or other mentors may help you prioritize the actions you take in response to your evaluations. If it is possible to gain access to comparative evaluation data, this will provide further insight into your own evaluations.
  4. What is the context for this course? What are you trying to accomplish in this course? Are you implementing an evidence-based pedagogy which steers away from lecture? If so, students could be scoring you lower because, even though they are learning more, they don’t perceive this increased learning (7). Are you communicating your expectations for this type of learning, so they know what to expect?
  5. What incremental changes are you going to make next time you teach the course? Given the student evaluation themes, institutional expectations, the course context, and your strengths, what changes are you going to prioritize? Focus on incremental changes, as it gives you an opportunity to test and assess the impact of these small changes. For example, are you going to be more intentional about explaining to your students why you teach the way you do and what they should expect? Are you going to incorporate more structure or feedback in your assignments? Are you going to decrease content to focus on large concepts? This would also be a great time to bounce ideas around with colleagues and mentors – or check-out different options in the literature.

 

While reviewing your evaluations and considering your next steps, document the themes you decide to address. Pull a few representative comments from your teaching evaluations and write a paragraph or two about changes you are planning in response to the comments. This documentation will be helpful for the next time you teach the course. This reflection can also inform self-narratives required for the review process or–if you are looking for another job–crafting your teaching statement. This reflection is even more important as you consider what aspects of your teaching were particularly effective during this academic year of pandemic teaching. You may want to keep successful aspects of your course even if we transition back into a more traditional educational setting.

A huge thank you to educators who made it work this year! Your students and colleagues appreciate everything you have done. A special thank you to those who discussed your experiences with teaching evaluations with me, but wished to remain anonymous, in preparation for my symposium presentation at EB2021, hosted by the APS Career Opportunities in Physiology Committee, entitled “Using Teaching Evaluations to Enhance Your Career Trajectory” from which this post was based.

 

References

 

  1. Uttl B, White CA, Gonzalez DW. Meta-analysis of faculty’s teaching effectiveness: Student evaluation of teaching ratings and student learning are not related. Stud Educ Eval 54: 22–42, 2017. DOI: 10.1016/j.stueduc.2016.08.007.
  2. Boring A, Ottoboni K. Student Evaluations of Teaching (Mostly) Do Not Measure Teaching Effectiveness. ScienceOpen Research, 2016. DOI: 10.14293/S2199-1006.1.SOR-EDU.AETBZC.v1
  3. Chávez K, Mitchell KMW. Exploring Bias in Student Evaluations: Gender, Race, and Ethnicity. PS Polit Sci Polit 53: 270–274, 2020. DOI: 10.1017/S1049096519001744.
  4. Hopper M. Student Evaluation of Teaching – The Next 100 Years [Online]. PECOP Blog: 2019. https://blog.lifescitrc.org/pecop/2019/06/21/student-evaluation-of-teaching-the-next-100-years/ [2 May 2021].
  5. Peterson DAM, Biederman LA, Andersen D, Ditonto TM, Roe K. Mitigating gender bias in student evaluations of teaching. PLOS ONE 14: e0216241, 2019. DOI: 10.1371/journal.pone.0216241.
  6. National Academies of Sciences, Engineering, and Medicine. Recognizing and Evaluating Science Teaching in Higher Education: Proceedings of a Workshop–in Brief [Online]. The National Academies Press: 12, 2020. https://www.nap.edu/catalog/25685/recognizing-and-evaluating-science-teaching-in-higher-education-proceedings-of.
  7. Deslauriers L, McCarty LS, Miller K, Callaghan K, Kestin G. Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom. Proc Natl Acad Sci 116: 19251–19257, 2019. DOI: 10.1073/pnas.1821936116.
Katie Johnson, Ph.D., is an experienced practitioner and evaluator of inclusive teaching and mentoring practices. Dr. Johnson advises and serves on national STEM education initiatives and committees, working with a diverse network of collaborators. Her work has been recognized by the American Physiological Society Teaching Section, as she has been presented both the Research Recognition and the New Investigator Awards. As an independent consultant at Trail Build, LLC, Dr. Johnson assists institutions and professional organizations as they develop, implement, and assess innovative solutions to curricular and programmatic challenges. Prior to becoming an independent consultant, Dr. Johnson was Chair and Associate Professor of Biology at Beloit College. She earned her Ph.D. in the Department of Molecular Physiology and Biophysics at Vanderbilt University and her B.S. from Beloit College. Disclosure: Dr. Johnson serves as an external consultant for APS.
Physiology Education Manuscripts in Demand

Advances in Physiology Education is one of the family of journals published by the American Physiological Society (https://journals.physiology.org/journal/advances).  Submissions of manuscripts to Advances cost nothing and accepted papers are available with free access from their initial posting online.  Annually a printed copy of the journal with all 4 issues is available to those who request it.  Publications in Advances are contributed from the global community of physiology educators and carefully peer-reviewed by expert colleagues.  Of all the APS family of journals, 7 out of the 10 most accessed articles (full-text accesses) during 2019 were published in Advances. The top three accessed Advances articles are briefly described below.

Number 1 Most Accessed 2019:

“Applying learning theories and instructional design models for effective instruction” by Mohammed K. Khalil and Ihsan A. Elkhider from the University of South Carolina School of Medicine in Greenville, South Carolina, USA published on April 11, 2016 (Adv Physiol Educ 40:147-156, 2016).  In this article from the Best Practices series, the major learning theories are discussed and selected examples of instructional design models are explained.  The objective of the article is to present the science of learning and instruction as the theoretical evidence for the design and delivery of instructional materials in the classroom and laboratory.  As of June 2020, this article has been downloaded 81,467 times!

Number 2 Most Accessed 2019:

“Measuring osmosis and hemolysis of red blood cells” by Lauren K. Goodhead and Frances M. MacMillan from the School of Physiology, Pharmacology, and Neuroscience of the University of Bristol, Bristol, UK published on May 19, 2017 (Adv Physiol Educ 41: 298-305, 2017).  This article from the Sourcebook of Laboratory Activities in Physiology series, describes classroom laboratory experiments to help students visualize and appreciate osmosis (the movement of water and small molecules across selectively permeable membranes of mammalian cells).  Animal blood is bathed in solutions with differing osmolarities and tonicities to explore the concept of water movement by osmosis and the resultant hemolysis.  As of June 2020, this article has been downloaded 71,180 times.

Number 4 Most Accessed 2019:

“Attention span during lectures: 8 seconds, 10 minutes, or more?” by Neil A. Bradbury of the Department of Physiology and Biophysics of Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA published on November 8, 2016 (Adv Physiol Educ 40:509-513, 2016).  This article presents a Personal View by reviewing the literature on the “common knowledge” and “consensus” that there is a decline in students’ attention 10-15 min into lectures.  The author believes that the most consistent finding from his literature review is that the greatest variability in student attention arises from differences between teachers and not from the teaching format itself.  Thus, it is the job of the instructor to enhance their teaching skills to provide not only rich content but also a satisfying lecture experience for the students.  As of June 2020, this article has been downloaded 39,910 times. 

The other four Advances articles in the top 10 most accessed in 2019 included an APS Refresher Course Report on “Smooth muscle contraction and relaxation” by R. Clinton Webb, a Best Practices series article on “Learning theories 101: application to everyday teaching and scholarship” by Denise Kay and Jonathan Kibble, an editorial on “The ‘African gene’ theory: it is time to stop teaching and promoting slavery hypertension hypothesis” by Heidi L. Lujan and Stephen E. DiCarlo, and a Staying Current review on “Recent advances in thermoregulation” by Etain A. Tansey and Christopher D. Johnson.  These articles ranged from >20,000 to almost 30,000 downloads. 

This short article shows the variety of offerings in Advances in Physiology Education and documents the global demand for these contributions to the literature.

Editor-in-Chief, Advances in Physiology Education

Barb Goodman received her PhD in Physiology from the University of Minnesota and is currently a Professor in the Basic Biomedical Sciences Division of the Sanford School of Medicine at the University of South Dakota. Her research focuses on improving student learning through innovative and active pedagogy.

 

Physiology Educators Community of Practice (PECOP) Webinar Series

The American Physiological Society (APS) is pleased to announce a new webinar series focused on our educator community. The monthly series includes live webinars focused on education best practices, synchronous and/or asynchronous teaching, establishing inclusive classrooms and publishing. Educator town halls will also be featured as we strive to support and engage the educator community throughout the year.

Starting this month, take advantage of the educator webinar series by visiting the events webpage on the APS website. Register for each webinar, learn about speakers and their talks today!

What to do on the First Day of Class: Insights From Physiology Educators?
July 23, 2020
12 p.m. EDT

Join in the discussion about how to greet students on the first day of class and set the tone for the rest of the course.

Speakers:

  • Barbara E. Goodman, PhD from the Sandford School of Medicine, University of South Dakota (Vermillion)
  • Dee Silverthorn, PhD from the University of Texas at Austin

A successful semester: Applying resilient and inclusive pedagogy to mitigate faculty and student stress
August 20, 2020
2 p.m. EDT

As we head into an uncertain academic year, spend an hour with us to consider strategies which will help you and your students navigate our changing academic, professional, and personal lives. Participants will work through pragmatic and concrete strategies they can transition into their own work to promote student learning and minimize stress.

Speakers:

  • Josef Brandauer, PhD from Gettysburg College (Penn.)
  • Katie Johnson, PhD from Trail Build, LLC (East Troy, Wisc.)

Writing & Reviewing for Advances
September 17, 2020
12 p.m. EDT

This session will be a chance to encourage all who have adapted their teaching during the COVID-19 pandemic to share their work. This topic also ties in to the Teaching Section featured topic for EB 2021.

Speaker:

  • Doug Everett, PhD from National Jewish Health (Denver, Colo.)

A Framework of College Student Buy-in to Evidence-Based Teaching Practices in STEM: The Roles of Trust and Growth Mindset
October 22, 2020
12 p.m. EST

This topic is relevant to building trust, which goes hand-in-hand with inclusion and diversity. Trust is essential for the different modalities of teaching which educators and students will experience in the fall.

 

Educators Town Hall
November 19, 2020
12 p.m. EST

A chance to talk about what happened during the fall semester and also plan for the upcoming year

Strategies and Tips for Inclusive Advising
Katie Johnson, PhD
Programmatic Improvement Consultant
Trail Build, LLC

Educators often find themselves in the role of advisor, either formally or incidentally. If you teach or lead a research group, it is likely students or trainees arrive at your office door with a plethora of questions or issues, seeking your input. Yet, very few academics have formal training in how to advise students.

How do you become a productive advisor who supports the success of your students? For the purpose of our discussion, I am defining advisor as any person who provides guidance, information, or advice to a student or trainee, the advisee. Many productive and inclusive advising strategies align with effective teaching practices.

Inclusive advising strategies interrupt assumptions an advisor may have about the needs, issues, or questions facing an advisee. It also acknowledges and embraces the relationship between the academic, professional, and personal trajectories of each advisee. One approach to inclusive advising is to use a question-focused advising strategy. Rather than advisors serving only as a conduit for information, advisors should ask advisees thoughtful and strategic questions, within the context of a collegial and respectful conversation. When an advisor carefully and attentively listens to the responses provided by the advisee, the advisor gains important information about how to support and assist the advisee.

There are many points to consider when advising, but here are a few suggestions for advisors, followed by examples of questions advisors can ask advisees. These questions are not to be used in sequential order, but rather as needed.

1. Listen carefully. This strategy is a lot harder than it sounds. It is easy to provide information, but is the information the right information? When careful and engaged listening directs advising, advisors are much more likely to provide the information and support needed by the advisee.

Questions to ask advisees: How can I help you? What brings you to my office today? What are your goals for this project/assignment/course? Did we address the issue that brought you in today? Do you think the solutions we talked about today are attainable? Do you have any other questions for me?

2. Believe advisees when they say they are struggling. Again, much harder than it sounds. Help advisees think through productive steps forward, rather than sending them off to figure things out on their own. Check-in with them later to help address lingering questions.

Questions to ask advisees: Can you remember a time when things were going well? What worked for you at that point? What strategies are you using to navigate these issues? If those strategies are not working, can we brainstorm other strategies? Can we work together to find resources to support your success? Do you have local friends you can turn to when you are having difficulties?

3. Guide advisees to identify what they need to achieve their academic, professional, and personal goals. After careful listening, assign advisees homework. Assignments could include visiting a resource on campus or doing directed online research to find the information they need to design a plan to accomplish their goals. Schedule future appointments for the advisee to report back what they found.

Questions to ask advisees: What information do you need to achieve your goals? What information do you have? What resources do you need to find? Is there anyone you know who would be a good resource?

4. Recognize the power dynamic between advisors and advisees. Even the most friendly and welcoming advisors can be intimidating to advisees. It takes courage to talk to an advisor. Given the power dynamic, advisees may be too intimidated to speak-up when they do not understand their advisor’s suggestions or advice.

Questions to ask advisees: Can you explain to me what your next steps should be to address this issue? Is there anything I said that I need to explain in a different way for you to be better prepared to address this issue?

5. Advisors are at a different point in their career than their advisees. It is likely the life priorities of any given advisee and advisor are different. Ask advisees about their priorities, listen carefully, and believe what they say.

Questions to ask advisees: Where do you see yourself in ten years? What is your ideal lifestyle? What is essential to this lifestyle for you to feel successful? How do you like to spend your time?

While these concepts may take time to incorporate into your advising, here are a few quick tips:

1. Really good advising takes time. Make sure to reserve enough time and energy to have productive advising meetings.

2. Successful advising is a continuous process. Expect numerous interactions in the classrooms, hallways, over e-mail, and during private meetings. This multiple check-in approach allows for investigation and reflection.

3. Articulate the expectations and responsibilities of advisees and advisors. It is possible you are your advisee’s first advisor. Advisees may not know the reason or meaning for an advisor or appropriate boundaries. As an advisor, determine your expectations and communicate these expectations to your advisees.

4. Offer options to schedule meetings. While walk-in office hours have some benefits, a dedicated time and space allows both advisee and advisor to focus on the task at hand. Offer designated advising timeslots for advisees. Signing-up for timeslots could occur either on a sheet of paper or using a free online tool that automatically syncs to online calendars.

5. If you expect advisees to meet at your office, make sure you tell your advisees where your office is located. Advisees should also know how to contact you if they must change or miss a meeting.

6. Schedule group advising to work with advisees who have similar academic or professional (NOT personal) issues. This will save the advisor time, and the advisees benefit from conversations with students or trainees asking similar questions.

7. Recruit a more advanced student or trainee to meet with advisees about standard advising issues, such as program requirements or course registration. It is effective if this meeting occurs prior to the advisor-advisee meeting, so unanswered questions and clarifications can be provided by the advisor.

8. You do not need to know the answer to everything. Know your limits and your resources. Institutions often have services and professionals trained in handling various student situations. Have their phone numbers or emails readily available so you can connect advisees directly to the assistance they need. Know your responsibilities around state and federally mandated reporting.

Productive and inclusive advising is an opportunity to help and to support students and trainees as they develop their own paths to success. What an amazing perk of being an educator! Happy Advising!

REFERENCES:

Chambliss DF. How College Works. Harvard University Press, 2014.

Cooper KM, Gin LE, Akeeh B, Clark CE, Hunter JS, Roderick TB, Elliott DB, Gutierrez LA, Mello RM, Pfeiffer LD, Scott RA, Arellano D, Ramirez D, Valdez EM, Vargas C, Velarde K, Zheng Y, Brownell SE. Factors that predict life sciences student persistence in undergraduate research experiences. PLOS ONE 14: e0220186, 2019.

Johnson KMS, Briggs A, Hawn C, Mantina N, Woods BC. Inclusive practices for diverse student populations: Experimental Biology 2017. Adv Physiol Educ 43: 365–372, 2019.

Katie Johnson, Ph.D., is an experienced practitioner and evaluator of inclusive teaching and mentoring practices. Dr. Johnson advises and serves on national STEM education initiatives and committees, working with a diverse network of collaborators. As a Programmatic Improvement Consultant, Dr. Johnson assists institutions and organizations to develop innovative solutions to curricular and assessment challenges. Prior to becoming an independent consultant for Trail Build, LLC, Dr. Johnson was Chair and Associate Professor of Biology at Beloit College. She earned her Ph.D. in the Department of Molecular Physiology and Biophysics at Vanderbilt University and her B.S. from Beloit College. Disclosure: Dr. Johnson serves as an external consultant for the American Physiological Society.

Emerged Idea Led to a Unique Experience in Elephant’s City
Suzan A. Kamel-ElSayed, VMD, MVSc, PhD
Associate Professor, Department of Foundational Medical Studies
Oakland University

In May 2019, the physiology faculty at the Oakland University William Beaumont School of Medicine Department of Foundational Medical Studies received an email from Dr. Rajeshwari, a faculty member in JSS in a Medical College in India.

While Dr. Rajeshwari was visiting her daughter in Michigan, she requested a departmental visit to meet with the physiology faculty. Responding to her inquiry, I set up a meeting with her and my colleagues where Dr. Rajeshwari expressed her willingness to invite the three of us to present in the 6th Annual National Conference of the Association of Physiologists of India that was held from Sept. 11-14, 2019, in Mysuru, Karnataka, India.

The conference theme was: “Fathoming Physiology: An Insight.” My colleague then suggested a symposium titled “Physiology of Virtue,” where I could present the physiology of fasting since I fast every year during the month of Ramadan for my religion of Islam. To be honest, I was surprised and scared at my colleague’s suggestion. Although I fast every year due to the Quranic decree upon all believers, I was not very knowledgeable of what fasting does to one’s body. In addition, I faced the challenge of what I would present since I did not have any of my own research or data related to the field of fasting. Another concern was the cultural aspect in talking about Ramadan in India and how it would be received by the audience. However, willing to face these challenges, I agreed and admired my colleague’s suggestion and went forward in planning for the conference.

After Dr. Rajeshwari sent the formal invitation with the request for us to provide an abstract for the presentation, I started reading literature related to fasting in general. Reading several research articles and reviews, I was lost in where to begin and what to include. I began to ponder many questions: How will I present fasting as a virtue? Should I bring in religious connections? Will I be able to express spiritual aspects from a Muslim’s perspective? I decided that the aim of my presentation would be to describe how a healthy human body adapts to fasting, and the outcomes that practicing fasting has on an individual level and on the society as a whole. In addition, I found that focusing on the month of Ramadan and etiquettes of fasting required from Muslims had many physiological benefits and allowed me to have a real-world example in which fasting is present in the world.

Visiting India and engaging with physiologists from all over India was a really rich experience. The hospitality, generosity and accommodation that were provided was wonderful and much appreciated. The conference’s opening ceremony included a speech from the University Chancellor who is a religious Hindu Monk, along with Vice Chancellors, the organizing chair, and the secretary. In addition, a keynote speech on the physiological and clinical perspectives of stem cell research was presented by an Indian researcher in New Zealand. I was also able to attend the pre-conference workshops “Behavioral and Cognitive Assessment in Rodents” and “Exercise Physiology Testing in the Lab and Field” free of charge.

For my presentation, I included the definition, origin and types of fasting. In addition, I focused on the spiritual and physical changes that occur during Ramadan Intermittent Fasting (RIF). Under two different subtitles, I was able to summarize my findings. In the first subtitle, “Body Changes During RIF,” I listed all the changes that can happen when fasting during Ramadan. These changes include: activation of stress induced pathways, autophagy, metabolic and hormonal changes, energy consumption and body weight, changes in adipose tissue, changes in the fluid homeostasis and changes in cognitive function and circadian rhythm. In the second subtitle, “Spiritual Changes During RIF,” I presented some examples of spiritual changes and what a worshipper can do. These include development of character, compassion, adaptability, clarity of mind, healthy lifestyle and self-reflection. To conclude my presentation, I spoke of the impacts RIF has on the individual, society, and the global community.

In conclusion, not only was this the first time I visited India, but it was also the first time for me to present a talk about a topic that I did not do personal research on. Presenting in Mysuru not only gave me a chance to share my knowledge, but it allowed me to gain personal insight on historical aspects of the city. It was a unique and rich experience that allows me to not hesitate to accept similar opportunities. I encourage that we, as physiology educators, should approach presenting unfamiliar topics to broaden our horizons and enhance our critical thinking while updating ourselves on research topics in the field of physiology and its real-world application.  Physiology education is really valued globally!

Suzan Kamel-ElSayed, VMD, MVSc, PhD, received her bachelor of Veterinary Medicine and Masters of Veterinary Medical Sciences from Assiut University, Egypt. She earned her PhD from Biomedical Sciences Department at School of Medicine in Creighton University, USA. She considers herself a classroom veteran who has taught physiology for more than two decades. She has taught physiology to dental, dental hygiene, medical, nursing, pharmacy and veterinary students in multiple countries including Egypt, Libya and USA. Suzan’s research interests are in bone biology and medical education. She has published several peer reviewed manuscripts and online physiology chapters. Currently, she is an Associate Professor in Department of Foundational Medical Studies in Oakland University William Beaumont School of Medicine (OUWB) where she teaches physiology to medical students in organ system courses. Suzan is a co-director of the Cardiovascular Organ System for first year medical students. Suzan also is a volunteer physiology teacher in the summer programs, Future Physicians Summer Enrichment Program (FPSP) and Detroit Area Pre-College Engineering Program (DAPCEP) Medical Explorers that are offered for middle and high school students. She has completed a Medical Education Certificate (MEC) and Essential Skills in Medical Education (ESME) program through the Association for Medical Education in Europe (AMEE) and Team-Based Learning Collaborative (TBLC) Trainer- Consultant Certification. She is also a member in the OUWB Team-Based Learning (TBL) oversight team. Suzan is an active member in several professional organizations including the American Physiological Society (APS); Michigan Physiological Society (MPS); International Association of Medical Science Educators (IAMSE); Association of American Medical Colleges (AAMC); Team Based Learning Collaborative (TBLC); Egyptian Society of Physiological Sciences and its Application; Egyptian Society of Physiology and American Association of Bone and Mineral Research (ASBMR).

Collaboration is the Key to Success in Publishing Your Work

As an Assistant Professor, you are under a lot of pressure to teach new classes, perform service and of course publish. Often times you do not have a mentor to guide you and you are off on your own pathway to tenure. While I had many good ideas about some teaching research I wanted to perform with my students I needed help in executing a study and publishing my work. While the goal was clear, the plan and the execution were not. Where to start was the biggest and most difficult hurdle.

I assumed incorrectly that the best way to be successful in publishing was to do it on my own. After all, I would only be accountable to myself and need not worry about collaborators who might be hard to reach and would take a long time to complete their portion of a manuscript. I tried this path initially and it was incredibly difficult as I could only work on one project at a time. The turning point came when I attended an Experimental Biology (EB) meeting Teaching Section symposium several years ago; I vividly recalled an excellent presentation where the speaker showed us an elegant study of how he used active learning and student grades improved. This talk inspired me and I got excited to try this with my class by performing a similar study. The excitement abruptly ended when he stated the two sections of students he used for his study had 250 and 300 students respectively. My own classes are between 12-20 students, quite small in comparison and I was completely disheartened thinking it would take years of study before I surveyed that many students. After the talk, I went up to him to ask a question, there was someone in front of me that asked the question that I had planned to ask. She said “I have small classes and for me to do a study of significance would take years”. I chimed in “I am in the same situation”. He answered us both with one word “Collaborate”. I walked away disheartened as I did not know anyone that I could collaborate with on a study.

After some time to reflect that this course of action was what I needed I developed an active plan to execute at the next EB meeting. At the Claude Bernard Lecture, I introduced myself to Barb Goodman. This was an excellent choice, as Barb knows everyone and she was kind enough to introduce me to everyone who approached her. From there my confidence grew. The next smart decision I made was to sit in the front during the lecture and all future Teaching Section Symposia. Do not hide in the back as people sometimes come in late and this can be distracting. In the front of the room are the friendly people who are very happy to talk with you and share ideas.

The next step was to follow the program and attend the Teaching Section luncheon. At this event, a small group of people dedicated to teaching and student success sit and talk about the different classes they teach and share ideas about teaching challenges. The tables are small and round so you can meet everyone at your table. Another key event to attend at EB is the Teaching Section Business meeting and dinner. At the dinner, you get a chance to meet more people in a relaxed setting. Some of the attendees have attended the other events and this is a great way to practice your recall and talk with them on a first name basis.

The final step in meeting people with whom to collaborate is to participate in an Institute on Teaching and Learning (ITL). There have been three of these meetings so far (2014, 2016 & 2018) and the meeting actively encourages you to meet new people at each meal and form new collaborations. Through this meeting, I met many of my collaborators and successfully published abstracts and papers (listed below), received one grant, was a symposium speaker, and chaired a symposium. The meeting is energizing as the program is packed with new ideas and teaching strategies to try in your classroom. It is easy to ask questions and be an active participant in the discussions.  Thus, taking advantage of a number of opportunities for physiology educators through the American Physiological Society can be just the push you need to get going on a successful promotion and tenure process.  Join the APS and its Teaching Section to keep up-to-date on what is going on in physiology education.

 

References

  1. Aprigia Monteferrante G,  Mariana Cruz M, Mogadouro G, de Oliveira Fantini V,  Oliveira Castro P, Halpin PA, and Lellis-Santos C (2018). Cardiac rhythm dance protocol: a smartphone-assisted hands-on activity to introduce concepts of cardiovascular physiology and scientific methodology. Advances in Physiology Education, 42: 516-520, doi:10.1152/advan.00028.2017.
  2. Blatch, SA, Cliff W., Beason-Abmayr, B. and Halpin PA. (2017).The Artificial Animal Project: A Tool for Helping Students Integrate Body Systems. Advances in Physiology Education. 41: 239-243 DOI: 10.1152/advan.00159.2016
  3. Gopalan C., Halpin PA and Johnson KMS (2018). Benefits and Logistics of Non-Presenting  Undergraduate Students Attending a Professional Scientific Meeting. Advances in Physiology Education. 42: 68-74. DOI.org/10.1152/advan.00091.2017
  4. Halpin PA, Golden L, Zane Hagins K, Waller S, and Chaya Gopalan C. (2018). SYMPOSIUM REPORT ON “Examining the Changing Landscape of Course Delivery and Student Learning;” Experimental Biology 2017. Advances in Physiology Education, 42: 610–614. doi:10.1152/advan.00096.2018.
  5. Lellis-Santos, C and Halpin PA (2018).”Workshop Report: “Using Social Media and Smartphone Applications in Practical Lessons to Enhance Student Learning” in Búzios, Brazil (Aug. 6-8, 2017). Advances in Physiology Education, 42: 340–342. https://doi.org/10.1152/advan.00011.2018.
Patricia A. Halpin is an Associate Professor in the Life Sciences Department at the University of New Hampshire at Manchester (UNHM). Patricia received her MS and Ph.D. in Physiology at the University of Connecticut. She completed a postdoctoral fellowship at Dartmouth Medical School. After completion of her postdoc she started a family and taught as an adjunct at several NH colleges. She then became a Lecturer at UNHM before becoming an Assistant Professor. She teaches Principles of Biology, Endocrinology, Cell Biology, Animal Physiology, Global Science Explorations and Senior Seminar to undergraduates. She has been a member of APS since 1994 and is currently on the APS Education committee and is active in the Teaching Section. She has participated in Physiology Understanding (PhUn) week at the elementary school level in the US and Australia. She has presented her work on PhUn week, Using Twitter for Science Discussions, and Embedding Professional Skills into Science curriculum at the Experimental Biology meeting and the APS Institute on Teaching and Learning.