Category Archives: Teaching Strategies

Repurposing the notecard to create a concept map for blood pressure regulation

One amazing aspect of physiology is the coordinated, almost choreographed function of millions of moving parts.  The body has mastered multitasking, maintaining hundreds of parameters within narrow and optimal ranges at the same time.  This very aspect of physiology fuels our passion and enthusiasm for teaching physiology and piques the interests of students.  The networks of numerous overt and subtle interdependent mechanisms and signaling pathways between multiple organs and tissues that regulate plasma calcium or energy intake, for example, also represent major challenges to understanding and learning physiology for students.  We ask our students to combine the wisdom of two old sayings: “You can’t see the forest for the trees’, and “The devil is in the details.”  They need to understand both the bigger picture of the whole animal and the nuanced interlinking of mechanisms, and even molecules, that seamlessly and dynamically maintain different parameters within narrow ranges.  It can be frustrating and discouraging for students.  Furthermore, passing with high marks in systems physiology or anatomy-physiology II is a criterion for eligibility to apply to various health profession programs.  As educators we must acknowledge the complexity of physiology and find ways to help our students literally see and master smaller sections of the larger regulatory network so they can recreate and master the larger network.

For even the best prepared student, as well as the student who cannot take all recommended prerequisite courses for A&P-II or basic physiology, the collection of numerous parts, mechanisms, equations and connections, principles, and laws can represent an obstacle to learning.  Student comments such as, “There is so much to know.”, “It’s so complicated.”, and “Physiology is hard.” are accurate and fair, but also warrant validation.  A little bit of validation and communicating the challenges we encountered as students goes a long way in helping our students’ willingness to endure and continue to strive.  Physiology courses are not impossible, but they are difficult and might well be the most difficult courses a student takes.  I will not pretend or lie to my students.  If I were to dismiss physiology as a whole or a given concept as easy and simple, I risk my student thinking they should be learning principles effortlessly or instinctively and begin to doubt themselves and give up.  It helps to confess apprehensions you yourself felt when first learning various physiological concepts or phenomena.  As a novice physiology student, I had many moments at which I wanted to tap out.  ne major example was my introduction to the beautiful, albeit daunting display of all the electrical and mechanical events that occur in only the heart during a single cardiac cycle in just 0.8 seconds, i.e., the Wiggers diagram.  Every time I project this diagram on the screen, I give students a moment to take it in and listen for the gasps or moans.  I admit to my students that upon seeing that diagram for the first time I looked for the nearest exit and thought to myself, ‘Are you kiddin’ me?”  Students laugh nervously.  They sigh in relief when I tell them that my professor broke down the diagram one panel at a time before putting all together; his approached worked, and that is what I will do for them.  Dr. Carl Wiggers was committed to teaching physiology and developed the diagram over 100 years ago as a teaching tool for medical students (1).  The diagram is instrumental in teaching normal cardiac physiology, as well as pathophysiology of congenital valve abnormalities and septal defects.  Nevertheless, students still need help to understand the diagram.  Again, here an example of the function of just one organ, the heart, being a central element to a larger network that regulates a major parameter – blood pressure.  Learning regulation of blood pressure can be an uphill battle for many students.

Cardiovascular physiology is typically a single unit in an undergraduate physiology course, and it is often the most challenging and difficult exam of the semester.  Several years ago, when preparing to teach this section in an AP-II course I felt compelled to find ways to help students break-down and reconstruct pieces of complex regulation of blood pressure.  I considered the many high-tech digital learning resources and online videos available to our students but wondered whether those resources help or hinder students.  I was also looking for tools that would facilitate multisensory learning, which is shown to yield better memory and recall (2).  Despite all these high-tech resources, I noticed students were still avid users of notecards and were convinced they held the secret to success in AP-I and thus, must also be the key to success in AP-II or systems physiology.  I found this quite amusing, because we used notecards back when I was in college in the 80s – when there were no digital learning platforms and highlighters only came in yellow.  Students tote around stacks of hand-written, color coded notecards that grow taller as the semester progresses, but often their comprehension and ability to connect one concept or mechanism to the next does not increase with the height of the stack.  Students often memorize terms on note cards but cannot readily connect the mechanism listed on one card to that on the next card or explain the consequence of that mechanism failing.  Around this time a non-science colleague was talking to me about her successful use of concept maps with her students.  To me, concept maps look a lot like biochemical pathways or physiological network diagrams.  It dawned on me.  I did not need to reinvent the wheel or make a newer better teaching tool.  I simply needed to help my students connect The Notecards and practice arranging them to better pattern regulatory networks.  Students were already writing a term on one side of the card and a definition and other notes on the back.  Why not build on that activity and more deliberately guide students to use cards to build a concept map of the network for regulation of blood pressure which is central to cardiovascular physiology?

 

Blood pressure is a physiological endpoint regulated by a nexus of autoregulatory, neural and hormonal mechanisms and multiple organs and tissues.  Blood pressure is directly dependent on cardiac output, vascular peripheral resistance, and blood volume, but can be altered by a tiered network of numerous neural, hormonal and cellular mechanisms that directly or indirectly modulate any one of the three primary determinants.  The expansive network, e.g., numerous organs and tissues, and multiple and intersecting effects of different mechanisms within the network, e.g., the renin-angiotensin-aldosterone system modulates both vascular resistance and blood volume) make it difficult to see the network in its entirety.  Nevertheless, students must understand and master the entire network, the individual mechanisms, and the nuances.  Thus, in preparing for the cardiovascular section and planning how to implement the concept map, I made a list of all components that comprised the regulatory network for blood pressure with the first terms being blood pressure, cardiac output, vascular peripheral resistance, and blood volume.  At this point in the semester, the students had learned the basics of cellular respiration and metabolism.  I began the very first cardiovascular lecture with an illustration of the human circulatory system projected on the screen as I worked at the white board.  In the center of the board, I drew a cell with a single mitochondrion and three simple arrows to indicate the use of glucose and oxygen to convert ADP to ATP.  Guided through a series of questions and answers, students collectively explained that the heart must pump blood through arteries and veins to deliver oxygen and glucose and fat needed to generate ATP, as well as to remove carbon dioxide and other wastes.  Using the illustration of the human circulatory system, I then carefully explained the human circulatory system is a closed system comprised of the blood (the medium carrying oxygen, nutrients, CO2 and other wastes), the heart (the pump), and the arterial and venous vessels (the conduits in which blood flows from the heart to the tissues where oxygen and nutrients are delivered and CO2 and other wastes are removed).  If adequate pressure is sustained, blood continues to flow through veins back through the heart and to the lungs to unload CO2 and reoxygenate blood and then back to the heart to make another round.  I further explained blood pressure must be regulated to ensure blood flow to tissues optimally matches both metabolic need for oxygen and nutrients and production of CO2.  On the board, I then wrote “Blood Pressure (BP)” and stated that because this is a closed circulatory system, blood pressure changes in direct response and proportion to cardiac output or volume of blood pumped out of heart into systemic vessels in one minute, the total volume of blood in the system, and the vascular resistance that opposes flow and will be predominantly dependent vasoconstriction and vasodilation.  I wrote the terms “Cardiac Output (CO), Blood Volume (BV), and Vascular or Total Peripheral Resistance (VPR) one at a time underneath BP, each with an arrow pointing directly to BP.  I stated that any factor that changes cardiac output, blood volume, or vascular resistance can indirectly alter blood pressure.  For example, a change in heart rate can change cardiac output and thus, alter blood pressure.  I then distributed the series of hand drawn diagrams shown below.  As I pass out the sheets and display on slides, I tell them they will be learning about all these various factors and mechanisms and will be able to recreate the network and use it as a study aid.

To get students started, I handed out the list of cardiovascular terms, hormones, equations, etc. and several small pieces of paper, e.g., 2”x2” plain paper squares, to each student.  [I found free clean scratch paper in various colors in the computer lab and copy room recycling bins.]  Students can also take their trusty 3”x5” cards and cut each in half or even quarters or use standard-size Post-It® notes.  I explained that as I introduce a term or mechanism they will write the term or conventional abbreviation on one side of the paper and the definition and pertinent information on the other in pencil for easier editing.  [I emphasized the importance of using conventional abbreviations.]  For example, Blood Pressure would be written on one side of the paper and ‘pressure exerted against vessel wall’ on other, along with ‘mm Hg’, and later the equation for mean arterial pressure (MAP) can be added.  I had my own set of terms written on Post-It® notes and arranged BP, CO, BV, VPR and other terms on a white board so they could see the mapping of functional relationships take shape.  As new concepts were taught and learned, e.g., CO = Stroke Volume (SV) x Heart Rate (HR), the respective terms were added to the concept map to reflect the physiological relationships between and among the new mechanism to the existing mechanisms or phenomena already in the concept map.  In that case, on the back of the CO paper or card one might write “volume of blood ejected from ventricle in one minute into aorta”, “CO = HR x SV“, “If HR is too fast, CO will decrease!”, “Right CO must equal Left CO!”  I explained students can lay out their terms on a table, floor, their bed, etc.  I reminded students how important it was to say the terms out loud as they wrote the terms in their best penmanship.  This helps students slow down and deliberately think about what they are writing and refer to their lecture notes or textbook (be it an actual book or e-book).  I had given students copies of the complete concept map of all terms but did not dictate exactly what they should write on the back of the cards.  The small size of the paper or card, almost forces students to annotate explanations; this helped them better encapsulate their ideas.  I was open to checking their annotation and reflecting back to students the apparent meaning of their word choice.  While studying alone or with study partners, students were encouraged to audibly define terms and relationships among mechanisms as they arranged their maps in the correct configuration.  They were encouraged to ‘shuffle the deck’ and recreate subsections of the network to understand mechanistic connections at different points in the network.  Because I had given them the diagrams or concept maps for cardiac output, blood volume, and vascular resistance, students were able to check their work and conduct formative assessments alone or in groups in an accurate and supportive manner.

Students expressed that manually arranging components allowed them to literally see functional and consequential relationships among different mechanisms.  The activity complemented and re-enforced quizzes and formative assessments already in use.  It’s not a perfect tool and certainly has room for improvement.  There are quite a few pieces of paper, but students found ways to keep the pieces together, e.g., binder clips, Zip-lock bags, rubber bands.  Nonetheless, it is simple, portable, and expandable concept map students can use to learn cardiovascular physiology and represents a tool that can be applied to teach and learn other regulatory networks, such as those of the digestion-reabsorption-secretion in the GI tract and calcium homeostasis.

  1. Wiggers C. Circulation in Health and Disease. Philadelphia, PA: Lea & Febiger, 1915.
  2. http://learnthroughexperience.org/blog/power-of-context-learning-through-senses/
Alice Villalobos, Ph.D., is an assistant professor in the Department of Medical Education at the Texas Tech Health Sciences Center in Lubbock, Texas.  She received her B.S.in biology from Loyola Marymount University and her Ph.D. in comparative physiology from the University of Arizona-College of Medicine.  Her research interests are the comparative aspects of the physiology and stress biology of organic solute transport by choroid plexus.  She has taught undergraduate and graduate courses in integrative systems physiology, nutrition and toxicology.  However, her most enjoyable teaching experience has been teaching first-graders about the heart and lungs!  Her educational interests focus on tools to enhance learning of challenging concepts in physiology for students at all levels.  She has been actively involved in social and educational programs to recruit and retain first-generation college students and underrepresented minorities in STEM.

 

Person First Teaching in Physiology

Many of us are continuously trying to be as inclusive in our teaching as possible. One early concept I learned in this effort was to use person-first language, where one “puts the person before the disability, and describes what a person has, not who a person is”. This small change can lead to a more comfortable and inclusive classroom and also model behavior that future health professionals (the majority of my students) will need to employ in their careers.

 

Yet, there’s another ‘person first’ approach that I take in my classes and interactions with students that I think also builds inclusivity and perhaps more importantly, trust and understanding between my students and me. I try to be a person first, and a professor second. I try to see my students as people first, and students second. In the past year, during the unprecedented COVID-19 pandemic, this has been especially important as we all attempt to deal with additional life stresses, course modalities, and uncertainties.

 

As a person, the past year has not only been marked by the pandemic, but rather a significant medical challenge. In March 2020, amidst emergency planning to send students home permanently for the semester and move to remote teaching, I was diagnosed with Stage IV metastatic breast cancer. In 2014, in my second year as a faculty member, I had gone through chemo, surgery, radiation, and continued therapy for what was at that time stage III breast cancer. Remission lasted nearly five years. Since the original diagnosis, while I never felt like cancer defined me, it became an essential part of me, as a person, and as a professor.

 

The hormonal treatment regimen I followed from 2015-2019 provided a real-life example of many of the principles of the endocrine system that I taught my mid-level Human Physiology students. Along with an example of my grandmother stubbornly tapering off high-dose IV steroids after a kidney infection, I began to teach “my story” as our application of the endocrine system chapter in my flipped-classroom course.

 

I present a case study on “Patient X”, only revealing that I am in fact patient X after the relevant physiology is covered. As I explain to students, it’s not just an example to allow them to apply what they are learning to a clinical situation. Rather, it’s my attempt to demonstrate that the knowledge they are (hopefully) gaining, the vocabulary and critical thinking skills are not meant to just serve their future professional goals, but their personal life as well. They may be the one in the future helping a loved one navigate a challenging health situation. I’ve been forever grateful for my own physiological knowledge helping me to deal with my diagnosis, treatment, and prognosis.

 

This year, with the progression of my disease, the lesson takes a slightly different tone (although better this semester since my current infusion treatment has led to some regression of lung metastases). I also take the time to have a “soapbox moment” (and yes, I call it that…) to also inform students about metastatic breast cancer in general, some statistics, and the importance of early detection. I remind the students about the importance of drug discovery and clinical trials in changing people’s lives, mine included.

 

This year, in anticipation of writing this post, as part of the pre- and post- reflection students complete about “why is important to understand hormones?” I asked them for feedback on my person-first approach of sharing my own story. In addition to many students reflecting that they did in fact “see the bigger picture” of why we learn basic physiology, many provided comments that support my approach. A selection of some of their responses:

 

I really liked that you incorporated your own personal story into class because it made me feel like I genuinely knew you better as a person rather than just my professor – students really don’t get to see their teacher’s lives outside of class, but I think it’s really special when they do and when they are vulnerable with us and can share things like you did. It also gave us some insight as to why you do the things you do and why you are interested in what you teach. Thank you for sharing!”

You sharing your story today and being vulnerable with us gave real-life application to what we are learning. We are able to now better understand that learning this information is not just about memorizing facts to get a good grade. Rather, it shows us the importance of what we are studying and how we can use it to help others throughout our lifetime. So, thank you very much for sharing and inspiring other teachers to share as well.”

I am really happy that you shared your personal story. I think case studies are a great way to learn in general, but actually knowing the person in the case makes is so much more powerful. I will never forget today’s class and I genuinely have a much better understanding and appreciation for the material that we covered.”

Obviously, not everyone has their own story to tell, but my guess is that we all have ways that we can be vulnerable and connect the material to our own lives, encouraging our students to do the same. Storytelling and narrative medicine have received recent attention as ways to promote empathy and build trust. Why not then share our own stories? Why not put the person first in our teaching?

To summarize, I am a person with cancer. I am a person who teaches physiology. I am a person who utilizes my cancer to help me teach physiology.


Anne Crecelius 
(@DaytonDrC) is an Associate Professor in the Department of Health and Sport Science at the University of Dayton..  She teaches Human Physiology, Introduction to Health Professions, and Research in Sport and Health Science. She returned to her undergraduate alma mater to join the faculty after completing her M.S. and Ph.D. studying Cardiovascular Physiology at Colorado State University.  Her research interest is in the integrative control of muscle blood flow.  She is a member of the American Physiological Society (APS) and on the leadership team for the Physiology Majors Interest Group (P-MIG).
Flipped Teaching to Remote Flipped Teaching

Although flipped teaching design has been around for years, the term ‘flipped teaching’ was only coined slightly over a decade ago, mainly when Salman Khan used this teaching method to his cousins over the internet that subsequently gained attention. Advancements in educational technology must be given credit for the origin of this new term as well.

 

About a decade ago, I started using flipped teaching, but the terms ‘synchronous’ and ‘asynchronous’ were not associated with it at that time. About four years ago, in one of the conferences, I was introduced to synchronous online teaching for the first time. Since I also teach an online class without flipped instruction, I tried to modify my asynchronous online course to a synchronous one but had difficulty doing so. The students in my online class worked full time, and there was not a single common time convenient for the entire class.

 

My flipped teaching design has been steadily evolving since I first started using it (Figure 1). Briefly, there are two significant components of this teaching method- the pre-class and the in-class. The flipped teaching’s pre-class portion is where students first explore new course content in their personal space and time. In-class time is deliberately designed around student engagement and inquiry, allowing students to apply and elaborate on course concepts (DeLozier & Rhodes, 2017; Jensen, Kummer, & Godoy, 2015). In-class sessions typically entail collaborative active learning strategies. My fascination for the retrieval exercise in facilitating learning (Dobson, Linderholm, & Stroud, 2019) led to its blending in conjunction with flipped teaching (Figure 1). There are challenges with this contemporary teaching method. One of them is student buy-in. Yet another one is student motivation. However, I have developed strategies that have helped overcome these challenges.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flipped Teaching to Remote Flipped Teaching

COVID-19 was the unexpected challenge every instructor had to face in 2020. Since COVID 19, the original flipped teaching design had to be revised to shift to remote teaching. One advantage for those using flipped teaching was the use of the pre-class portion that was already available. The term ‘pre-class’ suddenly became synonymous with the ‘asynchronous’ part of online instruction. The in-class activities would now be referred to as the ‘synchronous’ sessions. Although some modifications had to be made for the in-class or synchronous portion of the flipped teaching, such as the Zoom’s breakout rooms for group work and a clicker activity for the in-class individual assessments, the in-class content that was already prepared was reusable. Thus, evolved a new form of flipped teaching called remote flipped teaching (Figure 1). It must be noted that flipped teaching must have some form of synchronous time with the students. Otherwise, it would simply be referred to as an online course. The remote flipped classroom is where students engage with course content in an online platform prior to attending a virtual face-to-face course session. Pairing flipped classroom pedagogy, in which students engage with content independently before a synchronous class, with online learning objects intentionally designed to promote independent learning, helps build a strong foundation (Humrickhouse, 2021).

References

DeLozier, S. J., & Rhodes, M. G. (2017). Flipped classrooms: a review of key ideas and recommendations for practice. Educational Psychology Review29(1), 141-151.

Dobson, J. L., Linderholm, T., & Stroud, L. (2019). Retrieval practice and judgements of learning enhance transfer of physiology information. Advances in Health Sciences Education24(3), 525-537.


Humrickhouse, E. (2021). Flipped classroom pedagogy in an online learning environment: A self-regulated introduction to information literacy threshold concepts. The Journal of Academic Librarianship47(2), 102327.

Jensen, J. L., Kummer, T. A., & Godoy, P. D. D. M. (2015). Improvements from a flipped classroom may simply be the fruits of active learning. CBE—Life Sciences Education14(1), ar5.

Dr. Chaya Gopalan received her bachelor’s and master’s degrees from Bangalore University, India, and Ph.D. from the University of Glasgow, Scotland. Dr. Gopalan wanted to follow her passion for teaching. She started as an adjunct faculty position at Maryville University in St. Louis, which led to tenure-track positions at St. Louis Community College and St. Louis College of Pharmacy, and now at Southern Illinois University Edwardsville (SIUE). She has been teaching anatomy, physiology, and pathophysiology at graduate and undergraduate levels for health professional programs. Dr. Gopalan has been practicing evidence-based teaching using team-based learning, case-based learning, and flipped classroom methods. Besides her passion for teaching, Dr. Gopalan has kept up with lab research in neuroendocrine physiology. She is currently working on two research projects: gonadal steroid hormones in the sexual dimorphism of the brain and the other study on obesity, intermittent fasting, and physical and mental exhaustion.

 

Dr. Gopalan has received many teaching awards, including the Arthur C. Guyton Educator of the Year award from the American Physiological Society (APS), the Outstanding Two-Year College Teaching award by the National Association of Biology Teachers, and the Excellence in Undergraduate Education award by SIUE. She has also received several grants, including an NSF-IUSE, an NSF-STEM Talent Expansion Program, and the APS Teaching Career Enhancement awards.

 

Besides teaching and research, Dr. Gopalan enjoys mentoring not only her students but also her peers. She regularly conducts workshops and participates in panel discussions related to higher education. Dr. Gopalan is very active in the teaching section of the APS and has served on many committees. She has published numerous manuscripts and case studies and contributed several textbook chapters and question banks for textbooks and board exams.
 

What do I really want my students to learn about animal physiology?

Each spring semester my colleague and I teach an undergraduate course in animal physiology that emphasizes primary literature and incorporates multiple evidence-based teaching strategies. Using an integrative and comparative approach, students investigate strategies that vertebrate animals use to meet their energy needs, take up and transport oxygen, and maintain hydration and salt balance, with a special emphasis on how animals have adapted to extreme environments. Our course incorporates a flipped teaching (FT) format (2, 4), where students are assigned readings from the textbook and articles from the primary literature outside of class and class time is spent discussing the material and applying that information to explore physiological mechanisms. Instead of lecturing, class time is focused on interactive learning through group work – teamwork is emphasized throughout the course, with students working in groups both inside and outside of class.  Our course learning goals are:

 

1.       Acquire a fundamental knowledge of “how animals work”

2.       Recognize how prior and new knowledge relate to current/future work

3.       Appreciate the importance of animal physiology

4.       Understand how to collect, integrate, and communicate information

5.      Exercise responsibility and teamwork.

 

When Rice University moved all classes online due to the COVID pandemic in spring 2020, we were at mid-semester. So like most other educators around the United States, we moved our class to Zoom. The transition from face-to-face to online instruction went fairly smoothly. Although we had only two weeks to make this shift, we did not have to frantically record lectures since our class meetings were discussion based. Additionally, students had been working in teams since the beginning of the semester so we had an established community in our classroom. Students still attended class online and were engaged for the most part. That being said, we observed that students did not turn on their cameras unless we asked them to and definitely seemed more hesitant to answer and ask questions in Zoom. Student engagement and participation increased dramatically when we put students in small groups in breakout rooms; here they interacted as a team, just like they did at round tables in the classroom pre-COVID. Student feedback at the end of the semester revealed that most of them felt like class didn’t change that much after moving online – however, they did miss the in-person interactions with us and their classmates, and some activities did not translate well to an online format; they truly appreciated our efforts to adapt our teaching and made some great suggestions for how we could improve the course in the future for online and/or face-to-face teaching.

 

After the semester ended, I finally had some time to reflect upon my teaching pre-COVID and during the pandemic. Over the summer, I spent many hours thinking about the course structure and what we would revise for our next offering of the course. As the COVID pandemic continued to rage throughout the fall semester, my colleague and I decided that we would teach our animal physiology course fully online for the spring 2021 semester. And we just learned that due to a spike in COVID cases after Christmas in the Houston area, classes at Rice will be fully remote at least until mid-February. During the pandemic last spring, throughout the summer and fall, and now with classes starting in just two weeks, one key question has guided me as I work on this course: “What do I really want my students to learn about animal physiology?”

How were we assessing student learning?

During the spring 2020 semester, student learning was assessed in multiple ways including individual exams, group exams, a semester long team project, homework, reading quizzes, reflections, etc. Although these mostly formative assessments and the team project require a great deal of effort and time from the students, exams contributed to 70% of the total grade for the course; the team project accounted for 20% of the grade, and all other assignments (e.g., homework, quizzes, reflections) were worth just 10% of the grade. Although there were short “mini exams” every other week, some students still became stressed and anxious when taking the exams, even though they demonstrated an understanding of course material in class discussions and on homework assignments. Once the pandemic forced us to remote instruction, we did modify the exam format to give them more time to take the exam online than they would have had in the classroom; they had a flexible window so they could choose what time/day to take the exam; and the final exam was “open resources.” And we dropped a third exam based on a research article since we lost about two weeks of instruction. We were not overly concerned about cheating since all of our exam questions are short answer format and typically require application and/or synthesis of foundational knowledge to answer the questions (i.e., you can’t just Google the answer).

Overall, student performance on the exams did not change much from pre-COVID to during the pandemic. Still, this weighting of assignments seemed imbalanced to me, with too much emphasis on student performance on exams. I started thinking about how I could shift the weighting of assignments to better reflect student achievement of learning goals. For example, the semester long team project, where students create a fictional animal (1) and showcase their animal during the last week of classes, requires students to understand integration of body systems as well as explain how the systems work together (or don’t) and recognize tradeoffs and physiological constraints. Shouldn’t this creative outlet that requires the highest level of Bloom’s taxonomy count as much towards their course grade as exams? What about all of the other work they do inside and outside of class?

 How did I intentionally redesign my course with strategies to promote student success?

Never having taught a course online before the spring 2020 semester and not being sure how to help students cope with additional stresses caused by the pandemic, I attended or participated in numerous webinars, such as the National Institute on Scientific Teaching SI Happy Hours (https://www.nisthub.org), the APS Institute on Teaching and Learning Virtual Week (https://www.physiology.org/detail/event/2020/06/22/default-calendar/institute-on-teaching-and-learning?SSO=Y), and the APS Webinar Series – Physiology Educators Community of Practice (https://www.physiology.org/detail/event/2020/07/23/default-calendar/physiology-educators-community-of-practice-webinar-series?SSO=Y). Support and resources from the Rice Center for Teaching Excellence (https://cte.rice.edu/preparing-for-spring-2021#resources) have been invaluable as I redesign my course.

In an article submitted to Inside Higher Ed about helping students in times of trauma (3), Mays Imad said,

As teachers, we don’t simply impart information. We need to cultivate spaces where students are empowered co-create meaning, purpose and knowledge — what I have termed a “learning sanctuary.” In such a sanctuary, the path to learning is cloaked with radical hospitality and paved with hope and moral imagination. And it is our connections, the community of the classroom and our sense of purpose that will illuminate that path.”

How can I create a “learning sanctuary” in my classroom environment? What approaches can I take to minimize stress and maximize engagement for students? Here are some strategies I’ve adopted for this upcoming semester to promote student success as we teach our animal physiology course fully online:

  • Shift weighting for assignment categories to an even distribution – exams are worth only 25%!
  • Further modify the exam format to decrease student anxiety and likelihood of cheating – all exams are open resources!
  • Incorporate new assignments to assess student learning – students write a mini review paper about their favorite vertebrate animal.

 How will I know if my students learned animal physiology?

Our overall course goal is “We aim to have you learn mechanisms by which animals solve day to day problems of staying alive; learn skills, strategies, and ways of thinking that are particularly relevant to the study of physiology; and perhaps most important of all, enjoy learning the marvelous phenomena of the animal world.” Throughout the course we strive to help our students learn, not just memorize a bunch of facts that they will forget as soon as they take an exam. In their final reflection about the course, we ask these questions:

1.       What impact has something you learned had on your own perceptions?

2.       What long-term implications did a specific discovery/piece of information have on you/on society?”

3.       What is one or more specific thing that you learned about animals this semester that you will never forget?

I love reading their reflections where they share what they learned in our course. Here are a few of my favorites from the spring 2020 semester:

  •        …This class totally changed my mindset. I’m glad it was animal examples, with maybe a handful of human connections, rather than human examples with animal connections. I think in my past reflections, I have said repeatedly my favorite part was the animal examples, whether it’s a specific example or the comparative examples. I think my very favorite animal we “did” this semester were the diving seals – every kid who has ever been on swim team always had those competitions to see who could hold their breath the longest and the seals were an interesting callback to that. But even before that, I think I learned new information about how animals lived and worked each and every week of this class. Just ask my friends: every week, I’d be sharing some interesting fact from “animal class,” like the reindeer eyes… I now have learned a lot more about animals and have a greater appreciation for them as they compete to survive in their own circumstances. I can safely say I haven’t been this passionate about animals since I was little, going through my “animals” phase, and am hoping to keep this excitement and stay a lifelong learner about different animals and how special they are!
  •         …My perceptions of the importance and complexity of different organisms in physiology has been strongly shifted by this class. I’ve gained an appreciation of different animal systems as they function in different kinds of vertebrates. While I previously had a more human-centric view of physiology from taking the MCAT, I am glad I was able to broaden my perspective to learn more about the different tricks and systems animals employ to suit themselves to their environments…
  •       …It was cool to see the adaptions that different species of animals have to cope in their environment. Some of them seemed so wild, like being able to change how blood flows through your heart, or lungs collapsing in diving mammals. Even mammalian life on our own planet can seem so alien at times. Most of us are familiar with how the human body works, at least in broad strokes, but there are so many other ways to live…
  •       …when you understand how an animal works. When you understand why they do what they do and why they look the way they look, a lot of fear and misunderstanding melts away. It not only cultivates a sense of amazement but also one of understanding and respect.

Even in the midst of a pandemic, I feel confident that my students not only learned physiology but also gained an appreciation for the importance of studying animal physiology. After taking this course, most if not all of them would agree with me that “Animals are Amazing!” And that is what I really want my students to learn about animal physiology.

NOTE: All protocols were approved by the Institutional Review Board of Rice University (Protocol FY2017-294).

References

1.       Blatch S, Cliff W, Beason-Abmayr B, Halpin P. The Fictional Animal Project: A Tool for Helping Students Integrate Body Systems. Adv Physiol Educ 41: 239-243m 2017; doi: 10.1152/advan.00159.2016.

2.       Gopalan C. Effect of flipped teaching on student performance and perceptions in an Introductory Physiology course. Adv Physiol Educ 43: 28–33, 2019; doi:10.1152/advan.00051.2018.

3.       Imad M. Seven recommendations for helping students thrive in times of trauma. INSIDE HIGHER ED, June 3, 2020; https://www.insidehighered.com/advice/2020/06/03/seven-recommendations-helping-students-thrive-times-trauma.

4.       McLean S, Attardi SM, Faden L, Goldszmidt M. Flipped classrooms and student learning: not just surface gains. Adv Physiol Educ 40, 47-55, 2016; doi:10.1152/advan.00098.2015.

Beth Beason-Abmayr, PhD, is a teaching professor of biosciences at Rice University in Houston, TX, and a faculty fellow of the Rice Center for Teaching Excellence. She has developed multiple course-based undergraduate research experiences and a student-centered integrative animal physiology course. Beason-Abmayr is a longtime judge for the International Genetically Engineered Machine (iGEM) competition and a member of the iGEM Executive Judging Committee. She is a past recipient of the George R. Brown Award for Superior Teaching and the Teaching Award for Excellence in Inquiry-Based Learning at Rice and has published in Advances in Physiology Education and the Journal of Microbiology & Biology Education. A National Academies Education Mentor in the Life Sciences, Beason-Abmayr is chair of the Organizing Committee of the American Physiological Society’s 2022 Institute of Teaching and Learning and is an associate editor for Advances in Physiology Education. She earned her PhD in physiology and biophysics at The University of Alabama at Birmingham.

 

 

 

 

Motivating students to make the most of group projects

Implementation of group projects in class represents an important pedagogical strategy to engage students in active learning. Specifically, it may promote collaborative learning, problem-based learning, evidence-based learning, team-based learning, and peer instruction. Students may benefit from group projects in different ways, including but not limited to: (1) practicing teamwork skills (e.g., communication, collaboration, interdependence, and accountability), and (2) building problem-solving skills (e.g., reasoning, critical-thinking, knowledge applying, trouble shooting, and concept constructing). As such, implementation of group projects has been increasingly observed in higher education across disciplines including nutritional and metabolic physiology [1-4].

 

However, not all students favor group projects. The common complaints may arise from time commitments and unequal contributions [2]. Some students may prefer to work alone on assignments in which they can easily take control of the pace and spend less time to earn high scores. This view is true in some sense, but students will miss the benefits of collaborative learning, team-based learning, and peer instruction. In general, it takes more time to accomplish a project as a group than as an individual because time is needed to build an effective team. However, the effects or benefits of group projects on student learning are profound, as mentioned above. To be society or career ready, for instance, students are not evaluated by scores alone but also by soft skills such as teamwork, accountability, adaptability, flexibility, and resilience. In terms of contributions, some students may feel short of chances to express themselves because of dominating group members, while others may complain about free riders who take less responsibility in group projects but earn the same scores [2]. The paradoxes can be addressed by motivating students to actively participate in and make the most of group projects.

 

First, let students enjoy the freedom to select topics of interests for their group projects. Interest can significantly motivate students to make efforts exploring evidence for answers. Nevertheless, the project topics proposed by students are by no means random; instead, the themes should fit in with the course content and learning objectives. In order for a project to overarch the interests of a group of students, the instructor may facilitate setting up the groups based on student interests. In addition, the instructor’s guidance is critical for the project initiation, where adjustments are necessary to customize the project question or theme such that it takes into account every member’s interests and learning objectives.

 

Secondly, balance group size to fulfill key roles. Group size affects group dynamics and the performance. Group oversizing increases the difficulty of engaging each member in the discussion or activities within limited time, which results in free riding and unequal contributions. A group size of 3-5 students is considered reasonable; a group size of 2 students may still work, but it lacks the typical group dynamics of assigning and rotating roles. In a 5-student group, the roles can be assigned as a facilitator (to moderate group discussion), a challenger (to raise counter-arguments and alternative explanations), a recorder (to take notes of group discussion), a reporter (to summarize and report the outcome of group discussion), and a timekeeper (to keep the group on track of time and deadlines). For a smaller group, the facilitator may take an additional role of “timekeeper”, and the challenger or recorder may take an additional role of “reporter”. More importantly, role rotation motivates students to play different roles in a group, which can prevent students from dominating in a group discussion or project and eliminate free riding. Role rotation motivates students to put themselves in others’ shoes, which promotes mutual understanding and trust that foster stronger teamwork. To this end, the instructor may direct students to divide a group project into sub-sections such that the key roles can be played by each member of the group via role rotation.

 

Third, have individual contributions weighed for group project grading. It is common that all members earn the same score for a group project. However, having individual contributions weighed for group project grading will motivate students to maximize their talents and potential in solving problems and executing the project. Practically, let students acknowledge or sign their contributions when they submit the assignment, and accordingly, grading rubrics can be designed such that both individual and collective merits of a group assignment are weighted. For instance, an oral presentation can be easily assessed by the relevance, depth, innovation, readiness, and communication skills for each individual portion, and by the overall hypothesis, rationale, logical flow, presentation transitions, and convincingness for the collective merits. This practice may increase the workload on the instructor and teaching assistants, but it significantly boosts the motivation of students to do the best they can for a group project.

 

Lastly, effectively apply anonymous peer evaluation. Group projects demand a variety of outside class efforts and activities, and a generic evaluation or rating of peer contributions would not suffice. Instead, the anonymous peer rating should be specified in detail such as the responsiveness, promptness, the amount of literature contributed, and the performance in discussion, presenting and challenging different viewpoints, and setting and achieving goals. The itemized rating or guide can keep the peer evaluators on track and evaluation straightforward. In addition, it is critical to provide timely evaluation so that students know how they are doing and what to improve, and so they may take prompt actions to improve later group work. If a group project consists of multiple subsections, an anonymous peer evaluation can be installed for each subsection with the average being taken as the final rating. If there is no subsection in a group project, an anonymous peer evaluation can be installed in halfway and at the conclusion of the project, with the average being taken as the final rating. Timely and multiple peer evaluations motivate students to reflect and find effective ways to work together as a group. By contrast, using a single peer evaluation for the group project only tells students about their performance but does not produce the motivation or opportunities to identify and fix issues for improvement.

 

In summary, implementation of group projects in class may benefit student learning in many ways [1-4]. Here I described some practical strategies that motivate students to fully participate and make the most of group projects. These practices may also address concerns raised by students and instructors about unequal contributions or free riding [2].

 

References and further reading

[1] Benishek LE and Lazzara EH. Teams in a New Era: Some Considerations and Implications. Front. Psychol. 2019, 10, 1006. doi: 10.3389/fpsyg.2019.01006

[2] Chang Y, Brickman P. When Group Work Doesn’t Work: Insights from Students. CBE Life Sci Educ. 2018, 17(3), ar42. doi: 10.1187/cbe.17-09-0199.

[3] Rathner JA, Byrne G. The use of team-based, guided inquiry learning to overcome educational disadvantages in learning human physiology: a structural equation model. Adv Physiol Educ. 2014, 38(3), 221-8. doi: 10.1152/advan.00131.2013.

[4] Schmutz JB, Meier LL, Manser T. How effective is teamwork really? The relationship between teamwork and performance in healthcare teams: a systematic review and meta-analysis. BMJ Open 2019, 9, e028280. doi:10.1136/bmjopen-2018-028280

Dr. Zhiyong Cheng received his PhD in Analytical Biochemistry from Peking University, after which he conducted postdoctoral research at the University of Michigan (Ann Arbor) and Harvard Medical School. Dr. Cheng is now an Assistant Professor of Nutritional Science at the University of Florida. He has taught several undergraduate- and graduate-level courses (lectures and lab) in human nutrition and metabolism (including metabolic physiology). As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively developing and implementing new pedagogical approaches to build students’ critical thinking and problem-solving skills.
Spring 2020*: The asterisk denotes community made all the difference.

Spring 2020 is often denoted with an asterisk.  The asterisk means different things to different people.  For many people it means, “Things will never be the same.”  COVID-19 has changed the venues from which we teach, but not our commitment to continually improve our teaching.  We have adapted our lectures, labs, and office hours to online platforms to keep students and ourselves safe.  I am no seer, but once classes moved online in mid-March I knew this would be a long haul from which I must learn and never forget.  After submitting final grades, I asked myself, “What have you learned?  Which practices will you continue to implement to create a better learning environment for students irrespective of world health status or platform?”  My asterisk on Spring 2020 is community.

For Spring 2020 I was assigned three sections of an upper level exercise nutrition course and one section of basic exercise physiology.  Each was a critical course.  Kinesiology majors must pass exercise physiology before any other upper level kinesiology course; this was a new course for me.  The exercise nutrition course, which I taught the prior semester, includes an in-class presentation with a hefty point value; it also is the departmental assessment tool for communication skills.  Over the last several years the level of stress and anxiety among undergraduate students in my physiology courses has been progressively increasing, nearly choking their joy of learning.  Colleagues in other fields observe similar trends.  The majority of students taking physiology courses seek careers in health professions.  Given the competitive nature of the respective training programs, students are driven to earn that A.  Add to that the worry of paying for tuition, rent, food, books, computers, and transportation and complicated academic and social transitions from high school to college.  Their family expectations loom over them.  Some students are full-time students, but also full-time parents.  For first-generation college students these circumstances may bear even greater weight.  Thus, while preparing for Spring 2020 I decided to approach that semester with greater compassion for students.  This led to my forming a community of learners in each class a priority.  Ultimately, this helped me better meet the needs of my students during that first phase of the pandemic.

Webster defines compassion as “sympathetic consciousness of others’ distress together with a desire to alleviate it.”  In preparing for Spring 2020, I identified aspects of each course that presented major challenges for students and represented sources of stress, anxiety, frustration, and discouragement.  I hoped to address those challenges and thereby, alleviate a source of stress.  Most exercise physiology students had not taken biology or basic physiology; thus, I had to teach them basic cell biology and basic physiology so they could better understand the significance of acute responses to exercise.  Based on my past experience teaching the exercise nutrition course, students needed more confidence speaking in public.  Furthermore, any given student might have known just two or three other students by name and were hesitant to speak in general.  I had to help them feel more at ease so they could talk and think out loud among their peer group.  We each want to belong to a community.  We value our individuality, but we are social beings.  Students must feel accepted and comfortable in class, so they can ask and answer questions within a small group or entire class.  A critical component of learning is not answering a question, but verbally defending that answer and exchanging ideas with others.  Many are afraid to answer incorrectly in front of others.  The classroom must be a safe place.  As the teacher, I am responsible for creating a sense of community.  While I did a great job getting to know my students’ names, faces and fun facts, I wasn’t helping students know each other.  For both courses I decided to include more activities that required students to talk directly to each other and become accustomed to speaking out loud.  With 20-25 students per class, it was feasible.  I would sacrifice class time and not be able to cover as much material.  So be it.  Students would master the fundamentals, learn to apply the knowledge, and have a shot at enjoying learning and becoming life-long learners.  Coming to class and learning might even become a reprieve from other stressors. 

How could I create community among unacquainted 20+ students?  Provide opportunity to interact as a class or in pairs or groups as often as possible.  I had to be persistent, kind, and patient.  The first day of classes I explained my intention was that students become familiar with each other, so that they were comfortable asking and answering questions and contributing to discussions.  This would facilitate learning and help me better gauge their understanding.  This also might help them find a study partner or even make a new friend.  I told them I made it a point to learn everyone’s name as soon as possible and would call on each student numerous times.  I made it clear that I know when people are shy; I promised to be kind and not call on them until they were ready.  Each day I arrived as early as possible and cheerfully greeted each student by their preferred name and asked open ended questions, e.g., ‘How are your other classes going?”  At least once a week, students worked in pairs to complete worksheets or quizzes; we would reconvene as a class and I would call on different pairs to answer.  I called on different pairs each time, so every group had chance to speak.  I encouraged them to work with different classmates for different in-class activities.  Initially, there was resistance, but I consistently commended them for their efforts.  Gradually, more students would proactively raise their hands to be called on, and it could get pretty loud.   

On the first day of the nutrition classes I also announced the presentation assignment and that we’d get started on it the 1st week of classes by forming pairs and by becoming accustomed to talking in front of the class.  To let them know that dread of public speaking is shared by all, I confessed to feeling nervous before every lecture; however, I love teaching and channel that nervous energy to keep the lectures upbeat.  I explained they might never get over the nervousness of public speaking, but they can learn nothing is wrong, being nervous is expected; it will become easier.  The trick is to start small.  So, at the start of every class period, one or two students would be asked to stand up, introduce themselves, and tell the class what they found most interesting from the last lecture.  The other students would give the presenter their undivided attention.  For shy students, I spoke directly but quietly to them before class and suggested that they could focus on me while they spoke.  After each introduction I cheerfully thanked students as positive re-enforcement.  These introductions also served to highlight what was covered in the last class.  Because each nutrition course class met 3 times a week for 50-minute sessions, students interacted frequently.  For the exercise physiology course, students worked in pairs to complete a ‘1-2-3 plus 1’ worksheet with questions on three key concepts from the previous lecture and one question on new material in the upcoming lecture.  They worked on questions for 5 minutes, and then I would call on different pairs to answer questions and explain sticking points for about 10 minutes.  It also was the transition into that day’s new material.  This class met twice per week for 80 minutes each session; thus, plenty of time remained even after the 15-minute Q&A.  They were grasping the integration of cellular mechanisms at the cellular and systems levels.  The time and effort to plan and execute these activities was well worth it.  Students were learning and enjoying class, as well as getting to know each other.  By late February communities had formed.  Each class had a friendly and inclusive feeling, and attendance was nearly perfect.  Even shy students began echoing my greetings or waving and smiling at classmates arriving to class.  Individual classes had their own running jokes.   

The week before Spring Break universities were discussing whether or not students would return to campuses after the break.  COVID-19 was here.  The Thursday and Friday before Spring Break were the last days I met with students in person.  I confirmed the rumors.  Students would not return to campus after the break, and all courses would be entirely online.  I clarified that I would present lectures ‘live’ at the regularly scheduled class times.  I opened the floor to discussion.  If I knew their concerns, I’d have a better chance at maintaining the sense of community.  Students were completely honest.  Seniors were sad, because graduation would be cancelled.  Students were hoping they could keep their jobs here in town to pay rent.  Athletes on scholarships worried that if the season were canceled they’d lose funding.  Others would be learning from their parents’ homes, which had no Internet access.  The most common concern was whether they would be as successful learning online.  They were worried about the lack of accountability.  One student feared he’d stop attending lectures and miss assignments; one reason he came to class was that I called him by name and talked to him every day.  Another student doubted I’d have any personality when giving online lectures; I took this as a challenge.  Students in the nutrition classes were worried about presentations, which were taking shape and now had to be presented somehow.  They were scared.  Now, I was scared for them – but had the wherewithal to not say that out loud.  One student outright asked, ‘Is this even gonna’ work?!”  I admitted it would be a challenge, in part because I had never taught an online class, and this was my first pandemic!  They laughed nervously.  What a relief to hear them laugh!  Then, I remembered my goal to practice compassion and let that guide me.  I calmly stated the following, “This is not an ideal situation, but we will make it work, and I mean WE.  I will do my best to not make this situation any more difficult than it has to be.  I will communicate with you regularly, so read my emails.  If you have any problems or questions you must let me know immediately, so to give me a better chance to help you.  It will be ok.”  That this was the last time I would see my students in person.  It was a sad day.

I took my students’ concerns into account and still made my priority community.  If I could maintain that sense of community, they would be more likely to login to lecture and learn. I kept it as simple, direct, and familiar as possible.  I already had been posting all lecture notes and materials on the university’s learning management system (LMS) and using the drop box for homework submissions.  Thus, I opted to use the real-time video conferencing tool in the LMS to deliver, record and save lectures and hold office hours.  An ounce of prevention is worth a pound of cure.  I established the practice of sending each individual class a weekly email on Sunday afternoon that listed the week’s lecture topics, specific links to each lecture and office hours, due dates for quizzes, upcoming exams, announcements, and miscellaneous reminders.  The very first email included step by step instruction for logging into the LMS video conferencing tool (which had been proofread and tested by a colleague), and I attached the revised syllabus.  I kept these emails as upbeat as possible.  On the class website, I also posted important announcements, along with links to the live and recorded lectures.  I kept the class website uncluttered and organized to make it easy for students to find what they needed.  In the middle of a pandemic, it was absolutely essential to keep my promise to my students and myself and not to make learning or teaching online any more difficult than necessary. 

I continued teaching the fundamentals and worked to maintain that sense of community.  I opened and logged into the virtual lecture room 10-15 minutes before lecture started and would allow students to do the same.  I would still greet them as they entered, asked them to turn on the video at least once, so I could see their faces and make sure they were doing ok.  They would also greet each other.  I encouraged them to ask questions or comment directly using their mics or in the chat message feature.  As I lectured, I kept track of questions and answers to my questions; I would address students by name just as I had in person.  They learned quickly that they could use the chat feature to communicate with each other, sometimes not about physiology or nutrition.  I didn’t mind.  I also knew they missed being on campus and seeing classmates and friends, and they were isolated.  For the exercise physiology course, we continued the practice of starting each lecture period with the 1-2-3 plus 1 worksheet and still spend about 15 minutes on that activity; the students really valued this activity.  Because the practice proved to facilitate learning, I posted these questions on the class website, but also emailed the class a copy the day before to be sure they had a copy – a 5-minute task to keep them engaged and coming to class.  For the nutrition class, I offered an extra credit assignment, ‘Who is this?’  For one class, I had a list of 10 walk-up songs from different students; students had to name the artist and tell me the full name of the student who claimed that as their ‘walk-up’ song.  Another class had to name the student learning online the farthest distance from campus and name the student whose birthplace was farthest from campus; they also had to list the exact city, state or country and distance in miles.  The third class had to list the first and last names of all graduating seniors in the class and their career goals.  For extra points, they all participated.  It was meant to encourage them to stay connected and think about something else. 

We had a share of glitches and mishaps, but my students stepped up to the plate.  The lack of equal access to the Internet could not be more painfully obvious.  One exercise physiology student informed me that his only access to the Internet was his cell phone.  He took the initiative to asked whether I would accept images of hand-written 1-2-3 worksheets sent to me by email.  He never missed an assignment and made arrangements to borrow a friend’s laptop for exams.  A nutrition student, I will call Brett was learning from home in a small town about 2 hours from the nearest ‘real’ town; his family home had no Internet and a poor mobile phone signal.  He emailed to explain that once his dad got paid he would buy the equipment and he would be online soon.  He was concerned about missed quizzes and the respective points and missed lectures.  What do you say to that?  When you know you have all the power, you must use that power to do good and not make anyone’s life harder than it has to be.  I re-opened quizzes and sent him links to the recorded lectures; he wasted no time catching up.  Then there was the matter of the nutrition presentations.  Another lifeline.  Students continued to work together, sending presentation files to each other and to me.  Students taught themselves to use Zoom, Google Slides, and the LMS video conference feature.  No one complained.  Multiple pairs wanted to present during the same session, so they could be an audience, lend moral support, and ask questions.  The presentations were impressive.  Students were so enthusiastic.  However, my favorite presentation was by Brett and ‘Josh’; they presented via the LMS conference feature.  Brett’s Internet cut out completely on second slide; he tried to reconnect to no avail.  I remained calm; they remained calm.  They decided Brett would call Josh; Josh would hold his cell phone to the mic on his computer so I could hear Brett narrate his part of the talk.  Teamwork!  Let your students inspire you.

I left time at the end of each lecture to offer encouraging words and reminders to stay safe and take care of themselves.  I also would state that I looked forward our next meeting.  As the semester was winding down end-of-lecture discussions and questions become more serious.  Across all classes the basic questions were similar.  “Will I graduate on time?  How will this impact my career plans?  Do you think this will be over by the Fall?  Do you think they’ll have a cure soon?”  There was no sugar coating this.  I would validate their concerns and offer my honest opinion in a kind-hearted manner.  My last virtual lecture was on a Friday in May.  I decided to name each graduating senior, so the class could congratulate and applaud for them.  A student asked me to give a commencement speech.  She was serious.  I remembered what my gut told me back in mid-March, and so I began.  “I cannot tell you how proud of how hard each of you has worked and how well you worked together.  Life is hard.  It’s ok to be scared.  You have risen to the occasion.  Keep rising.  Learn all you can from this situation.  You are meant to do great things, however subtle or grand.  You will fall and make mistakes.  You will need help along the way and must help others on their journey.  It has been a privilege to work with you.  I will think of you often and wish you well.”  Spring 2020*  *Helping my students form a community, an inclusive safe place to learn, think out loud, be wrong, correct mistakes, and help each other.  That is the practice I will continue to implement to create a better learning environment for students irrespective of world health status or platform. 

Alice Villalobos, Ph.D., is an assistant professor in the Department of Medical Education at the Texas Tech Health Sciences Center in Lubbock, Texas.  She received her B.S.in biology from Loyola Marymount University and her Ph.D. in comparative physiology from the University of Arizona-College of Medicine.  Her research interests are the comparative aspects of the physiology and stress biology of organic solute transport by choroid plexus.  She has taught undergraduate and graduate courses in integrative systems physiology, nutrition and toxicology.  However, her most enjoyable teaching experience has been teaching first-graders about the heart and lungs!  Her educational interests focus on tools to enhance learning of challenging concepts in physiology for students at all levels.  She has been actively involved in social and educational programs to recruit and retain first-generation college students and underrepresented minorities in STEM. 
Why demonstrating and embracing uncertainty should be a learning objective, especially in uncertain times?

Uncertainty.  We have all heard that word quite frequently lately.  It tends to carry negative connotations and feelings of uneasiness.  It seems the answer to every question these days is, “well, it depends”.  As physiology educators, this is not new to us.  How many times have we answered a student’s broad question with this same phrase?    Regardless of how much active learning is accomplished in the classroom, students at all levels are tasked with preparing for and taking standardized tests.  My children started taking assessments in preschool, multiple choice tests for grading purposes in kindergarten, and state assessment tests in 3rd grade.  Then there will be standardized tests for admissions to college, graduate admissions, and licensing.  It’s no wonder that some students are conditioned to study ‘to the test’ instead of having the goal of truly learning the material, and are hesitant to express when they don’t know something.   I spent the first decade of my career teaching science at the undergraduate level and have spent the last five years teaching in the professional school setting, including medical, dental, and podiatry students.  I have found that these health professions students in particular become especially aware of uncertainty when they start gaining experience with clinical cases and with patients.  I also notice that they are uneasy with uncertainty even from the interactions in the classroom – they are high achieving students and don’t want to be wrong, to be perceived as not knowing an answer or a concept, of maybe feeling like they don’t belong.  In truth, many students have the same questions, and the same feelings, but are hesitant to express them.   It is known that dealing with uncertainty and ambiguity, especially in professions where people are serving patients whose health is at stake, can result in the experience of stress, anxiety, depression, and burnout (1).  Wellness is an important consideration, especially in a climate where things seem to be changing day-to-day and we are provided limited information and answers.  How one deals with uncertainty can lead to life and professional decisions including which career or specialty to pursue.  While this concept is not novel, actually teaching students how to tolerate or even embrace uncertainty is a relatively new concept, one which I think should be made a more purposeful objective in our courses.   What if instead of shying away from admitting we don’t know something, we learn how to accept it, and how to approach the problem to find the most effective answer?  How do we best learn to tolerate uncertainty, and train our students how to cope with and learn from uncertainty?  What are the benefits of embracing uncertainty?   

Bring uncertainty into the classroom Thoughtfully and purposely embedding uncertainty into activities in the classroom does several things.  First, it allows students to learn that not every question has an absolute answer.  Students need help shifting their mindset.  This also encourages students to work with material at higher levels of Bloom’s taxonomy, like evaluation and application.   Additionally, this helps create a culture in the classroom where asking questions and admitting to what we don’t know is a good thing, and brings value to classroom discussions.  This allows students to bring in their own experiences in an attempt to work through a problem and arrive at an answer, enhancing students’ learning.  Students can build their confidence as they find value in embracing the unknown as they learn to navigate the process to find the answers to their questions.   The learning theory constructivism suggests that students build their own learning, that knowledge is built upon knowledge, and that it works best in context (2). This encourages students to bring their own experiences to the learning process, and the result is that each student may bring a different perspective and answer (3).  These principles match well with the intention of teaching how to manage uncertainty.  A goal is for students to be engaged and motivated in an active learning environment, allowing them to share ideas and build their knowledge based on their prior knowledge and experiences.  

Leading to deeper learning To further expand the idea of students building their mental models, activities designed to allow for more open-ended thinking or answers, which build upon each other, can be utilized.  For example, in the cardiovascular physiology component of our medical course, we build on the basic concepts in a series of small group sessions which encourage students to work in their teams to answer questions pertaining to these concepts.  We may start with the principles of hemodynamics but eventually work our way to the integration of cardiac function and vascular function.  These sessions require students to not only recall knowledge, but also apply information in a manner which may lead to uncertainty.  They learn to question the severity of perturbations, the balance of factors which interact, and the cause and effect.  We find students may become frustrated with the “it depends” answer, but they learn how to view the nuance and ask the appropriate questions.  This type of exploration and learning transitions well to more clinical sessions, where students need to know which questions to ask, which tests to order, and which colleagues to consult.    

Demonstrate uncertainty as educators and professionals In addition to our basic science session, I spend a lot of time teaching with clinical colleagues in the pre-clerkship medical classroom.  We have a small cohort of core educators who participate in a special type of small group learning we call Clinical Reasoning Conferences.  The core educators are either basic scientists or clinicians and come from different disciplines, bringing different experiences and expertise to each session. We are always joined by content experts in our sessions with the students as well.  This means that we are likely to be in a session where we are not the content expert, but have immediate access to one. This gives us an opportunity to demonstrate uncertainty in the classroom, to students who feel constant pressure to know everything and to perform at the highest level.  To be honest, it took a while for us to get comfortable with telling the students, “I don’t know”, but that “I don’t know” was, in reality, “I don’t know but let’s get the answer”, which gave us the opportunity to demonstrate how we get the answer.  It could be a reference from the literature, a clinical resource, or a colleague.  Students not only benefit from getting perhaps a more comprehensive answer to their questions, but also knowledge that no one can know everything or even how much is still unknown.  It is imperative in medicine that they learn and practice how to find appropriate information in order to make the most informed decision when it comes to patient care.  These practices have also been shared by other medical educators (1).  Clinical Reasoning Sessions also include students teaching the material to their colleagues, and we make it clear in our expectations that we much rather they describe their process and maybe come up with an incorrect conclusion than have short, although correct, answers which do not demonstrate process and reasoning.  Another goal is to allow the students plenty of chances to practice answering questions of a clinical nature posed by faculty, and allow them to become comfortable asking faculty questions, well before they start their clerkships.    

Manage expectations In my experience, students appreciate the ability to give feedback and share their expectations of their courses and programs.  They also align these with their own expectations of themselves.  Faculty and course directors work to resolve the students’ expectations with their own, and to assist students in forming and revising their expectations of and their role and responsibilities within the course.  Educating during a pandemic has shined a light on and challenged the way we manage these expectations. A word I have heard my colleagues use lately is grace; we should extend grace to our students, to ourselves, and ask for grace from others.  This is another way we can demonstrate how we deal with uncertainty, which can hopefully serve as a soft teaching point for our students.    

Outside of the science classroom Developing skills to help us manage uncertainty extends to outside of our classroom.  We hope that students will take the lessons and continue to use them in other classes, or outside of school altogether.  Medical schools often offer electives, some of which are tied to wellness or extracurricular subjects.  For example, some of our electives include Artful Thinking, in which students hone their skills of observation, application, and context, and Fundamentals of Improv, so that students can work on skills of listening, support, creativity, and quick thinking and response.  Other schools and programs offer similar experiences for students (4,5).  The narrative medicine program emphasizes skills of reflective writing to focus on the human side of medicine, reminding why we’re here in the first place (6).  

Challenging ourselves and encouraging our creativity One of the most important lessons I learned in the transition to remote and hybrid education over the past six months was to face the uncertainty with planning, reflection, and flexibility.  I am the type to have a backup plan to my backup plan, which I realized gave me the flexibility to be more creative in my course design and preparation.  I feel that my courses benefitted from my ability to challenge myself, because of uncertainty, and I intend to continue to reflect and employ what I consider my ‘best practices’ even when we move back into the in-person classroom in the future.   We are exposed to uncertainty every day.  How we choose to frame our mindset, to help our students and ourselves tolerate or even embrace uncertainty can bring benefits both in and outside of the classroom.  

References and further reading Twelve tips for thriving in the face of clinical uncertainty, accessed 8/28/20  https://www.tandfonline.com/doi/pdf/10.1080/0142159X.2019.1579308 What is Constructivism?, accessed 8/28/20 https://www.wgu.edu/blog/what-constructivism2005.html Inviting Uncertainty into the Classroom, accessed 8/28/20 http://www.ascd.org/publications/educational-leadership/oct17/vol75/num02/Inviting-Uncertainty-into-the-Classroom.aspx Teaching Medical Students the Art of Uncertainty, accessed 8/28/20 https://www.cuimc.columbia.edu/news/teaching-medical-students-art-uncertainty The Alda Method, Alda Center for Communicating Science, accessed 9/4/20 https://www.aldacenter.org/alda-method Narrative Medicine Program, Accessed 9/4/20 https://medicine.temple.edu/education/narrative-medicine-program The Diagnosis, Prognosis, and Treatment of Medical Uncertainty https://www.jgme.org/doi/pdf/10.4300/JGME-D-14-00638.1 The Ethics of Ambiguity: Rethinking the Role and Importance of Uncertainty in Medical Education and Practice https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5497921&blobtype=pdf Helping Students Deal with Uncertainty in the classroom https://www.edutopia.org/blog/dealing-with-uncertainty-classroom-students-ben-johnson Learning: Theory and Research http://gsi.berkeley.edu/media/Learning.pdf          


Rebecca Petre Sullivan, Ph.D.
Associate Professor of Physiology
Lewis Katz School of Medicine at Temple University
Dr. Rebecca Petre Sullivan earned her Ph.D. in Physiology from the Lewis Katz School of Medicine at Temple University and completed a Post-Doctoral Fellowship in the Interdisciplinary Training Program in Muscle Biology at the University of Maryland School of Medicine.  She taught undergraduate biology courses at Ursinus College and Neumann University.  As an Associate Professor of Physiology and a Core Basic Science Educator, she is currently course director in the Pre-Clerkship curriculum at LKSOM and at the Kornberg School of Dentistry; in addition to teaching medical and dental students, she also teaches physiology in Temple’s podiatry school and in the physician assistant program.  She is a member of Temple University’s Provost’s Teaching Academy.  She was the recipient of the Mary DeLeo Prize for Excellence in Basic Science Teaching in 2020 and a Golden Apple Award in 2017 from LKSOM, and the Excellence in Undergraduate Teaching Award from Neumann University in 2012.
Protecting yourself means more than a mask; should classes be moved outside?
Mari K. Hopper, PhD
Associate Dean for Biomedical Science
Sam Houston State University College of Osteopathic Medicine

Disruption sparks creativity and innovation. For example, in hopes of curbing viral spread by moving classroom instruction outdoors, one Texas University recently purchased “circus tents” to use as temporary outdoor classrooms.

Although circus tents may be a creative solution… solving one problem may inadvertently create another. Moving events outdoors may be effective in reducing viral spread, but it also increases the skin’s exposure to harmful ultraviolet (UV) radiation from the sun. The skin, our body’s largest organ by weight, is vulnerable to injury. For the skin to remain effective in its role of protecting us from pollutants, microbes, and excessive fluid loss – we must protect it.

It is well known that UV radiation, including UVA and UVB, has deleterious effects including sunburn, premature wrinkling and age spots, and most importantly an increased risk of developing skin cancer.

Although most of the solar radiation passing through the earth’s atmosphere is UVA, both UVA and UVB cause damage. This damage includes disruption of DNA resulting in the formation of dimers and generation of a DNA repair response. This response may include apoptosis of cells and the release of a number of inflammatory markers such as prostaglandins, histamine, reactive oxygen species, and bradykinin. This classic inflammatory response promotes vasodilation, edema, and the red, hot, and painful condition we refer to as “sun burn.”1,2

Prevention of sunburn is relatively easy and inexpensive. Best practice is to apply broad spectrum sunscreen (blocks both UVA and UVB) 30 minutes before exposure, and reapply every 90 minutes. Most dermatologists recommend using SPF (sun protection factor) of at least 30. Generally speaking, an SPF of 30 will prevent redness for approximately 30 times longer than without the sunscreen. An important point is that the sunscreen must be reapplied to maintain its protection.

There are two basic formulations for sunscreen:  chemical and physical. Chemical formulations are designed to be easier to rub into the skin. Chemical sunscreens act similar to a sponge as they “absorb” UV radiation and initiate a chemical reaction which transforms energy from UV rays into heat. Heat generated is then released from the skin.3  This type of sunscreen product typically contains one or more of the following active ingredient organic compounds: oxybenzone, avobenzone, octisalate, octocrylene, homosalate, and octinoxate. Physical sunscreens work by acting as a shield. This type of sunscreen sits on the surface of the skin and deflects the UV rays. Active ingredients zinc oxide and/or titanium dioxide act in this way.4  It’s interesting to note that some sunscreens include an expiration date – and others do not. It is reassuring that the FDA requires sunscreen to retain their original “strength” for three or more years.

In addition to sunscreen, clothing is effective in blocking UV skin exposure. Darker fabrics with denser weaves are effective, and so too are today’s specially designed fabrics. These special fabrics are tested in the laboratory to determine the ultraviolet protection factor (UPF) which is similar to SPF for sunscreen.  A fabric must carry a UPF rating of at least 30 to qualify for the Skin Cancer Foundation’s Seal of Recommendation. A UPF of 50 allows just 1/50th of the UV rays to penetrate (effectively blocking 98%). Some articles of clothing are produced with a finish that will wash out over time. Other fabrics have inherent properties that block UV rays and remain relatively unchanged due to washing (some loss of protection over time is unavoidable) – be careful to read the clothing label.

Some individuals prefer relying on protective clothing instead of sunscreen due to concerns about vitamin D synthesis. Vitamin D activation in the body includes an important chemical conversion stimulated by UV exposure in the skin – and there is concern that sunscreen interferes with this conversion. However, several studies, including a recent review by Neale, et al., concluded that use of sunscreen in natural conditions is NOT associated with vitamin D deficiency.5,6 The authors did go on to note that at the time of publication, they could not find trials testing the high SPF sunscreens that are widely available today (current products available for purchase include SPFs over 100).

Additional concern about use of sunscreens includes systemic absorption of potentially toxic chemicals found in sunscreen. A recent randomized clinical trial conducted by Matta and colleagues investigated the systemic absorption and pharmacokinetics of six active sunscreen ingredients under single and maximal use conditions. Seven Product formulations included lotion, aerosol spray, non-aerosol spray, and pump spray. Their study found that in response to repeat application over 75% of the body surface area, all 6 of the tested active ingredients were absorbed systemically. In this study, plasma concentrations surpassed the current FDA threshold for potentially waiving some of the additional safety studies for sunscreen. The authors went on to note that the data is difficult to translate to common use and further studies are needed. It is important to note that the authors also conclude that due to associated risk for development of skin cancer, we should continue to use sunscreen.

Yet another concern for using sunscreen is the potential for harmful environmental and human health impact. Sunscreen products that include organic UV filters have been implicated in adverse reactions in coral and fish, allergic reactions, and possible endocrine disruption.8,9 In some areas, specific sunscreen products are now being banned (for example, beginning January of 2021, Hawaii will ban products that include oxybenzone and octinoxate). As there are alternatives to the use of various organic compounds, there is a need to continue to monitor and weigh the benefit verses the potential negative effects.

Although the use of sunscreen is being questioned, there is the potential for a decline in use to be associated with an increase in skin cancer. Skin cancer, although on the decline in recent years, is the most common type of cancer in the U.S. It is estimated that more than 3 million people in the United States are diagnosed with skin cancers each year (cancer.net). Although this is fewer than the current number of Americans diagnosed with COVID-19 (Centers for Disease Control and Prevention, July 20, 2020) – changes in human behavior during the pandemic (spending more time outdoors) may inadvertently result in an increase in the number of skin cancer cases in future years.  

While we responsibly counter the impact of COVID-19 by wearing masks, socially distancing, and congregating outdoors – we must also continue to protect ourselves from damaging effects of the sun. As physiologists, we are called upon to continue to investigate the physiological impacts of various sunscreen delivery modes (lotion, aerosol, non-aerosol spray, and pumps) and SPF formulations. We are also challenged to investigate inadvertent and potentially negative impacts of sunscreen including altered Vitamin D metabolism, systemic absorption of organic chemicals, and potentially adverse environmental and health outcomes.

Again, solving one problem may create another challenge – the work of a physiologist is never done!

Stay safe friends!

Mari

References:

  1. Lopes DM, McMahon SB. Ultraviolet radiation on the skin: a painful experience? CNS neuroscience & therapeutics. 2016;22(2):118-126.
  2. Dawes JM, Calvo M, Perkins JR, et al. CXCL5 mediates UVB irradiation–induced pain. Science translational medicine. 2011;3(90):90ra60-90ra60.
  3. Kimbrough DR. The photochemistry of sunscreens. Journal of chemical education. 1997;74(1):51.
  4. Tsuzuki T, Nearn M, Trotter G. Substantially visibly transparent topical physical sunscreen formulation. In: Google Patents; 2003.
  5. Passeron T, Bouillon R, Callender V, et al. Sunscreen photoprotection and vitamin D status. British Journal of Dermatology. 2019;181(5):916-931.
  6. Neale RE, Khan SR, Lucas RM, Waterhouse M, Whiteman DC, Olsen CM. The effect of sunscreen on vitamin D: a review. British Journal of Dermatology. 2019;181(5):907-915.
  7. Matta MK, Florian J, Zusterzeel R, et al. Effect of sunscreen application on plasma concentration of sunscreen active ingredients: a randomized clinical trial. Jama. 2020;323(3):256-267.
  8. Schneider SL, Lim HW. Review of environmental effects of oxybenzone and other sunscreen active ingredients. Journal of the American Academy of Dermatology. 2019;80(1):266-271.
  9. DiNardo JC, Downs CA. Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone‐3. Journal of cosmetic dermatology. 2018;17(1):15-19.

    All images from:
    Royalty Free Stock Pictures – Public Domain Images
    www.dreamstime.com/

Prior to accepting the Dean’s positon at Sam Houston State University, Dr Hopper taught physiology and served as the Director of Student Research and Scholarly Work at Indiana University School of Medicine (IUSM). Dr Hopper earned tenure at IUSM and was twice awarded the Trustees Teaching Award. Based on her experience in developing curriculum, addressing accreditation and teaching and mentoring of medical students, she was selected to help build a new program of Osteopathic Medicine at SHSU. Active in a number of professional organizations, Dr. Hopper is past chair of the Chapter Advisory Council Chair for the American Physiological Society, the HAPS Conference Site Selection Committee, and Past-President of the Indiana Physiological Society.

Physiology Educators Community of Practice (PECOP) Webinar Series

The American Physiological Society (APS) is pleased to announce a new webinar series focused on our educator community. The monthly series includes live webinars focused on education best practices, synchronous and/or asynchronous teaching, establishing inclusive classrooms and publishing. Educator town halls will also be featured as we strive to support and engage the educator community throughout the year.

Starting this month, take advantage of the educator webinar series by visiting the events webpage on the APS website. Register for each webinar, learn about speakers and their talks today!

What to do on the First Day of Class: Insights From Physiology Educators?
July 23, 2020
12 p.m. EDT

Join in the discussion about how to greet students on the first day of class and set the tone for the rest of the course.

Speakers:

  • Barbara E. Goodman, PhD from the Sandford School of Medicine, University of South Dakota (Vermillion)
  • Dee Silverthorn, PhD from the University of Texas at Austin

A successful semester: Applying resilient and inclusive pedagogy to mitigate faculty and student stress
August 20, 2020
2 p.m. EDT

As we head into an uncertain academic year, spend an hour with us to consider strategies which will help you and your students navigate our changing academic, professional, and personal lives. Participants will work through pragmatic and concrete strategies they can transition into their own work to promote student learning and minimize stress.

Speakers:

  • Josef Brandauer, PhD from Gettysburg College (Penn.)
  • Katie Johnson, PhD from Trail Build, LLC (East Troy, Wisc.)

Writing & Reviewing for Advances
September 17, 2020
12 p.m. EDT

This session will be a chance to encourage all who have adapted their teaching during the COVID-19 pandemic to share their work. This topic also ties in to the Teaching Section featured topic for EB 2021.

Speaker:

  • Doug Everett, PhD from National Jewish Health (Denver, Colo.)

A Framework of College Student Buy-in to Evidence-Based Teaching Practices in STEM: The Roles of Trust and Growth Mindset
October 22, 2020
12 p.m. EST

This topic is relevant to building trust, which goes hand-in-hand with inclusion and diversity. Trust is essential for the different modalities of teaching which educators and students will experience in the fall.

 

Educators Town Hall
November 19, 2020
12 p.m. EST

A chance to talk about what happened during the fall semester and also plan for the upcoming year

Balancing Coursework, Student Engagement, and Time
Jennifer Rogers, PhD, ACSM EP-C, EIM-2
Associate Professor of Instruction
Director, Human Physiology Undergraduate Curriculum
Department of Health and Human Physiology
University of Iowa

First, a true story. Years ago, when my son was very little, he and his preschool friends invented a game called “What’s In Nick’s Pocket?” Every day before leaving for school my son would select a small treasure to tuck into his pocket.  The other 3- and 4- year olds at school would crowd around and give excited “oooh’s” and “aaah’s” as he presented his offering, which had been carefully selected to delight and amaze his friends.  And so it is with the PECOP blog forum—as each new post arrives in my inbox I wonder with anticipation what educational gem has been mindfully curated by colleagues to share with the PECOP community.

My contribution? Thoughts on the balance between coursework, student engagement, and time.  Student engagement in this context refers to a wide range of activities that exist outside of the traditional classroom that offer valuable opportunities for career exploration and development of professional skills.  Examples include:

  • Internships: either for course credit or independently to gain experience within a particular setting
  • Study Abroad opportunities
  • Participation in a student organization
  • Peer tutor/mentoring programs
  • Research: either as a course-based opportunity or as a lab assistant in a PI’s lab (paid or unpaid)
  • Job experiences: for example, as a certified nursing assistant, medical transcriptionist, emergency medical technician
  • Volunteer and community outreach experiences
  • Job shadowing/clinical observational hours

These are all increasingly popular co-curricular activities that allow students to apply concepts from physiology coursework to real-world scenarios as an important stepping stone to enhance career readiness and often personal development.  At the same time, however, students seem to more frequently communicate that they experience stress, anxiety, and concerns that they “are not at their best,” in part due to balancing coursework demands against time demands for other aspects of their lives.  If you are interested in learning more about the health behaviors and perceptions of college students, one resource is the American College Health Association-National College Health Assessment II (ACHA-NCHA II) Undergraduate Student Reference Group Data Report Fall 2018 (1).  Relevant to this blog, over half of the undergraduates surveyed (57% of 11,107 participants) reported feeling overwhelmed by all they had to do within the past two weeks.

I recently gave an undergraduate physiology education presentation that included this slide.  It was an initial attempt to reconcile how my course, Human Physiology with Lab, (a “time intensive course” I am told), fits within the context of the undergraduate experience.

I was genuinely surprised by the number of undergraduates in the audience who approached me afterward to essentially say “Thank you for recognizing what it feels like to walk in my shoes, it doesn’t seem like [my professors, my PI, my parents] understand the pressure I feel. “

In response, and prior to the changes in higher education following COVID-19, I began to ponder how to balance the necessary disciplinary learning provided by formal physiology coursework and participation in also-valuable experiential opportunities.  The Spring 2020 transition to virtual learning, and planning for academic delivery for Fall 2020 (and beyond), has increased the urgency to revisit these aspects of undergraduate physiology education.  As PECOP bloggers and others have mentioned, this is a significant opportunity to redefine how and what we teach. 

It has been somewhat challenging to me to consider how to restructure my course, specifically the physiology labs, in the post COVID-19 era when lab activities need to be adaptable to either in-person or virtual completion.  My totally-unscientific process to identify areas for change has been the “3-R’s” test. With regard to physiology lab, there may be many important learning objectives:

  • An ability to apply the scientific method to draw conclusions about physiological function
  • The act of collecting data and best practices associated with collection of high-quality data (identification of control variables, volunteer preparation/preparation of the sample prior to testing, knowledge of how to use equipment)
  • Application of basic statistical analyses or qualitative analysis techniques
  • Critical thought and quantitative reasoning to evaluate data
  • How to work collaboratively with others, that may be transferrable to future occupational settings: patients, clients, colleagues
  • Information literacy and how to read and interpret information coming from multiple resources such as scientific journals, online resources, advertisements, and others, and
  • Science communication/the ability to communicate information about human function, in the form of individual or group presentations, written lab reports, poster presentations, formal papers, infographics, mock patient interactions, etc.

Arguably, these are all important lab objectives.  Really important, in fact.

So, what is the 3 R’s test, and how might it help?  The 3 R’s is simply my way of prioritizing.  In order to triage lab objectives, I ask myself: What is Really Important for students to master throughout the semester versus what is Really, Really Important, or even Really, Really, REALLY Important?  For example, if I can only designate one activity that is Really, Really, REALLY Important, which one would it be?  The answer for my particular course is science communication.  It is obviously a matter of semantics, but I like being able to justify that all course activities are still Really Important, even if it is only my inner dialogue.  Going into the unknowns of the Fall semester, this will help me guide how course activities in physiology lab are transformed. 

Another worthy goal, in light of academic stress and allocation of effort for maximum benefit, is to improve the transparency of expectations for students.  A common question that arose during the spring semester was if students would still learn what they needed to in preparation for future coursework or post-graduation opportunities.  The identification of one or two primary learning outcomes (the Really, Really, REALLY important ones) may attenuate feeling overwhelmed by a long list of lab-related skills to master if there is another abrupt shift to virtual instruction mid-semester; course objectives can still be met even if we discontinue in-person lab sessions. 

To return to the original topic of balancing time demands allocated to formal coursework and valuable experiences, the two broad conclusions I have reached fall under the categories what I can do in my own courses and suggestions for conversations to be had at the program level.

In My Courses: COVID-19 has sped up the time course for revisions I had already been considering implementing in physiology labs.  Aligning course activities with what is Really, Really, REALLY important will help me manage preparation efforts for the coming fall semester (and hopefully keep my stress levels manageable).  Another important goal is to improve the transparency of course goals for students, ideally alleviating at least a portion of their course-induced stress through improved allocation of effort.  Ultimately, I hope the lab redesigns reinforce physiology content knowledge AND provide relevant experiences to promote career readiness.  *It is also necessary to emphasize to students that both will require focused time and effort.

At the Program Level:  Earning a degree in physiology is not based on acquired knowledge and skills in a single course, rather it is an end-product of efforts across a range of courses completed across an academic program.  Here are some ideas for program-wide discussion:

  • Faculty should identify the most important course outcome for their respective courses, and we should all meet to talk about it. Distribute program outcomes throughout the courses across the breadth of the program.  (Yes, this is backward design applied to curriculum mapping.)  From the faculty perspective, perhaps this will reduce feeling the need to teach all aspects of physiology within a particular course and instead keep content to a manageable level.  From the student perspective, clear communication of course objectives, in light of content presented within any particular course, may promote “buy in” of effort.  It may also build an awareness that efforts both inside and outside of the classroom are valuable if the specific body of content knowledge and aptitudes developed across the curriculum, relevant for future occupational goals, is tangibly visible.
  • Review experiential/applied learning opportunities. Are there a sufficient number of opportunities embedded within program coursework?  If not, are there other mechanisms available to students, for example opportunities through a Career Center or other institution-specific entities?  Establishing defined pathways for participation may reduce student stress related to not knowing how to find opportunities.  Another option would be to consider whether or not the program would benefit from a career exploration/professional skills development course.  Alternatively, could modules be developed and incorporated into already existing courses? 
  • Lastly, communicate with students the importance of engaging in co-curricular activities that are meaningful to them; this is more important than the number of activities completed. Time is a fixed quantity and must be balanced between competing demands based on personal priorities. 

As we consider course delivery for Fall 2020, the majority of us are reconsidering how we teach our own courses.  There are also likely ongoing conversations with colleagues about plans to navigate coursework in the upcoming semesters.  If everything is changing anyway, why not take a few minutes to share what is Really, Really, REALLY important in your courses?  The result could be an improved undergraduate experience related to balancing the time and effort allocations required for success in the classroom along with opportunities for participation in meaningful experiences.

Reference:

1. American College Health Association. American College Health Association-National College Health Assessment II: Undergraduate Student Reference Group Data Report Fall 2018. Silver Spring, MD: American College Health Association; 2018.

Jennifer Rogers completed her PhD and post-doctoral training at The University of Iowa (Exercise Science).  She has taught at numerous institutions ranging across the community college, 4-year college, and university- level higher education spectrum.  Jennifer’s courses have ranged from small, medium, and large (300+ students) lecture courses, also online, blended, and one-course-at-a-time course delivery formats.  She routinely incorporates web-based learning activities, lecture recordings, and other in-class interactive activities into class structure.  Jennifer’s primary teaching interests center around student readiness for learning, qualitative and quantitative evaluation of teaching strategies, and assessing student perceptions of the learning process.