Category Archives: Professional Development

The Capstone Experience: Implementing lessons learned from a pandemic educational environment to create inspirational real-world educational experiences
Historically, physiology undergraduate students across the world have undertaken a laboratory-based, fieldwork or critical review research project, their educational purpose for students to gain research experience. However, decreasing numbers of physiology graduates are going onto careers in research, many are leaving science altogether. It is therefore imperative that we, as educators, better prepare the majority of our students, through their projects, for the diverse range of careers they go onto.

Pre-pandemic opportunities

Over the last twenty years, physiology and the broader global bioscience educator community, recognizing this diversity of graduate career destinations, have been expanding the range of projects available to their students, introducing for example, public engagement, educational development or enterprise projects.  However, the focus and purpose of these projects remained for students to gain research experience. They were traditional research projects but outside of the laboratory. The literature and Accrediting Bodies project criterion still talked about students undertaking “hypothesis-driven research” and “project/research-based assignments”.

Whilst these traditional research projects may have been relevant fifty years ago, they do not enable the majority of current Bioscience graduates to be “work-place ready”. The world is currently going through its fourth industrial revolution (4IR), a world and workplace governed by robotics, artificial intelligence, digitization and automation. Graduate recruiters require graduates with different skillsets, the so-called 4th Industrial Revolution (4IR) skills1.

I recognized that radical change was required, not only in my School of Biomedical Sciences, but across bioscience Higher Education globally. Collectively, bioscience educators needed to rethink the purpose, practices and outcomes of undergraduate research projects in order to better prepare our students for an increasingly challenging 21st Century global workplace.

My solution was to introduce project-based capstone experiences into my program. their purpose to provide students with opportunities for personal and professional development, and to gain real life work experience.

A highly experienced science communicator, I facilitated ethical debates in High Schools.  I realized that this would make an ideal opportunity for my undergraduates – something different as their research project. Starting small, I collaborated with one of my project mentees to co-create and co-deliver an ethics-focused workshop for High School students at the 2005 Leeds Festival of Science2. The capstone experience, as an alternative to traditional research projects, was born.

Over the last sixteen years, I have progressively expanded the range of capstone opportunities in my course. Colleagues within my School of Biomedical Sciences at the University of Leeds (UK), recognizing the benefits of capstones to students, joined me. In partnership with our students, we have created a sector-leading portfolio of traditional research projects offered alongside science or industry-focused capstones, and those with a civic or societal focus in the same course (Figure 1)3. Students select the project that best addresses their individual developmental needs and/or future career intentions. By offering this broad portfolio of sixteen opportunities, it is inclusive, there is something for each and every student to realize their full academic potential and personal goals.

 

Figure 1: Research and capstone project opportunities available to students

My students have wholeheartedly grasped this opportunity, excelling academically.  Their course marks are significantly higher than students undertaking traditional research projects (2020: mean ± SD = 71.4±4.4% vs 68.4±5.8%, p<0.05).  In 2020-21, 27% selected capstones as their first choice of project, a massive cultural shift given we are a research-intensive (R1) Institution where laboratory projects have traditionally been viewed by both students and Faculty as the “gold-standard”.

Our work as a team has resulted in the award of a prestigious national (UK) higher education prize, an Advance HE Collaborative Award for Teaching Excellence.

My work came to the attention of other Bioscience educators. I was invited to run workshops at Institutions across the UK seeking to introduce capstones into their program. I re-wrote one of the two UK Bioscience Accrediting Bodies project accreditation criteria, incorporating my capstone ideas.

And then Covid struck!

With restricted or no access to research facilities, Bioscience educators globally struggled to provide alternatives to traditional research projects.  To support colleagues across the world, in partnership with Sue Jones (York St John University, UK) and Michelle Payne (University of Sunderland, UK), I ran virtual workshops, sharing my capstone ideas and resources.  I created and shared globally, guides for students4 and educators5, and resource repositories6,7. The workshops were attended by over 1000 educators from as far afield as Australia, Africa and America. The resources viewed 12,000 times from over 50 countries.

A year on, we surveyed both students and Faculty globally. All responding institutions had introduced capstone projects into their programs in 2020-21. More importantly, they are here to stay. Recognizing the benefits to their future employability and careers, a massive 94% of students wanted capstones to be provided alongside traditional research projects. Faculty thought the same. All are not only keeping capstones, but more importantly, are broadening their portfolios going forward. Each new format developing different skill sets and attributes, and therefore preparing students for additional career destinations. We have inspired sector-wide curriculum change!

Going forward, we cannot return to our old ways!

As the world opens up and returns to a new “normal”, we cannot go back to our old ways of just offering traditional research projects. We would be massively letting our students and wider Society down. We need to take the best from what we have learnt and achieved, both before and during the pandemic, and continue to develop and evolve our collective capstone provision going forward.

We are at the start of an exciting Global journey.  Capstones across the world are predominantly conservative in nature, for example taught courses, senior seminar series or extended essays. Educators globally have yet to fully realize the transformative (massive uplift in skills and attributes) and translational (preparation for the workplace) potential of capstones.

We need to create capstones that are more representative of the work place for example, multi-disciplinary teams and sub-teams working on the same capstone, and capstones that run over multiple years, with current students taking the previous year’s project outputs and outcomes to the next stage.  The events of the past two years have made Universities realize they need to better address their local and global civic and societal responsibilities and missions, so capstones that facilitate societal engagement. We need to move away from traditional dissertations or reports to more authentic real-world assessments.

Within my School of Biomedical Sciences and the broader University of Leeds, we have started down this journey. Ninety percent of the capstones in my course are now team-based. Students choose their primary assessment method (e.g. academic paper, commercial report, e-portfolio) – the one most suited to their particular capstone format and which best showcases their knowledge, skills and attributes. I have introduced Grand Challenges capstones where students work as to teams to create evidence-driven solutions to global Grand Challenges or UN Sustainable Development Goals (SDG). The intention to develop these into trans-national educational opportunities, where students from the Global North and South work collaboratively on the same SDG or Grand Challenge capstone. We have an Institutional requirement that all undergraduate students, regardless of discipline, must undertake a major research-based assignment in their final year of study. I have been awarded a Leeds Institute of Teaching Excellence to work with Faculty across the University to introduce capstones into their programs and to create pan-university multi-disciplinary capstone opportunities for our students.

I do not do things by halves. My vision is not just limited to Leeds, the UK or the Biosciences, but Global!

I have created a global Community of Practice for stakeholders across the world to work collaboratively together, sharing ideas, expertise and resources, to co-create and introduce inspirational multi-disciplinary, multi-national team-based capstone projects that address globally relevant issues into undergraduate and taught postgraduate degree programs across the world.  I want to make it a truly global and inclusive community, to include all stakeholders- students, alumni, educators, employers, NGOs, social enterprise, Global North or South, all disciplines or sectors….The list is endless.

If you would like to join this Community of Practice and be part of this exciting journey, please email me (d.i.lewis@leeds.ac.uk). Please share this opportunity amongst your colleagues, networks and across your Institution. The broader the membership, the greater the collective benefits for all.

If we pull this off, the benefits for students, other stakeholders and Society will be phenomenal. Our graduates would be truly global graduates, equipped with the skills and attributes to become leaders in whatever field they enter. As Faculty, we would be providing an exceptional educational experience for our students, properly preparing them for the workplace. Universities, through student capstones, would be better able to address their civic and societal responsibilities and missions. Employers would have graduates able to take their businesses forward and to thrive in an increasingly competitive global marketplace. We would be creating solutions to some of the complex problems facing mankind.

Figure 1: Research and capstone project opportunities available to students

1.    Gray, A. (2016). The 10 skills you need to thrive in the Fourth Industrial Revolution. World Economic Forum. https://www.weforum.org/agenda/2016/01/the-10-skills-you-need-to-thrive-in-the-fourth-industrial-revolution/

2.    Lewis DI (2011) Enhancing student employability through ethics-based outreach activities and OERs. Bioscience Education 18, 7SE https://www.tandfonline.com/doi/full/10.3108/beej.18.7SE

3.    Lewis DI (2020a). Final year or Honours projects: Time for a total re-think? Physiology News 119: 10-11.

4.    Lewis DI (2020b). Choosing the right final year research, honours or capstone project for you. Skills career pathways & what’s involved. https://bit.ly/ChoosingBioCapstone

5.    Lewis DI (2020c). Final year research, honours or capstone projects in the Biosciences. How to Do it Guides. https://bit.ly/BiosciCapstones

6.    Lewis DI (2020d) E-Biopracticals (Collection of simulations & e-learning resources for use in Bioscience practical education. Available at: https://bit.ly/e-BioPracticals

7.    Lewis DI (2020e) Open access data repositories (Collection of large datasets, data analysis & visualization tools).  Available at: https://bit.ly/OADataRep.

 

Dr. Dave Lewis is currently a Senior Lecturer (Associate Prof) in Pharmacology and Bioethics in the School of Biomedical Sciences, University of Leeds, UK. A student education focused colleague, he creates inspirational educational and professional educational interventions designed to promote learner personal and professional development, and prepare them for the workplace.  He is the architect of the introduction of capstone projects into Bioscience programs across the UK and beyond.  He also Chairs the International Union of Basic & Clinical Pharmacology’s Integrative & Organ Systems Pharmacology Initiative, working with Professional and Regulatory Bodies, and NGOs in India, China and across Africa to co-create and co-deliver professional education in research animal sciences and ethics.

In recognition of his exceptional contribution to Bioscience Higher Education globally, he has received multiple prestigious education awards including a UK Advance HE National Teaching Fellowship and its Collaborative Teaching Excellence Award, the (UK) Biochemical Society’s Teaching Excellence Award, the (UK) Physiological Society’s Otto Hutter Teaching Prize, and Fellowship of the British Pharmacological Society & its Zaimis Prize.

Considering Student Evaluations of Your Teaching

After a long and trying academic year, student evaluations of your teaching will soon be in your inbox. A bit of courage is required to take a first glance at student comments about your course. Given the substantial increase in time and effort this academic year has required, critical comments may feel even more harsh.

When you do look over your student evaluations, take a few minutes to copy or write down some of the positive comments. Believe and appreciate these comments. Students value your knowledge, talents, and hard work. Then, put the evaluations away for a few days. Come back to them when you have time and energy for self-reflection.

The act of teaching is extremely personal, and it is difficult not to take critical comments as a personal attack. To compound these feelings, student evaluations are often central to the reappointment, promotion, and tenure processes. While some institutions have taken proactive measures to mitigate the effect of the pandemic on these processes, uncertainty about how review committees will consider student teaching evaluations from these terms can increase anxiety for educators.

There are other problematic issues with student evaluations. Current tools used to survey student opinions about their learning experiences are flawed. Meta-analysis indicates there is little to no relationship between what students learn and how they evaluate their teachers (1, 2). Common evaluation survey methods also have well-established biases against women and people of color (3). There are clear steps institutions can take to mitigate these issues, including educating students on the important aspects of teaching evaluations (4), adapting evaluation tools to decrease bias (5), and adopting multi-faceted evaluation methods (6).

Addressing these systemic issues around teaching evaluations is critical. However, what can you do now with your current teaching evaluations to help shape and improve your teaching? Here are a few things for you to consider:

 

  1. Are they venting? This has been a difficult time for all of us, including your students. Are they using this evaluation to release some of their frustrations? If so, attempt to disconnect the intensity of the complaint from constructive points.
  2. What are the common themes? What are your students saying? Do you see similar comments across your student evaluations? Are comments focused on specific lectures or activities? Course design? Grading? Communication? Take note of these themes.
  3. What are the institutional expectations for teaching? What aspects of your teaching are most important to your institution? Conversations with your department chair or other mentors may help you prioritize the actions you take in response to your evaluations. If it is possible to gain access to comparative evaluation data, this will provide further insight into your own evaluations.
  4. What is the context for this course? What are you trying to accomplish in this course? Are you implementing an evidence-based pedagogy which steers away from lecture? If so, students could be scoring you lower because, even though they are learning more, they don’t perceive this increased learning (7). Are you communicating your expectations for this type of learning, so they know what to expect?
  5. What incremental changes are you going to make next time you teach the course? Given the student evaluation themes, institutional expectations, the course context, and your strengths, what changes are you going to prioritize? Focus on incremental changes, as it gives you an opportunity to test and assess the impact of these small changes. For example, are you going to be more intentional about explaining to your students why you teach the way you do and what they should expect? Are you going to incorporate more structure or feedback in your assignments? Are you going to decrease content to focus on large concepts? This would also be a great time to bounce ideas around with colleagues and mentors – or check-out different options in the literature.

 

While reviewing your evaluations and considering your next steps, document the themes you decide to address. Pull a few representative comments from your teaching evaluations and write a paragraph or two about changes you are planning in response to the comments. This documentation will be helpful for the next time you teach the course. This reflection can also inform self-narratives required for the review process or–if you are looking for another job–crafting your teaching statement. This reflection is even more important as you consider what aspects of your teaching were particularly effective during this academic year of pandemic teaching. You may want to keep successful aspects of your course even if we transition back into a more traditional educational setting.

A huge thank you to educators who made it work this year! Your students and colleagues appreciate everything you have done. A special thank you to those who discussed your experiences with teaching evaluations with me, but wished to remain anonymous, in preparation for my symposium presentation at EB2021, hosted by the APS Career Opportunities in Physiology Committee, entitled “Using Teaching Evaluations to Enhance Your Career Trajectory” from which this post was based.

 

References

 

  1. Uttl B, White CA, Gonzalez DW. Meta-analysis of faculty’s teaching effectiveness: Student evaluation of teaching ratings and student learning are not related. Stud Educ Eval 54: 22–42, 2017. DOI: 10.1016/j.stueduc.2016.08.007.
  2. Boring A, Ottoboni K. Student Evaluations of Teaching (Mostly) Do Not Measure Teaching Effectiveness. ScienceOpen Research, 2016. DOI: 10.14293/S2199-1006.1.SOR-EDU.AETBZC.v1
  3. Chávez K, Mitchell KMW. Exploring Bias in Student Evaluations: Gender, Race, and Ethnicity. PS Polit Sci Polit 53: 270–274, 2020. DOI: 10.1017/S1049096519001744.
  4. Hopper M. Student Evaluation of Teaching – The Next 100 Years [Online]. PECOP Blog: 2019. https://blog.lifescitrc.org/pecop/2019/06/21/student-evaluation-of-teaching-the-next-100-years/ [2 May 2021].
  5. Peterson DAM, Biederman LA, Andersen D, Ditonto TM, Roe K. Mitigating gender bias in student evaluations of teaching. PLOS ONE 14: e0216241, 2019. DOI: 10.1371/journal.pone.0216241.
  6. National Academies of Sciences, Engineering, and Medicine. Recognizing and Evaluating Science Teaching in Higher Education: Proceedings of a Workshop–in Brief [Online]. The National Academies Press: 12, 2020. https://www.nap.edu/catalog/25685/recognizing-and-evaluating-science-teaching-in-higher-education-proceedings-of.
  7. Deslauriers L, McCarty LS, Miller K, Callaghan K, Kestin G. Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom. Proc Natl Acad Sci 116: 19251–19257, 2019. DOI: 10.1073/pnas.1821936116.
Katie Johnson, Ph.D., is an experienced practitioner and evaluator of inclusive teaching and mentoring practices. Dr. Johnson advises and serves on national STEM education initiatives and committees, working with a diverse network of collaborators. Her work has been recognized by the American Physiological Society Teaching Section, as she has been presented both the Research Recognition and the New Investigator Awards. As an independent consultant at Trail Build, LLC, Dr. Johnson assists institutions and professional organizations as they develop, implement, and assess innovative solutions to curricular and programmatic challenges. Prior to becoming an independent consultant, Dr. Johnson was Chair and Associate Professor of Biology at Beloit College. She earned her Ph.D. in the Department of Molecular Physiology and Biophysics at Vanderbilt University and her B.S. from Beloit College. Disclosure: Dr. Johnson serves as an external consultant for APS.
Physiology Education Manuscripts in Demand

Advances in Physiology Education is one of the family of journals published by the American Physiological Society (https://journals.physiology.org/journal/advances).  Submissions of manuscripts to Advances cost nothing and accepted papers are available with free access from their initial posting online.  Annually a printed copy of the journal with all 4 issues is available to those who request it.  Publications in Advances are contributed from the global community of physiology educators and carefully peer-reviewed by expert colleagues.  Of all the APS family of journals, 7 out of the 10 most accessed articles (full-text accesses) during 2019 were published in Advances. The top three accessed Advances articles are briefly described below.

Number 1 Most Accessed 2019:

“Applying learning theories and instructional design models for effective instruction” by Mohammed K. Khalil and Ihsan A. Elkhider from the University of South Carolina School of Medicine in Greenville, South Carolina, USA published on April 11, 2016 (Adv Physiol Educ 40:147-156, 2016).  In this article from the Best Practices series, the major learning theories are discussed and selected examples of instructional design models are explained.  The objective of the article is to present the science of learning and instruction as the theoretical evidence for the design and delivery of instructional materials in the classroom and laboratory.  As of June 2020, this article has been downloaded 81,467 times!

Number 2 Most Accessed 2019:

“Measuring osmosis and hemolysis of red blood cells” by Lauren K. Goodhead and Frances M. MacMillan from the School of Physiology, Pharmacology, and Neuroscience of the University of Bristol, Bristol, UK published on May 19, 2017 (Adv Physiol Educ 41: 298-305, 2017).  This article from the Sourcebook of Laboratory Activities in Physiology series, describes classroom laboratory experiments to help students visualize and appreciate osmosis (the movement of water and small molecules across selectively permeable membranes of mammalian cells).  Animal blood is bathed in solutions with differing osmolarities and tonicities to explore the concept of water movement by osmosis and the resultant hemolysis.  As of June 2020, this article has been downloaded 71,180 times.

Number 4 Most Accessed 2019:

“Attention span during lectures: 8 seconds, 10 minutes, or more?” by Neil A. Bradbury of the Department of Physiology and Biophysics of Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA published on November 8, 2016 (Adv Physiol Educ 40:509-513, 2016).  This article presents a Personal View by reviewing the literature on the “common knowledge” and “consensus” that there is a decline in students’ attention 10-15 min into lectures.  The author believes that the most consistent finding from his literature review is that the greatest variability in student attention arises from differences between teachers and not from the teaching format itself.  Thus, it is the job of the instructor to enhance their teaching skills to provide not only rich content but also a satisfying lecture experience for the students.  As of June 2020, this article has been downloaded 39,910 times. 

The other four Advances articles in the top 10 most accessed in 2019 included an APS Refresher Course Report on “Smooth muscle contraction and relaxation” by R. Clinton Webb, a Best Practices series article on “Learning theories 101: application to everyday teaching and scholarship” by Denise Kay and Jonathan Kibble, an editorial on “The ‘African gene’ theory: it is time to stop teaching and promoting slavery hypertension hypothesis” by Heidi L. Lujan and Stephen E. DiCarlo, and a Staying Current review on “Recent advances in thermoregulation” by Etain A. Tansey and Christopher D. Johnson.  These articles ranged from >20,000 to almost 30,000 downloads. 

This short article shows the variety of offerings in Advances in Physiology Education and documents the global demand for these contributions to the literature.

Editor-in-Chief, Advances in Physiology Education

Barb Goodman received her PhD in Physiology from the University of Minnesota and is currently a Professor in the Basic Biomedical Sciences Division of the Sanford School of Medicine at the University of South Dakota. Her research focuses on improving student learning through innovative and active pedagogy.

 

Physiology Educators Community of Practice (PECOP) Webinar Series

The American Physiological Society (APS) is pleased to announce a new webinar series focused on our educator community. The monthly series includes live webinars focused on education best practices, synchronous and/or asynchronous teaching, establishing inclusive classrooms and publishing. Educator town halls will also be featured as we strive to support and engage the educator community throughout the year.

Starting this month, take advantage of the educator webinar series by visiting the events webpage on the APS website. Register for each webinar, learn about speakers and their talks today!

What to do on the First Day of Class: Insights From Physiology Educators?
July 23, 2020
12 p.m. EDT

Join in the discussion about how to greet students on the first day of class and set the tone for the rest of the course.

Speakers:

  • Barbara E. Goodman, PhD from the Sandford School of Medicine, University of South Dakota (Vermillion)
  • Dee Silverthorn, PhD from the University of Texas at Austin

A successful semester: Applying resilient and inclusive pedagogy to mitigate faculty and student stress
August 20, 2020
2 p.m. EDT

As we head into an uncertain academic year, spend an hour with us to consider strategies which will help you and your students navigate our changing academic, professional, and personal lives. Participants will work through pragmatic and concrete strategies they can transition into their own work to promote student learning and minimize stress.

Speakers:

  • Josef Brandauer, PhD from Gettysburg College (Penn.)
  • Katie Johnson, PhD from Trail Build, LLC (East Troy, Wisc.)

Writing & Reviewing for Advances
September 17, 2020
12 p.m. EDT

This session will be a chance to encourage all who have adapted their teaching during the COVID-19 pandemic to share their work. This topic also ties in to the Teaching Section featured topic for EB 2021.

Speaker:

  • Doug Everett, PhD from National Jewish Health (Denver, Colo.)

A Framework of College Student Buy-in to Evidence-Based Teaching Practices in STEM: The Roles of Trust and Growth Mindset
October 22, 2020
12 p.m. EST

This topic is relevant to building trust, which goes hand-in-hand with inclusion and diversity. Trust is essential for the different modalities of teaching which educators and students will experience in the fall.

 

Educators Town Hall
November 19, 2020
12 p.m. EST

A chance to talk about what happened during the fall semester and also plan for the upcoming year

Strategies and Tips for Inclusive Advising
Katie Johnson, PhD
Programmatic Improvement Consultant
Trail Build, LLC

Educators often find themselves in the role of advisor, either formally or incidentally. If you teach or lead a research group, it is likely students or trainees arrive at your office door with a plethora of questions or issues, seeking your input. Yet, very few academics have formal training in how to advise students.

How do you become a productive advisor who supports the success of your students? For the purpose of our discussion, I am defining advisor as any person who provides guidance, information, or advice to a student or trainee, the advisee. Many productive and inclusive advising strategies align with effective teaching practices.

Inclusive advising strategies interrupt assumptions an advisor may have about the needs, issues, or questions facing an advisee. It also acknowledges and embraces the relationship between the academic, professional, and personal trajectories of each advisee. One approach to inclusive advising is to use a question-focused advising strategy. Rather than advisors serving only as a conduit for information, advisors should ask advisees thoughtful and strategic questions, within the context of a collegial and respectful conversation. When an advisor carefully and attentively listens to the responses provided by the advisee, the advisor gains important information about how to support and assist the advisee.

There are many points to consider when advising, but here are a few suggestions for advisors, followed by examples of questions advisors can ask advisees. These questions are not to be used in sequential order, but rather as needed.

1. Listen carefully. This strategy is a lot harder than it sounds. It is easy to provide information, but is the information the right information? When careful and engaged listening directs advising, advisors are much more likely to provide the information and support needed by the advisee.

Questions to ask advisees: How can I help you? What brings you to my office today? What are your goals for this project/assignment/course? Did we address the issue that brought you in today? Do you think the solutions we talked about today are attainable? Do you have any other questions for me?

2. Believe advisees when they say they are struggling. Again, much harder than it sounds. Help advisees think through productive steps forward, rather than sending them off to figure things out on their own. Check-in with them later to help address lingering questions.

Questions to ask advisees: Can you remember a time when things were going well? What worked for you at that point? What strategies are you using to navigate these issues? If those strategies are not working, can we brainstorm other strategies? Can we work together to find resources to support your success? Do you have local friends you can turn to when you are having difficulties?

3. Guide advisees to identify what they need to achieve their academic, professional, and personal goals. After careful listening, assign advisees homework. Assignments could include visiting a resource on campus or doing directed online research to find the information they need to design a plan to accomplish their goals. Schedule future appointments for the advisee to report back what they found.

Questions to ask advisees: What information do you need to achieve your goals? What information do you have? What resources do you need to find? Is there anyone you know who would be a good resource?

4. Recognize the power dynamic between advisors and advisees. Even the most friendly and welcoming advisors can be intimidating to advisees. It takes courage to talk to an advisor. Given the power dynamic, advisees may be too intimidated to speak-up when they do not understand their advisor’s suggestions or advice.

Questions to ask advisees: Can you explain to me what your next steps should be to address this issue? Is there anything I said that I need to explain in a different way for you to be better prepared to address this issue?

5. Advisors are at a different point in their career than their advisees. It is likely the life priorities of any given advisee and advisor are different. Ask advisees about their priorities, listen carefully, and believe what they say.

Questions to ask advisees: Where do you see yourself in ten years? What is your ideal lifestyle? What is essential to this lifestyle for you to feel successful? How do you like to spend your time?

While these concepts may take time to incorporate into your advising, here are a few quick tips:

1. Really good advising takes time. Make sure to reserve enough time and energy to have productive advising meetings.

2. Successful advising is a continuous process. Expect numerous interactions in the classrooms, hallways, over e-mail, and during private meetings. This multiple check-in approach allows for investigation and reflection.

3. Articulate the expectations and responsibilities of advisees and advisors. It is possible you are your advisee’s first advisor. Advisees may not know the reason or meaning for an advisor or appropriate boundaries. As an advisor, determine your expectations and communicate these expectations to your advisees.

4. Offer options to schedule meetings. While walk-in office hours have some benefits, a dedicated time and space allows both advisee and advisor to focus on the task at hand. Offer designated advising timeslots for advisees. Signing-up for timeslots could occur either on a sheet of paper or using a free online tool that automatically syncs to online calendars.

5. If you expect advisees to meet at your office, make sure you tell your advisees where your office is located. Advisees should also know how to contact you if they must change or miss a meeting.

6. Schedule group advising to work with advisees who have similar academic or professional (NOT personal) issues. This will save the advisor time, and the advisees benefit from conversations with students or trainees asking similar questions.

7. Recruit a more advanced student or trainee to meet with advisees about standard advising issues, such as program requirements or course registration. It is effective if this meeting occurs prior to the advisor-advisee meeting, so unanswered questions and clarifications can be provided by the advisor.

8. You do not need to know the answer to everything. Know your limits and your resources. Institutions often have services and professionals trained in handling various student situations. Have their phone numbers or emails readily available so you can connect advisees directly to the assistance they need. Know your responsibilities around state and federally mandated reporting.

Productive and inclusive advising is an opportunity to help and to support students and trainees as they develop their own paths to success. What an amazing perk of being an educator! Happy Advising!

REFERENCES:

Chambliss DF. How College Works. Harvard University Press, 2014.

Cooper KM, Gin LE, Akeeh B, Clark CE, Hunter JS, Roderick TB, Elliott DB, Gutierrez LA, Mello RM, Pfeiffer LD, Scott RA, Arellano D, Ramirez D, Valdez EM, Vargas C, Velarde K, Zheng Y, Brownell SE. Factors that predict life sciences student persistence in undergraduate research experiences. PLOS ONE 14: e0220186, 2019.

Johnson KMS, Briggs A, Hawn C, Mantina N, Woods BC. Inclusive practices for diverse student populations: Experimental Biology 2017. Adv Physiol Educ 43: 365–372, 2019.

Katie Johnson, Ph.D., is an experienced practitioner and evaluator of inclusive teaching and mentoring practices. Dr. Johnson advises and serves on national STEM education initiatives and committees, working with a diverse network of collaborators. As a Programmatic Improvement Consultant, Dr. Johnson assists institutions and organizations to develop innovative solutions to curricular and assessment challenges. Prior to becoming an independent consultant for Trail Build, LLC, Dr. Johnson was Chair and Associate Professor of Biology at Beloit College. She earned her Ph.D. in the Department of Molecular Physiology and Biophysics at Vanderbilt University and her B.S. from Beloit College. Disclosure: Dr. Johnson serves as an external consultant for the American Physiological Society.

Emerged Idea Led to a Unique Experience in Elephant’s City
Suzan A. Kamel-ElSayed, VMD, MVSc, PhD
Associate Professor, Department of Foundational Medical Studies
Oakland University

In May 2019, the physiology faculty at the Oakland University William Beaumont School of Medicine Department of Foundational Medical Studies received an email from Dr. Rajeshwari, a faculty member in JSS in a Medical College in India.

While Dr. Rajeshwari was visiting her daughter in Michigan, she requested a departmental visit to meet with the physiology faculty. Responding to her inquiry, I set up a meeting with her and my colleagues where Dr. Rajeshwari expressed her willingness to invite the three of us to present in the 6th Annual National Conference of the Association of Physiologists of India that was held from Sept. 11-14, 2019, in Mysuru, Karnataka, India.

The conference theme was: “Fathoming Physiology: An Insight.” My colleague then suggested a symposium titled “Physiology of Virtue,” where I could present the physiology of fasting since I fast every year during the month of Ramadan for my religion of Islam. To be honest, I was surprised and scared at my colleague’s suggestion. Although I fast every year due to the Quranic decree upon all believers, I was not very knowledgeable of what fasting does to one’s body. In addition, I faced the challenge of what I would present since I did not have any of my own research or data related to the field of fasting. Another concern was the cultural aspect in talking about Ramadan in India and how it would be received by the audience. However, willing to face these challenges, I agreed and admired my colleague’s suggestion and went forward in planning for the conference.

After Dr. Rajeshwari sent the formal invitation with the request for us to provide an abstract for the presentation, I started reading literature related to fasting in general. Reading several research articles and reviews, I was lost in where to begin and what to include. I began to ponder many questions: How will I present fasting as a virtue? Should I bring in religious connections? Will I be able to express spiritual aspects from a Muslim’s perspective? I decided that the aim of my presentation would be to describe how a healthy human body adapts to fasting, and the outcomes that practicing fasting has on an individual level and on the society as a whole. In addition, I found that focusing on the month of Ramadan and etiquettes of fasting required from Muslims had many physiological benefits and allowed me to have a real-world example in which fasting is present in the world.

Visiting India and engaging with physiologists from all over India was a really rich experience. The hospitality, generosity and accommodation that were provided was wonderful and much appreciated. The conference’s opening ceremony included a speech from the University Chancellor who is a religious Hindu Monk, along with Vice Chancellors, the organizing chair, and the secretary. In addition, a keynote speech on the physiological and clinical perspectives of stem cell research was presented by an Indian researcher in New Zealand. I was also able to attend the pre-conference workshops “Behavioral and Cognitive Assessment in Rodents” and “Exercise Physiology Testing in the Lab and Field” free of charge.

For my presentation, I included the definition, origin and types of fasting. In addition, I focused on the spiritual and physical changes that occur during Ramadan Intermittent Fasting (RIF). Under two different subtitles, I was able to summarize my findings. In the first subtitle, “Body Changes During RIF,” I listed all the changes that can happen when fasting during Ramadan. These changes include: activation of stress induced pathways, autophagy, metabolic and hormonal changes, energy consumption and body weight, changes in adipose tissue, changes in the fluid homeostasis and changes in cognitive function and circadian rhythm. In the second subtitle, “Spiritual Changes During RIF,” I presented some examples of spiritual changes and what a worshipper can do. These include development of character, compassion, adaptability, clarity of mind, healthy lifestyle and self-reflection. To conclude my presentation, I spoke of the impacts RIF has on the individual, society, and the global community.

In conclusion, not only was this the first time I visited India, but it was also the first time for me to present a talk about a topic that I did not do personal research on. Presenting in Mysuru not only gave me a chance to share my knowledge, but it allowed me to gain personal insight on historical aspects of the city. It was a unique and rich experience that allows me to not hesitate to accept similar opportunities. I encourage that we, as physiology educators, should approach presenting unfamiliar topics to broaden our horizons and enhance our critical thinking while updating ourselves on research topics in the field of physiology and its real-world application.  Physiology education is really valued globally!

Suzan Kamel-ElSayed, VMD, MVSc, PhD, received her bachelor of Veterinary Medicine and Masters of Veterinary Medical Sciences from Assiut University, Egypt. She earned her PhD from Biomedical Sciences Department at School of Medicine in Creighton University, USA. She considers herself a classroom veteran who has taught physiology for more than two decades. She has taught physiology to dental, dental hygiene, medical, nursing, pharmacy and veterinary students in multiple countries including Egypt, Libya and USA. Suzan’s research interests are in bone biology and medical education. She has published several peer reviewed manuscripts and online physiology chapters. Currently, she is an Associate Professor in Department of Foundational Medical Studies in Oakland University William Beaumont School of Medicine (OUWB) where she teaches physiology to medical students in organ system courses. Suzan is a co-director of the Cardiovascular Organ System for first year medical students. Suzan also is a volunteer physiology teacher in the summer programs, Future Physicians Summer Enrichment Program (FPSP) and Detroit Area Pre-College Engineering Program (DAPCEP) Medical Explorers that are offered for middle and high school students. She has completed a Medical Education Certificate (MEC) and Essential Skills in Medical Education (ESME) program through the Association for Medical Education in Europe (AMEE) and Team-Based Learning Collaborative (TBLC) Trainer- Consultant Certification. She is also a member in the OUWB Team-Based Learning (TBL) oversight team. Suzan is an active member in several professional organizations including the American Physiological Society (APS); Michigan Physiological Society (MPS); International Association of Medical Science Educators (IAMSE); Association of American Medical Colleges (AAMC); Team Based Learning Collaborative (TBLC); Egyptian Society of Physiological Sciences and its Application; Egyptian Society of Physiology and American Association of Bone and Mineral Research (ASBMR).

Collaboration is the Key to Success in Publishing Your Work

As an Assistant Professor, you are under a lot of pressure to teach new classes, perform service and of course publish. Often times you do not have a mentor to guide you and you are off on your own pathway to tenure. While I had many good ideas about some teaching research I wanted to perform with my students I needed help in executing a study and publishing my work. While the goal was clear, the plan and the execution were not. Where to start was the biggest and most difficult hurdle.

I assumed incorrectly that the best way to be successful in publishing was to do it on my own. After all, I would only be accountable to myself and need not worry about collaborators who might be hard to reach and would take a long time to complete their portion of a manuscript. I tried this path initially and it was incredibly difficult as I could only work on one project at a time. The turning point came when I attended an Experimental Biology (EB) meeting Teaching Section symposium several years ago; I vividly recalled an excellent presentation where the speaker showed us an elegant study of how he used active learning and student grades improved. This talk inspired me and I got excited to try this with my class by performing a similar study. The excitement abruptly ended when he stated the two sections of students he used for his study had 250 and 300 students respectively. My own classes are between 12-20 students, quite small in comparison and I was completely disheartened thinking it would take years of study before I surveyed that many students. After the talk, I went up to him to ask a question, there was someone in front of me that asked the question that I had planned to ask. She said “I have small classes and for me to do a study of significance would take years”. I chimed in “I am in the same situation”. He answered us both with one word “Collaborate”. I walked away disheartened as I did not know anyone that I could collaborate with on a study.

After some time to reflect that this course of action was what I needed I developed an active plan to execute at the next EB meeting. At the Claude Bernard Lecture, I introduced myself to Barb Goodman. This was an excellent choice, as Barb knows everyone and she was kind enough to introduce me to everyone who approached her. From there my confidence grew. The next smart decision I made was to sit in the front during the lecture and all future Teaching Section Symposia. Do not hide in the back as people sometimes come in late and this can be distracting. In the front of the room are the friendly people who are very happy to talk with you and share ideas.

The next step was to follow the program and attend the Teaching Section luncheon. At this event, a small group of people dedicated to teaching and student success sit and talk about the different classes they teach and share ideas about teaching challenges. The tables are small and round so you can meet everyone at your table. Another key event to attend at EB is the Teaching Section Business meeting and dinner. At the dinner, you get a chance to meet more people in a relaxed setting. Some of the attendees have attended the other events and this is a great way to practice your recall and talk with them on a first name basis.

The final step in meeting people with whom to collaborate is to participate in an Institute on Teaching and Learning (ITL). There have been three of these meetings so far (2014, 2016 & 2018) and the meeting actively encourages you to meet new people at each meal and form new collaborations. Through this meeting, I met many of my collaborators and successfully published abstracts and papers (listed below), received one grant, was a symposium speaker, and chaired a symposium. The meeting is energizing as the program is packed with new ideas and teaching strategies to try in your classroom. It is easy to ask questions and be an active participant in the discussions.  Thus, taking advantage of a number of opportunities for physiology educators through the American Physiological Society can be just the push you need to get going on a successful promotion and tenure process.  Join the APS and its Teaching Section to keep up-to-date on what is going on in physiology education.

 

References

  1. Aprigia Monteferrante G,  Mariana Cruz M, Mogadouro G, de Oliveira Fantini V,  Oliveira Castro P, Halpin PA, and Lellis-Santos C (2018). Cardiac rhythm dance protocol: a smartphone-assisted hands-on activity to introduce concepts of cardiovascular physiology and scientific methodology. Advances in Physiology Education, 42: 516-520, doi:10.1152/advan.00028.2017.
  2. Blatch, SA, Cliff W., Beason-Abmayr, B. and Halpin PA. (2017).The Artificial Animal Project: A Tool for Helping Students Integrate Body Systems. Advances in Physiology Education. 41: 239-243 DOI: 10.1152/advan.00159.2016
  3. Gopalan C., Halpin PA and Johnson KMS (2018). Benefits and Logistics of Non-Presenting  Undergraduate Students Attending a Professional Scientific Meeting. Advances in Physiology Education. 42: 68-74. DOI.org/10.1152/advan.00091.2017
  4. Halpin PA, Golden L, Zane Hagins K, Waller S, and Chaya Gopalan C. (2018). SYMPOSIUM REPORT ON “Examining the Changing Landscape of Course Delivery and Student Learning;” Experimental Biology 2017. Advances in Physiology Education, 42: 610–614. doi:10.1152/advan.00096.2018.
  5. Lellis-Santos, C and Halpin PA (2018).”Workshop Report: “Using Social Media and Smartphone Applications in Practical Lessons to Enhance Student Learning” in Búzios, Brazil (Aug. 6-8, 2017). Advances in Physiology Education, 42: 340–342. https://doi.org/10.1152/advan.00011.2018.
Patricia A. Halpin is an Associate Professor in the Life Sciences Department at the University of New Hampshire at Manchester (UNHM). Patricia received her MS and Ph.D. in Physiology at the University of Connecticut. She completed a postdoctoral fellowship at Dartmouth Medical School. After completion of her postdoc she started a family and taught as an adjunct at several NH colleges. She then became a Lecturer at UNHM before becoming an Assistant Professor. She teaches Principles of Biology, Endocrinology, Cell Biology, Animal Physiology, Global Science Explorations and Senior Seminar to undergraduates. She has been a member of APS since 1994 and is currently on the APS Education committee and is active in the Teaching Section. She has participated in Physiology Understanding (PhUn) week at the elementary school level in the US and Australia. She has presented her work on PhUn week, Using Twitter for Science Discussions, and Embedding Professional Skills into Science curriculum at the Experimental Biology meeting and the APS Institute on Teaching and Learning.
Teaching for Learning: The Evolution of a Teaching Assistant

An average medical student, like myself, would agree that our first year in medical school is fundamentally different from our last, but not in the ways most of us would expect. Most of us find out that medical school not only teaches us about medicine but it also indirectly teaches us how to learn. But what did it take? What is different now that we didn’t do back in the first year? If it comes to choosing one step of the road, being a teaching assistant could be a turning point for the perception of medical education in the long run, as it offers a glimpse into teaching for someone who is still a student.

At first, tutoring a group of students might seem like a simple task if it is only understood as a role for giving advice about how to get good grades or how to not fail. However, having the opportunity to grade students’ activities and even listen to their questions provides a second chance at trying to solve one’s own obstacles as a medical student. A very interesting element is that most students refuse to utilize innovative ways of teaching or any method that doesn’t involve the passive transmission of content from speaker to audience. There could be many reasons, including insecurity, for this feeling of superficial review of content or laziness, as it happened for me.

There are, in fact, many educational models that attempt to objectively describe the effects of educating and being educated as active processes. Kirkpatrick’s model is a four-stage approach which proposes the evaluation of specific aspects in the general learning outcome instead of the process as a whole (1). It was initially developed for business training and each level addresses elements of the educational outcome, as follows:

  • Level 1- Reaction: How did learners feel about the learning experience? Did they enjoy it?
  • Level 2- Learning: Did learners improve their knowledge and skills?
  • Level 3- Behavior: Are learners doing anything different as a result of training?
  • Level 4- Results: What was the result of training on the business as a whole?

Later, subtypes for level 2 and 4 were added for inter-professional use, allowing its application in broader contexts like medicine, and different versions of it have been endorsed by the Best Evidence in Medical Education Group and the Royal College of Physicians and Surgeons of Canada (1) (2).  A modified model for medical students who have become teachers has also been adapted (3), grading outcomes in phases that very closely reflect the experience of being a teaching assistant. The main difference is the inclusion of attitude changes towards the learning process and the effect on patients as a final outcome for medical education. The need for integration, association and good problem-solving skills are more likely to correspond to levels 3 and 4 of Kirkpatrick’s model because they overcome traditional study methods and call for better ways of approaching and organizing knowledge.

Diagram 1- Modified Kirkpatrick’s model for grading educational outcomes of medical student teachers, adapted from (3)

These modifications at multiple levels allow for personal learning to become a tool for supporting another student’s process. By working as a teaching assistant, I have learned to use other ways of studying and understanding complex topics, as well as strategies to deal with a great amount of information. These methods include active and regular training in memorization, deep analysis of performance in exams and schematization for subjects like Pharmacology, for which I have received some training, too.

I am now aware of the complexity of education based on the little but valuable experience I have acquired until now as a teacher in progress. I have had the privilege to help teach other students based on my own experiences. Therefore, the role of a teaching assistant should be understood as a feedback process for both students and student-teachers with a high impact on educational outcomes, providing a new approach for training with student-teaching as a mainstay in medical curricula.

References

  1. Roland D. Proposal of a linear rather than hierarchical evaluation of educational initiatives: the 7Is framework. Journal of Educational Evaluation for Health Professions. 2015;12:35.
  2. Steinert Y, Mann K, Anderson B, Barnett B, Centeno A, Naismith L et al. A systematic review of faculty development initiatives designed to enhance teaching effectiveness: A 10-year update: BEME Guide No. 40. Medical Teacher. 2016;38(8):769-786.
  3. Hill A, Yu, Wilson, Hawken, Singh, Lemanu. Medical students-as-teachers: a systematic review of peer-assisted teaching during medical school. Advances in Medical Education and Practice. 2011;:157.

The idea for this blog was suggested by Ricardo A. Pena Silva M.D., Ph.D. who provided guidance to Maria Alejandra on the writing of this entry.

María Alejandra is a last year medical student at the Universidad de Los Andes, School of Medicine in Bogota, Colombia, where she is has been a teaching assistant for the physiology and pharmacology courses for second-year medical students. Her academic interests are in medical education, particularly in biomedical sciences.  She is interested in pursuing a medical residency in Anesthesiology. Outside medical school, she likes running and enjoys literature as well as writing on multiple topics of personal interest.
Why Teaching? Why a Liberal Arts school?

Why Teaching? Why at a Liberal Arts school? These are two questions that I am often asked. I used to give the standard answers. “I enjoy working with the students.” “I didn’t want to have to apply for funding to keep my job.” “A small, liberal arts school allows me to get to know the students.” But more recently those answers have changed.

A year or so ago, I returned to my undergraduate alma mater to celebrate the retirement of a biology faculty member who had been with the school for almost 50 years. As I toured the science facilities—which had been updated and now rival the facilities of many larger research universities—I reflected on where I had come from and how I came to be a biology professor at a small liberal arts school in Iowa.

I was born and raised in the suburbs of Harrisburg, Pennsylvania. In fact my parents still live in the house they purchased before I was born. My parents valued education and believed it was their job to provide their three children with the opportunity to go to college. Because there were three of us, it was expected that we would attend college in Pennsylvania. At that time, the way to learn about colleges was to go to the guidance counselor’s office or to sift through all of the mailings that came to the house. One of the schools I chose to visit was Lebanon Valley College (LVC),  a small, private, liberal arts institution in Annville, PA (central Pennsylvania). LVC had a strong biology program but my reasons for choosing LVC were I liked the campus, the school was neither too big nor too small, and it was far enough from home but not too far from home. That is how I ended up at LVC.

I was a biology major, pre-med my entire four years at LVC. The biology department at LVC was fantastic. The professors had high expectations, held students to these high expectations, and helped the students to reach those expectations. The professors gave me a solid background in the sciences and opportunities to work in a lab. Both the knowledge I gained and the lab experiences I had allowed me to succeed as a scientist. However, during my journey at LVC, I found that there was more to me than being a biology major or a Pre-Med student. From the beginning of my time at LVC, my professors saw something in me that I could not and chose not to see. My professors saw a person who loved to learn, a person who loved to explore, and a person who loved to share information. They saw an educator, a leader, and a communicator. But regardless of what they saw or what they said, I had to find these elements on my own and for myself.

 

During my time at LVC, I did not understand what the liberal arts meant or what the liberal arts represented. Back then if you had asked me if I valued the liberal arts, I probably would have said I have no idea. Even when I graduated from LVC, I did not realize the impact that my liberal arts education would have on me. It is only now when I reflect on my time at LVC that I can appreciate and value the impact that my liberal arts education had on the achievement of my goals. It was the courses that were required as a part of the liberal arts program and the professors who taught them that made me a better scientist. The writing and speech classes provided the foundation for my scientific communication skills that continued to develop after graduation. It was in these classes that the professors provided constructive feedback which I then incorporated into future assignments. The leadership, language, literature, philosophy, and art courses and professors provided opportunities to develop my ability to analyze, critique, and reflect. The religion courses taught me that without spirituality and God in my life, there was little joy or meaning to what I accomplished. The liberal arts program provided me with skills that were not discipline specific but skills utilized by many academic fields. These courses allowed the person who loved to learn, the person who loved to explore and ask questions, and the person who loved to share information to flourish. These courses taught me to value all experiences as opportunities to learn and to become a better person. Lebanon Valley College, through the people I met and the education I received, put me on the path to finding the elements that form my identity.

After graduation from LVC, I explored. I accepted a position as a research technician in a laboratory where I remained for three years. During that time, I improved my science skills, but I also had the opportunity to use and improve those other abilities I learned at LVC. After three years, I decided I wanted to go to graduate school. I loved asking new questions, performing experiments, and the feeling I had when an experiment worked and provided new information. I also liked working with students. I loved sharing information and guiding students through the process of learning. I applied to graduate school, was accepted, earned my Ph.D, and then completed two postdoctoral fellowships. My graduate advisor and postdoctoral advisors were supportive of me and allowed me to teach in addition to my research. After two successful postdoctoral fellowships, I had to decide where to go next. I chose teaching and I chose Clarke University. I chose teaching and specifically Clarke because I wanted to go back to my roots. I wanted to take the knowledge and skills I had attained and share them. I chose Clarke University because I saw similarities between it and LVC. I chose Clarke University because of its liberal arts heritage and its focus on the students.

Now, 10 years later, I am a guide for a new generation of students at Clarke University. While there are so many differences between my generation and this generation, I still see similarities. I see students eager to come to class so they can learn. I see students excited when they understand a difficult concept. I see students who want to make a difference in this world. I do not know what a student would say if I asked them if they valued their liberal arts education or me as their teacher. My guess is that many of them are just like I was and do not know what the liberal arts represent. Some might even say they do not value the liberal arts or the professors. I can only hope that one day, when the students I teach reflect on their undergraduate careers, they can recognize and appreciate the influence Clarke University, the liberal arts program, and their professors had on them. I know that without my professors and without my liberal arts experience at Lebanon Valley College, I would not be me—the educator, the scientist, the author, the leader, the life-long learner. Nor would I be me—the mother, the wife, the daughter, the sister, the friend, the colleague. Lebanon Valley College and my liberal arts education helped me become the person I am today.

Melissa DeMotta, PhD is currently an Associate Professor of Biology at Clarke University in Dubuque, IA. Melissa received her BS in biology from Lebanon Valley College. After working for three years at Penn State’s College of Medicine in Hershey, PA, she received her PhD in Physiology and Pharmacology from the University of Florida in Gainesville. Following postdoctoral fellowships at the University of Arizona and Saint Louis University, Melissa joined the Biology Department at Clarke University. Melissa currently teaches Human Physiology and Exercise Physiology to physical therapy graduate students and undergraduates. She also enjoys teaching non-majors life science courses as well.
Are you prepared – to prepare an “Olympian”?

Recently, the 2018 Winter Olympic Games came to a close. The games included a number of thrilling surprises (Red Gerard) and heart-breaking spills (figure skaters). Although medals awarded late in the Olympic schedule helped boost Team USA’s medal count, most would agree that the U.S.’s performance in PyeongChang fell below expectations. Looking for answers, TV commentators remarked that the US pipeline for development of Olympic athletes has diminished in recent years.

While taking in the splendor of the Olympic Games, I began to wonder…should we be training future scientists is a manner similar to our athletes? Is the pipeline for development of talent well established and supported?  How do we get the American public to rally behind the performance of high performing physiologists?  What if local businesses, and corporate sponsors proudly displayed “we employ future teachers, scientists, and health care providers”?

As an avid follower of the games, it became obvious to me that Olympic athletes cluster in specific regions of the US. The Gold medal men’s curling team included 4 men from Minnesota (3 from Duluth), and one from nearby Wisconsin. Three young Olympic snowboarders (Red Gerard, Kyle Mack, and Chris Corning) all hail from Silverthorne, Colorado. The city of Federal Way (located along Federal Highway U.S. 99 in Washington State) is an incubator of U.S. short-track speed skating talent, and has sent American speed skaters to the past five Winter Olympics (Ohno, Celski and Tran).

Is it possible that certain high schools and undergraduate institutions could be considered “incubators” for development of physiologists (scientists in general)? Can we consider our school a “hot bed” for training and development of those with a passion for science?  As professionals, are we fulfilling our role to prepare our youth for their “Olympic” performance, or are we falling behind expectations?

To assist in preparing future physiologists, the American Physiological Society supports the “pipeline” by providing a number of programs and awards (see links below). However, these offerings require us to identify students and encourage and support their applications. We are called upon to build programs and opportunities that are sustainable, and produce measurable outcomes.

I have to admit that prior to writing this post, I had not FULLY considered my role in developing our future physiologists (Olympians).  I personally pledge to re-evaluate my role, and hope to bring others into the conversation to ponder the questions posed.

In closing, I would ask you to consider a quote from former Olympic Gold medalist Mia Hamm, and think about specific and personal ways each of us can help build the fire, and light the match.

“I am building a fire, and every day I train, I add more fuel. At just the right moment, I light the match.” – Mia Hamm, American soccer player and gold medalist.

Undergraduate Awards
http://www.the-aps.org/mm/awards/Other-APS-Awards/Undergraduate

 

K-12 Awards
http://www.the-aps.org/mm/awards/Other-APS-Awards/K-12-Student

  • APS Science Fair Awards: APS members make APS awards at local or regional science fair at the elementary, middle, or high school level.
  • ISEF Awards: APS participates as a Special Awards Sponsor for the International Science and Engineering Fair (ISEF)

 

Program brochures for diversity and higher education:
http://www.the-aps.org/education/publications.aspx

 

Mari K. Hopper, PhD, is currently an Assistant Professor at Indiana University School of Medicine. In addition to teaching physiology in a variety of systems based courses, she serves as the Director of Research, Hospital Medical Education, and other Scholarly work. Prior to this position, she taught physiology based courses at the undergraduate level for over 20 years. She is currently on the HAPS Conference Site Selection Committee, Chair of the Chapter Advisory Committee of the American Physiological Society, and Past-President of the Indiana Physiological Society. Her research interests include both student academic engagement (active learning) and student health.