Category Archives: Student Preparation

Desperate times call for desperate measures: Teaching Physiology in a hybrid/online format and block schedule

Physiology and STEM educators at colleges and universities around the world have deployed creative and innovative strategies to preserve class and laboratory instruction during a pandemic.

My residential, liberal arts, undergraduate institution implemented a hybrid learning format, as did many others.  The hybrid format was adopted by the institution because room capacities were reduced to accommodate physical distancing and because we expected that COVID quarantines and isolations would force faculty and students to attend remotely.  Classrooms were outfitted with cameras and microphones in the HyFlex model to facilitate remote participation.  All classes and laboratories were forced to move online during certain blocks as a response to regional COVID rates and some students participated remotely for the entire year—including those who participated from their international homes.

More drastically, we converted our “normal” semester schedule (students complete four courses across a semester) into a block schedule.  Under the block schedule, students enrolled in one course at a time, intensively, for just under four weeks per course.  Courses met for three hours per day, four days per week.  Students completed a forced-choice mini-exam at the end of each unit and larger exams with forced-choice and short answer questions at the middle and end of the course (Table 1).  Laboratories were scheduled as additional meeting times.  Instructors and departments were granted a great deal of flexibility in laboratory scheduling so there were many permutations to lab schedules within a block—sometimes a student attended laboratory for three-hour sessions twice per week, other times a student attended for 1.5 hours four times per week.

In this post, I’ll address the changes that we made to our Human Anatomy and Physiology I and II (Biology 325 and Biology 326) sequence.  I’ll also reflect on the successes and challenges of the revisions and what we have retained in our return to in-person, normal semester scheduling.

Although we no longer utilize the block schedule at my institution, these reflections may be useful to instructors who are considering intensive summer courses and to instructors who would like to facilitate active and remote learning for other reasons.  It is important to note that the difficulties I address below are more likely to affect underserved, underprepared, or otherwise disadvantaged students and faculty, so particular attention to equity is important in considering how to deliver remote and/or intensive learning experiences.

Class (“lecture”) revisions

We adopted a flipped approach to the classroom portion of the course.  We chose this approach primarily in recognition that three-hour time blocks could only be successful with substantial interaction.  The flipped approach also helped us to navigate the hybrid format given that we anticipated technical concerns and/or limited attention spans would negatively impact the quality of meetings for remote students (three hours is an exceptionally long time to attend a Zoom class!).  Four instructors taught the courses each semester.  We divided each semester’s material into four units and each instructor created pre-class lecture videos of the relevant material for their assigned unit (Table 1).  Pre-class lecture videos totaled approximately one hour to 1.5 hours per class meeting.  The instructor also developed in-class materials for their assigned unit—typically case studies and/or worksheets.  Class began with instructors answering questions about pre-class video content and daily class objectives in response to student small group discussions.

Importantly, the block schedule reduced net class meeting hours and required us to prune as much content as possible.  We also integrated units that were previously separate.  For example, rather than address cellular physiology and skeletal physiology in separate units, cellular physiology was delivered using the calcium homeostasis and skeletal physiology for application (Table 1).

Lessons learned:

As noted above, instructors divided video and class material preparation by unit.  This required a high level of trust between instructors, and a willingness to try new ideas and pedagogies.  It worked well because our instructional team is cohesive and, although our pedagogical approaches vary, we value each other’s approaches.  Students benefitted from the lecture styles of four different instructors.

The flipped approach was helpful for practice and application of material.  The block schedule affords little time between class meetings given that classes meet for three hours per day on consecutive days.  Case studies and worksheets that applied lecture content helped students to identify points of confusion and build understanding. Further, students loved the ability to return to pre-lecture videos and rewatch points of confusion.  We now have a wealth of videos and in-class activities in our toolbox.  We continue to use many of the videos and assignments and recommend this approach to others– you might try flipping portions of class meetings as a starting point.

The intensive nature of the block schedule was advantageous in that students focused on one course at a time (so only needed to catch up in one course if COVID forced them to miss class).  A single course was their primary school-related responsibility during a block because they had no other courses and sports were largely on hold.  On the other hand, the intensive schedule left little time to develop content retention and build conceptual mastery.  There was little to no opportunity for spaced repetition.  We are currently seeing under-retention of content from last year in this year’s students.  If others attempt intensive schedule courses, it is important to recognize that content retention may be curtailed but conceptual development could be preserved with sufficient practice and application.

More generally, we are finding that students forgot how to time-manage and study in the block schedule.  They did not need to balance multiple classes or, for the most part, sports and social engagements.  The intensive nature of the block meeting schedule meant that much of their out-of-class time was spent preparing for the next day’s class rather than reviewing and studying material.  Some students (particularly those who are already disadvantaged) balanced this experience with intensified caregiving demands amid COVID restrictions.  Overall, student study habits declined—they are now struggling to optimize location, motivation, strategies, and pacing for self-regulated learning.

Students often operated in semi-isolation last year—often interacting with black boxes on a screen instead of classmates—and struggled to stay engaged via Zoom, even in breakout rooms.  This is a particular struggle for small, residential, liberal arts institutions where learning is typically done in small communities supported by close relationships.  Faculty found it difficult to build relationships with students during a four-week class with 50% remote participation each day and a requirement for meetings via Zoom (office visits were prohibited).  Students were less able to build a sense of STEM identity and belonging given the weaker relationships and reduced laboratory engagement (see below).  Sense of belonging and identity was likely especially challenging for individuals from minoritized groups with already lower STEM identity and belonging.

Lab revisions

All physiology experiments were removed from the laboratory sequence for the 2020/2021 academic year in response to the block schedule and to requirements for physical distancing and reduction of respiratory droplets.  The laboratory sequence consisted entirely of human anatomy.  We immediately recognized that learning a semester’s worth of human anatomy in four weeks—on top of class material—would be near impossible.  Therefore, we proposed a self-paced online anatomy lab experience that students could complete outside of their other coursework across the entire semester.  We utilized the Complete Anatomy platform (Elsevier; https://3d4medical.com/) and required students to submit a schedule for studying and completing practicals based on their own course schedule and other obligations each block.  Instructors held weekly instructional sessions via Zoom and met with students for tutoring as needed.  Instructional sessions were recorded and provided to students.

Lessons learned:

Any online, self-paced instructional platform will be subject to technical difficulties including spotty or slow home internet access and limited computing resources.  In addition, the Complete Anatomy platform posed surprising technical difficulties with gradebook access, content generation, and personal computer compatibility.  There were also notable technical glitches when delivering assessment via the Complete Anatomy platform.  We were able to either troubleshoot or work around each of the difficulties (for example, uploading Complete Anatomy images into our LMS for assessment), but it was labor-intensive and stressful.  Content generation was time-intensive and required a team of undergraduate teaching assistants during each semester and the prior summer.  We were lucky to have an outstanding team of teaching assistants who were so capable that they were awarded as institutional Student Employee Team of the Year (https://www.csbsju.edu/news/student-employee-awards-2021).

We were hopeful that the 3D visualization aspect of the platform (https://cdn.3d4medical.com/media/complete-anatomy-3/2019/screens.mp4) would help students improve mental 3D visualization abilities given that this has been a struggle for past students.  This did not seem to occur, although it is difficult to be sure given that most student work was completed away from instructors.  This year we paired Complete Anatomy software with physical models for in-person lab instruction and the combination works well.  We value Complete Anatomy as a study tool but some technical difficulties have continued, making it less suitable for assessment.  Online anatomy assessment was, of course, also limited because we had no way of enforcing a closed-book requirement.

Instructors observed that students did not retain as much content compared to previous years.  This is likely a result of multiple factors, including procrastination and approaches to learning.  Regardless of the original schedule developed by each student, many procrastinated and completed a flurry of practicals near the end of the semester.  Clearly those students were not practicing the spaced repetition that is important for learning.  Additionally, students often approached practicals as an item to be checked off a to-do list rather than a learning task.  When we hold laboratory sessions in-person, we can motivate and encourage students toward deep-, rather than surface-, learning in a way that we were unable to do remotely.  If we were to repeat the self-paced structure, we would enforce the students’ planned schedules more strictly.

Summary

We are happy to be back to a normal schedule with in-person instruction—made possible (thus far) by an institutional vaccination requirement for students and faculty and by masking requirements.  We have retained tools and strategies from last year, including flipped instructional materials and Complete Anatomy as a study tool.  We have moved away from other tools and strategies.  However, we (and others) may continue to offer intensive online summer options in which many of these approaches may be retained.

Table 1:  Class schedule

Pre-class video topics In-class activities
Unit 1 Day 1 ·       Course introduction

·       Homeostasis

·       Endocrine system

·       Osteoporosis case part 1

·       Study plan

Day 2 ·       Cellular signaling

·       Microscopic structure of bone

·       Bone remodeling mechanisms

·       Bone remodeling regulation

·       Osteoporosis case study part 2
Mini-exam 1
Day 3 ·       Cellular junctions

·       Passive membrane transport

·       Active membrane transport

·       Ca++ transport (osteoclast and intestinal epithelial cell)

·       osteoporosis case study part 3
Day 4 ·       Bone growth and fracture repair ·       Osteoporosis case study part 4

·       Bone growth disorders activity

Mini-exam 2
Unit 2 Day 5 ·       Resting membrane potentials ·       Resting membrane potential worksheet and practice questions
Day 6 ·       Neuron functional anatomy

·       Graded potentials

·       Neuron functional anatomy worksheet

·       Graded potentials worksheet

Mini-exam 3
Day 7 ·       Action potentials

·       Action potential propagation

·       Action potential worksheet and practice questions
Day 8 ·       Synapses and synaptic transmission

·       Synapses and synaptic integration

·       Synapses and synaptic integration worksheet and practice questions
Exam 1
Unit 3 Day 9 ·       Nervous system introduction

·       CNS protection

·       Brain trauma case study
Day 10 ·       Functional brain anatomy ·       Brain regions functional scenarios activity
Mini-exam 4
Day 11 ·       Receptor physiology (somatosensation)

·       Pain

·       Neanderthal pain discussion (Zeberg et al., 2020)
Day 12 ·       Vision

·       Autonomic nervous system

·       Autonomic nervous system case studies
Mini-exam 5
Unit 4 Day 13 ·       Control of movement

·       Functional skeletal muscle anatomy

·       Brain machine interface worksheet (Flesher et al., 2016; Moritz et al. 2008; O’Doherty et al., 2011; Sasada et al., 2014)

·       Muscle functional anatomy worksheet

Day 14 ·       Sliding filament theory

·       Neuromuscular junction

·       Excitation contraction coupling

·       Neuromuscular junction worksheet

·       Malignant hyperthermia case study

Mini-exam 6
Day 15 ·       Graded contractions

·       Muscle metabolism and fiber types

·       Motor recruitment worksheet

·       Muscle training worksheet

Exam 2

 

Jennifer Schaefer is an Associate Professor of Biology, the Biology Department Chair, and the Neuroscience Minor Director at the College of St. Benedict/St. John’s University.  She earned her B.A. in Biology from St. Olaf College in 2002 and her Ph.D. in Physiological Sciences from the University of Arizona in 2010.

Jennifer’s teaching expertise is in anatomy & physiology and neurobiology.  Her research in the science of teaching and learning investigates the interaction between metacognition and self-efficacy for student academic performance.  Jennifer collaborates on an ongoing national collaboration to develop a consensus set of core concepts for undergraduate neuroscience education and her research in neurobiology investigates motor control circuits in Drosophila.

Jennifer is a member of the American Physiological Society, Society for Neuroscience, Faculty for Undergraduate Neuroscience, and Phi Beta Kappa

Jennifer E. Schaefer

Associate Professor of Biology

College of Saint Benedict and Saint John’s University

Motivating students to make the most of group projects

Implementation of group projects in class represents an important pedagogical strategy to engage students in active learning. Specifically, it may promote collaborative learning, problem-based learning, evidence-based learning, team-based learning, and peer instruction. Students may benefit from group projects in different ways, including but not limited to: (1) practicing teamwork skills (e.g., communication, collaboration, interdependence, and accountability), and (2) building problem-solving skills (e.g., reasoning, critical-thinking, knowledge applying, trouble shooting, and concept constructing). As such, implementation of group projects has been increasingly observed in higher education across disciplines including nutritional and metabolic physiology [1-4].

 

However, not all students favor group projects. The common complaints may arise from time commitments and unequal contributions [2]. Some students may prefer to work alone on assignments in which they can easily take control of the pace and spend less time to earn high scores. This view is true in some sense, but students will miss the benefits of collaborative learning, team-based learning, and peer instruction. In general, it takes more time to accomplish a project as a group than as an individual because time is needed to build an effective team. However, the effects or benefits of group projects on student learning are profound, as mentioned above. To be society or career ready, for instance, students are not evaluated by scores alone but also by soft skills such as teamwork, accountability, adaptability, flexibility, and resilience. In terms of contributions, some students may feel short of chances to express themselves because of dominating group members, while others may complain about free riders who take less responsibility in group projects but earn the same scores [2]. The paradoxes can be addressed by motivating students to actively participate in and make the most of group projects.

 

First, let students enjoy the freedom to select topics of interests for their group projects. Interest can significantly motivate students to make efforts exploring evidence for answers. Nevertheless, the project topics proposed by students are by no means random; instead, the themes should fit in with the course content and learning objectives. In order for a project to overarch the interests of a group of students, the instructor may facilitate setting up the groups based on student interests. In addition, the instructor’s guidance is critical for the project initiation, where adjustments are necessary to customize the project question or theme such that it takes into account every member’s interests and learning objectives.

 

Secondly, balance group size to fulfill key roles. Group size affects group dynamics and the performance. Group oversizing increases the difficulty of engaging each member in the discussion or activities within limited time, which results in free riding and unequal contributions. A group size of 3-5 students is considered reasonable; a group size of 2 students may still work, but it lacks the typical group dynamics of assigning and rotating roles. In a 5-student group, the roles can be assigned as a facilitator (to moderate group discussion), a challenger (to raise counter-arguments and alternative explanations), a recorder (to take notes of group discussion), a reporter (to summarize and report the outcome of group discussion), and a timekeeper (to keep the group on track of time and deadlines). For a smaller group, the facilitator may take an additional role of “timekeeper”, and the challenger or recorder may take an additional role of “reporter”. More importantly, role rotation motivates students to play different roles in a group, which can prevent students from dominating in a group discussion or project and eliminate free riding. Role rotation motivates students to put themselves in others’ shoes, which promotes mutual understanding and trust that foster stronger teamwork. To this end, the instructor may direct students to divide a group project into sub-sections such that the key roles can be played by each member of the group via role rotation.

 

Third, have individual contributions weighed for group project grading. It is common that all members earn the same score for a group project. However, having individual contributions weighed for group project grading will motivate students to maximize their talents and potential in solving problems and executing the project. Practically, let students acknowledge or sign their contributions when they submit the assignment, and accordingly, grading rubrics can be designed such that both individual and collective merits of a group assignment are weighted. For instance, an oral presentation can be easily assessed by the relevance, depth, innovation, readiness, and communication skills for each individual portion, and by the overall hypothesis, rationale, logical flow, presentation transitions, and convincingness for the collective merits. This practice may increase the workload on the instructor and teaching assistants, but it significantly boosts the motivation of students to do the best they can for a group project.

 

Lastly, effectively apply anonymous peer evaluation. Group projects demand a variety of outside class efforts and activities, and a generic evaluation or rating of peer contributions would not suffice. Instead, the anonymous peer rating should be specified in detail such as the responsiveness, promptness, the amount of literature contributed, and the performance in discussion, presenting and challenging different viewpoints, and setting and achieving goals. The itemized rating or guide can keep the peer evaluators on track and evaluation straightforward. In addition, it is critical to provide timely evaluation so that students know how they are doing and what to improve, and so they may take prompt actions to improve later group work. If a group project consists of multiple subsections, an anonymous peer evaluation can be installed for each subsection with the average being taken as the final rating. If there is no subsection in a group project, an anonymous peer evaluation can be installed in halfway and at the conclusion of the project, with the average being taken as the final rating. Timely and multiple peer evaluations motivate students to reflect and find effective ways to work together as a group. By contrast, using a single peer evaluation for the group project only tells students about their performance but does not produce the motivation or opportunities to identify and fix issues for improvement.

 

In summary, implementation of group projects in class may benefit student learning in many ways [1-4]. Here I described some practical strategies that motivate students to fully participate and make the most of group projects. These practices may also address concerns raised by students and instructors about unequal contributions or free riding [2].

 

References and further reading

[1] Benishek LE and Lazzara EH. Teams in a New Era: Some Considerations and Implications. Front. Psychol. 2019, 10, 1006. doi: 10.3389/fpsyg.2019.01006

[2] Chang Y, Brickman P. When Group Work Doesn’t Work: Insights from Students. CBE Life Sci Educ. 2018, 17(3), ar42. doi: 10.1187/cbe.17-09-0199.

[3] Rathner JA, Byrne G. The use of team-based, guided inquiry learning to overcome educational disadvantages in learning human physiology: a structural equation model. Adv Physiol Educ. 2014, 38(3), 221-8. doi: 10.1152/advan.00131.2013.

[4] Schmutz JB, Meier LL, Manser T. How effective is teamwork really? The relationship between teamwork and performance in healthcare teams: a systematic review and meta-analysis. BMJ Open 2019, 9, e028280. doi:10.1136/bmjopen-2018-028280

Dr. Zhiyong Cheng received his PhD in Analytical Biochemistry from Peking University, after which he conducted postdoctoral research at the University of Michigan (Ann Arbor) and Harvard Medical School. Dr. Cheng is now an Assistant Professor of Nutritional Science at the University of Florida. He has taught several undergraduate- and graduate-level courses (lectures and lab) in human nutrition and metabolism (including metabolic physiology). As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively developing and implementing new pedagogical approaches to build students’ critical thinking and problem-solving skills.
Engaging students in active learning via protocol development

Physiology, particularly metabolic physiology, covers the fundamentals of biophysics and biochemistry for nutrient absorption, transport, and metabolism. Engaging pre-health students in experimentation may facilitate students’ learning and their in-depth understanding of the mechanisms coordinating homeostatic control. In addition, it may promote critical thinking and problem-solving ability if students are engaged in active learning.

Traditionally, students are provided instructions that detail the stepwise procedures before an experiment or demonstration. Although students are encouraged to ask questions before and during the experiments, an in-depth discussion would not be possible until they understand each step and the underlying principles. This is particularly true nowadays when commercial kits come with stepwise instructions where no explanation can be found of principles behind the procedure. The outcomes may contrast in three ways: (1) students are happy with the perfect data they acquire by following the instructions provided by the manufacturer, but they miss the opportunity to chew on the key principles that are critical for students to develop creative thinking; (2) students are frustrated as they follow the instruction but fail the experiments, without knowing what is wrong and where to start for trouble shooting; and (3) driven by self-motivation, students dig into the details and interact intensively with the instructor to grasp the principles of the procedure. As such, the students can produce reliable data and interpret the procedure and data with confidence, and in addition, they may effectively diagnose operational errors for trouble shooting. Evidently, the 3rd scenario demonstrates an example of active learning, which is desirable but not common in a traditional model of experimentation.

To engage students in active learning, one of the strategies is to remove the ready-to-go procedure from the curricular setting but request the students to submit a working protocol of their own version at the end of an experiment. Instead of a stepwise procedure (i.e., a “recipe”), the students are provided with reading materials that discuss the key principles of the analytical procedures. When students show the competency in the understanding of the principles in a formative assessment (e.g., a 30-min quiz), they are ready to observe the demonstrations step by step, taking notes and asking questions. Based on their notes and inspiration from discussion, each student is requested to develop a protocol of their own version. Depending on how detail-oriented the protocols are, the instructor may approve it or ask students to recall the details and revise their protocols before moving forward. Once students show competency in the protocol development, they are ready to conduct the steps in groups under the instructor’s (or teaching assistant, TA’s) supervision. Assessment on precision and accuracy is the key to examine the competency of students’ operation, which also provides opportunities for students to go back to improve or update their protocols. In the case of unexpected results, the students are encouraged to interpret and justify their results in a physiological setting (e.g., fasting vs. feeding states) unless they choose not to. Regardless, students are asked to go back to recall and review their operation for trouble shooting under the instructor’s (or TA’s) supervision, till they show competency in the experiment with reproducible and biologically meaningful data. Trouble shooting under instructor’s or TA’s supervision and inspiration serves as an efficient platform for students to take the lead in critical thinking and problem solving, which prompts students to go back to improve or update their protocols showing special and practical notes about potential pitfalls and success tips.

Often with delight, students realize how much they have grown at the end of experimentation. However, frustration is not uncommon during the troubleshooting and learning, which has to be overcome through students’ persistence and instructor’s encouragement. Some students might feel like “jumping off a cliff” in the early stage of an experiment where a ready-to follow instruction is not available. Growing in experience and persistence, they become more confident and open to pursue “why” in addition to “what”.

Of note, logistic consideration is critical to ensure active learning by this strategy. A single experiment would take up to 3-fold more time for the instructor and students to work together to reach competency. To this end, the instructor needs to reduce the number of experiments for a semester, and carefully select and design the key experiments to maximally benefit students in terms of skill learning, critical thinking, and problem solving. Furthermore, group size should be kept small (e.g., less than 3 students per group) to maximize interactive learning if independent experimentation by individuals is not an option. Such a requirement can be met either by increasing TA support or reducing class size.

 

 

Zhiyong Cheng is an Assistant Professor of Nutritional Science at the Food Science and Human Nutrition Department, University of Florida’s Institute of Food and Agricultural Sciences (UF/IFAS). Dr. Cheng received his PhD in Analytical Biochemistry from Peking University. After completing his postdoctoral training at the University of Michigan (Ann Arbor) and Harvard Medical School, Dr. Cheng joined Virginia Tech as a faculty member, and recently he relocated to the University of Florida. Dr. Cheng has taught Nutrition and Metabolism, with a focus on substrate absorption, transport, and metabolism. As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively participating in undergraduate and graduate research training.
Mentoring Mindsets and Student Success

There are numerous studies showing that STEM persistence rates are poor (especially amongst under-represented minority, first-generation, and female students) (1-2). It is also fairly broadly accepted that introductory science and math courses act as a primary barrier to this persistence, with their large class size. There is extensive evidence that first-year seminar courses help improve student outcomes and success, and many of our institutions offer those kinds of opportunities for students (3). Part of the purpose of these courses is to help students develop the skills that they need to succeed in college while also cultivating their sense of community at the university.  In my teaching career, I have primarily been involved in courses taken by first-year college students, including mentoring others while they teach first-year courses (4). To help starting to build that sense of community and express the importance of building those college success skills, I like to tell them about how I ended up standing in front of them as Dr. Trimby.

I wasn’t interested in Biology as a field when I started college. I was going to be an Aerospace Engineer and design spaceships or jets, and I went to a very good school with a very good program for doing exactly this. But, college didn’t get off to the best start for me, I wasn’t motivated and didn’t know how to be a successful college student, so my second year of college found me now at my local community college (Joliet Junior College) taking some gen ed courses and trying to figure out what next. I happened to take a Human Genetics course taught by Dr. Polly Lavery. At the time, I didn’t know anything about Genetics or have a particular interest, I just needed the Natural Science credit. Dr. Lavery’s course was active and engaged, and even though it didn’t have a lab associated with it we transformed some E. coli with a plasmid containing GFP and got to see it glow in the dark (which, when it happened almost 20 years ago was pretty freaking cool!). This was done in conjunction with our discussions of Alba the glow-in-the-dark rabbit (5). The course hooked me! I was going to study gene therapy and cure cancer! After that semester, I transferred to Northern Illinois University and changed my major to Biology.

So, why do I bring this up here? When I have this conversation with my undergraduate students, my goal is to remind them that there will be bumps in the road. When we mentor our students, whether it be advisees or students in our classes, it is important to remind them that failure happens. What matters is what you do when things do go sideways. That is really scary for students. Many of our science majors have been extremely successful in the lead up to college, and may have never really failed or even been challenged. What can we do to help our students with this?

First of all, we can build a framework into our courses that supports and encourages students to still strive to improve even if they don’t do well on the first exam. This can include things like having exam wrappers (6)  and/or reflective writing assignments that can help students assess their learning process and make plans for future assessments. Helping students develop self-regulated learning strategies will have impacts that semester (7) and likely beyond. In order for students to persevere in the face of this adversity (exhibit grit), there has to be some sort of hope for the future – i.e. there needs to be a reasonable chance for a student to still have a positive outcome in the course. (8) This can include having a lower-stakes exam early in the semester to act as a learning opportunity, or a course grading scale that encourages and rewards improvement over the length of the semester.

Secondly, we can help them to build a growth mindset (9), where challenges are looked forward to and not knowing something or not doing well does not chip away at someone’s self-worth. Unfortunately, you cannot just tell someone that they should have a growth mindset, but there are ways of thinking that can be encouraged in students (10).

Something that is closely tied to having a growth mindset is opening yourself up to new experiences and the potential for failure. In other words being vulnerable (11). Many of us (and our students) choose courses and experiences that we know that we can succeed at, and have little chance of failure. This has the side effect of limiting our experiences. Being vulnerable, and opening up to new experiences is something important to remind students of. This leads to the next goal of reminding students that one of the purposes of college is to gain a broad set of experiences and that for many of us, that will ultimately shape what we want to do, so it is okay if the plan changes – but that requires exploration.

As an educator who was primarily trained in discipline-specific content addressing some of these changes to teaching can be daunting. Fortunately there are many resources available out there. Some of them I cited previously, but additional valuable resources that have been helpful to me include the following:

  • Teaching and Learning STEM: A Practical Guide. Felder & Brent Eds.
    • Covers a lot of material, including more information of exam wrappers and other methods for developing metacognitive and self-directed learning skills.
  • Cheating Lessons: Learning from Academic Dishonesty by Lang
    • Covers a lot relating to student motivation and approaches that can encourage students to take a more intrinsically motivated attitude about their learning.
  • Rising to the Challenge: Examining the Effects of a Growth Mindset – STIRS Student Case Study by Meyers (https://www.aacu.org/stirs/casestudies/meyers)
    • A case study on growth mindset that also asks students to analyze data and design experiments, which can allow it to address additional course goals.

 

  1. President’s Council of Advisors on Science and Technology. (2012). Engage to excel: Producing one million additional college graduates with degrees in science, technology, engineering and mathematics. Washington, DC: U.S. Government Office of Science and Technology.
  2. Shaw, E., & Barbuti, S. (2010). Patterns of persistence in intended college major with a focus on STEM majors. NACADA Journal, 30(2), 19–34.
  3. Tobolowsky, B. F., & Associates. (2008). 2006 National survey of first-year seminars: Continuing innovations in the collegiate curriculum (Monograph No. 51). Columbia: National Resource Center for the First-Year Experience and Students in Transition, University of South Carolina.
  4. Wienhold, C. J., & Branchaw, J. (2018). Exploring Biology: A Vision and Change Disciplinary First-Year Seminar Improves Academic Performance in Introductory Biology. CBE—Life Sciences Education, 17(2), ar22.
  5. Philipkoski, P. RIP: Alba, The Glowing Bunny. https://www.wired.com/2002/08/rip-alba-the-glowing-bunny/. Accessed January 23, 2019.
  6. Exam Wrappers. Carnegie Mellon – Eberly Center for Teaching Excellence. https://www.cmu.edu/teaching/designteach/teach/examwrappers/ Accessed January 23, 2019
  7. Sebesta, A. and Speth, E. (2017). How Should I Study for the Exam? Self-Regulated Learning Strategies and Achievement in Introductory Biology. CBE – Life Sciences Education. Vol. 16, No. 2.
  8. Duckworth, A. (2016). Grit: The Power of Passion and Perseverance. Scribner.
  9. Dweck, C. (2014). The Power of Believing that you can Improve. https://www.ted.com/talks/carol_dweck_the_power_of_believing_that_you_can_improve?utm_campaign=tedspread&utm_medium=referral&utm_source=tedcomshare
  10. Briggs, S. (2015). 25 Ways to Develop a Growth Mindset. https://www.opencolleges.edu.au/informed/features/develop-a-growth-mindset/. Accessed January 23, 2019.
  11. Brown, B. (2010). The Power of Vulnerability. https://www.ted.com/talks/brene_brown_on_vulnerability?language=en&utm_campaign=tedspread&utm_medium=referral&utm_source=tedcomshare
Christopher Trimby is an Assistant Professor of Biology at the University of Delaware in Newark, DE. He received his PhD in Physiology from the University of Kentucky in 2011. During graduate school he helped out with teaching an undergraduate course, and discovered teaching was the career path for him. After graduate school, Chris spent four years teaching a range of Biology courses at New Jersey Institute of Technology (NJIT), after which he moved to University of Wisconsin-Madison and the Wisconsin Institute for Science Education and Community Engagement (WISCIENCE – https://wiscience.wisc.edu/) to direct the Teaching Fellows Program. At University of Delaware, Chris primarily teaches a version of the Introductory Biology sequence that is integrated with General Chemistry and taught in the Interdisciplinary Science Learning Laboratories (ISLL – https://www.isll.udel.edu/). Despite leaving WISCIENCE, Chris continues to work on developing mentorship programs for both undergraduates interested in science and graduate students/post-docs who are interested in science education. Chris enjoys building things in his workshop and hopes to get back into hiking more so he can update his profile pic. .
Are you prepared – to prepare an “Olympian”?

Recently, the 2018 Winter Olympic Games came to a close. The games included a number of thrilling surprises (Red Gerard) and heart-breaking spills (figure skaters). Although medals awarded late in the Olympic schedule helped boost Team USA’s medal count, most would agree that the U.S.’s performance in PyeongChang fell below expectations. Looking for answers, TV commentators remarked that the US pipeline for development of Olympic athletes has diminished in recent years.

While taking in the splendor of the Olympic Games, I began to wonder…should we be training future scientists is a manner similar to our athletes? Is the pipeline for development of talent well established and supported?  How do we get the American public to rally behind the performance of high performing physiologists?  What if local businesses, and corporate sponsors proudly displayed “we employ future teachers, scientists, and health care providers”?

As an avid follower of the games, it became obvious to me that Olympic athletes cluster in specific regions of the US. The Gold medal men’s curling team included 4 men from Minnesota (3 from Duluth), and one from nearby Wisconsin. Three young Olympic snowboarders (Red Gerard, Kyle Mack, and Chris Corning) all hail from Silverthorne, Colorado. The city of Federal Way (located along Federal Highway U.S. 99 in Washington State) is an incubator of U.S. short-track speed skating talent, and has sent American speed skaters to the past five Winter Olympics (Ohno, Celski and Tran).

Is it possible that certain high schools and undergraduate institutions could be considered “incubators” for development of physiologists (scientists in general)? Can we consider our school a “hot bed” for training and development of those with a passion for science?  As professionals, are we fulfilling our role to prepare our youth for their “Olympic” performance, or are we falling behind expectations?

To assist in preparing future physiologists, the American Physiological Society supports the “pipeline” by providing a number of programs and awards (see links below). However, these offerings require us to identify students and encourage and support their applications. We are called upon to build programs and opportunities that are sustainable, and produce measurable outcomes.

I have to admit that prior to writing this post, I had not FULLY considered my role in developing our future physiologists (Olympians).  I personally pledge to re-evaluate my role, and hope to bring others into the conversation to ponder the questions posed.

In closing, I would ask you to consider a quote from former Olympic Gold medalist Mia Hamm, and think about specific and personal ways each of us can help build the fire, and light the match.

“I am building a fire, and every day I train, I add more fuel. At just the right moment, I light the match.” – Mia Hamm, American soccer player and gold medalist.

Undergraduate Awards
http://www.the-aps.org/mm/awards/Other-APS-Awards/Undergraduate

 

K-12 Awards
http://www.the-aps.org/mm/awards/Other-APS-Awards/K-12-Student

  • APS Science Fair Awards: APS members make APS awards at local or regional science fair at the elementary, middle, or high school level.
  • ISEF Awards: APS participates as a Special Awards Sponsor for the International Science and Engineering Fair (ISEF)

 

Program brochures for diversity and higher education:
http://www.the-aps.org/education/publications.aspx

 

Mari K. Hopper, PhD, is currently an Assistant Professor at Indiana University School of Medicine. In addition to teaching physiology in a variety of systems based courses, she serves as the Director of Research, Hospital Medical Education, and other Scholarly work. Prior to this position, she taught physiology based courses at the undergraduate level for over 20 years. She is currently on the HAPS Conference Site Selection Committee, Chair of the Chapter Advisory Committee of the American Physiological Society, and Past-President of the Indiana Physiological Society. Her research interests include both student academic engagement (active learning) and student health.