Category Archives: Teaching Strategies

“Is integrated curriculum disintegrating the holistic approach among smart learners?”

I feel smart learners are becoming surface learners in the integrated curriculum by juggling with only the learning outcomes included in the blueprint without processing the information. They calculate the bare minimum content required just to pass. They are not ready to come out of their comfort zone to progress by acquiring hard-core concepts at the level of application and synthesis. They appear in a module exam and stop relating it to other modules.

Integrated curriculum is being implemented at the cost of lack of ownership by subject specialists. System-based modules lay the foundation of disciplines on Anatomy but not on the themes associated with clinical features like chest pain. When diseases are studied within systems, the integration is itself disintegrated into anatomical boundaries.

Problem-based learning from which students can derive their own learning outcomes to solve the scenario remains the only hope to integrate the systems, as diseases seldom restrict themselves to one system. As assessment drives learning, PBL may be assessed by case-cluster-MCQs and integrated viva by relevant subject specialists. Being a student-centered methodology, adding to the burden of an integrated curriculum involving multiple subjects, PBL is usually neglected by the student body. There is a dire need to innovate PBL and make it interesting by using students as simulated patients and by allowing them into doctor-patient-role-play, whereas the remaining students may be engaged in healthy critique and feedback along with critical thinking, leadership and teamwork to achieve academic as well as social learning. PBL workshops with faculty and students may be beneficial.

The relatively new concept of “patients as educators of students” may be practiced by recruiting actors and real patients carefully through interviews and seeking their consent for history-taking and/or physical examination. Feedback and assessment by simulated patients may contribute to real-patient safety. Their video may be created as a future learning resource. Smart learners need smart teachers to handle them along with their modern curriculum.

Prof. Dr. Samina Malik

HOD Physiology, University College of Medicine and Dentistry, The University of Lahore

PBL Country head for Pakistan, Asia-Pacific Association on PBL in Health Sciences (APA-PHS)

Secretary General, South Asian Association of Physiologists

Masters in Med Edu student at Dundee university, UK

Member APS, Teaching of Physiology section (Member No. 00307332)

Achieving Small Goals Can Lead to Bigger Changes Than You Might Expect

I started writing this blog with the intention to talk about the undergraduate physiology course I revamped this semester. Don’t worry, I still plan to talk about it because it is a fantastic course. However, since this blog is set to be posted around December 31st, I thought I might start off by reflecting on my past year. If you learn anything from my journey, I hope it’s that even achieving small goals can lead to bigger changes than you might expect.

 

To begin this year, my goal was to attend Experimental Biology (EB). It was one of my favorite conferences to attend as a graduate student and postdoc, but I hadn’t gone since becoming faculty (4yrs). In late 2021, I became acquainted with how helpful the Teaching Section for APS could be for my career as a physiology educator. I thought attending EB would be a good way to network and get new ideas for my courses. Being Non-Tenure track faculty, with 100% teaching effort, I don’t have grants to fund my travel. So, I depend on my department for support. I was a bit scared to ask, but looking back, I don’t know why. I’m not sure if anyone else fears asking their department for travel funds. I guess I didn’t want to be a burden during tight financial times, but my goal was to go to EB, so asking was one very small step. Just a quick email:

Hi Charlie,

I was wondering if I could go to EB this year to learn from the other physiology educators. Is there money in the department’s budget for travel for me?

-Erin

With an even quicker reply:

Yes indeed.

And that was that! So stinking easy! Goal achieved! ✅

Now, I wouldn’t make a big deal about setting small goals leading to bigger changes, if that was the end of the great things 2022 had to offer. No, that was just the beginning. Going to EB set off what seemed to be a rocket-ship of networking that led to an incredible opportunity. The PrEP-E Fellowship. PrEP-E stands for Preparing Effective Physiology Educators. This incredible fellowship is an APS Professional Skills Training Course. Before going to EB, I didn’t even know it existed, let alone that I was the target audience for the course. As a Lecturer who has not yet been promoted, I am still considered a trainee for our section. I had no idea! So many of the wonderful members of the teaching section encouraged me to apply. I had just met them, and they made me feel like I could do anything! I’m not sure I’ve ever felt so welcomed by so many people in such a short amount of time. I am forever grateful (I’m not crying…I swear).  Anyway, as soon as I got back to Florida, I applied. Then I got the notification a month later that I was awarded the fellowship! I couldn’t believe it! I was so proud. It felt like it all happened so fast! This amazing fellowship connected me with peers who are also at the beginning stages of their careers and building incredible courses all over the country. I was also given a mentor, Dr. Lisa Anderson. She gave me career advice specific to teaching faculty. We discussed my Teaching Philosophy, DEI statements (an interesting thing to navigate in Fl, at the time, and another story all together), and my Tenure and Promotion Packet. We began planning an education research project together. The switch from bench science to education research was a difficult transition for me. I honestly didn’t know where to start. Having a mentor to guide me was comforting. Just knowing that you are supported, and you have someone who understands what you are trying to accomplish, can have a major impact on your work. I am so grateful for Lisa and her mentorship.

Additionally, as part of the PrEP-E course, I attended my first Institute on Teaching and Learning (ITL). It was a wonderfully overwhelming experience. I met more physiology educators with similar goals as mine. We all want to make the learning environment for our students robust, engaging, inclusive and equitable. ITL gave us tools to implement these goals. I used these tools when remodeling my advanced undergraduate level physiology course: Human Physiology in Translation. Dr. Kayon Murray-Johnson gave us tools to consider when focusing on race and equity in the classroom (1). Dr. Katelyn Cooper encouraged us to consider how active learning might affect students of the LGBTQ+ community, or those dealing with depression/anxiety, or who may have learning or physical disabilities (2). Both of these extraordinary women showed me that if I can be more open with my students and show compassion when they need it, they might feel more comfortable in my classroom, and thus be more open to learning. I like to think that I made steps in the right direction this semester. While creating the syllabus, I made sure to include a diversity, equity and inclusion (DEI) statement for the first time. On the first day of class, I took the time to get to know my students and asked what was important to them as members of a team. I used their suggestions to create a Rubric they would use for peer grading. This set the tone for the year. The students wanted an equitable and inclusive classroom, and I assured them I would provide that space for them.

 

In addition to a more inclusive and equitable classroom, I was also inspired by my fellow educators to create a more engaging classroom. For years, my course has been a series of didactic lectures taught by a team of professors from our department in four self-contained modules: Endocrinology, Neural and Muscle Physiology, Cardiovascular and Renal Physiology, and Respiratory and Circadian Rhythms. At the end of each module students took a multiple-choice exam, with these 4 exams being the sole assessments for the year. During the 1st year of COVID (2020), I added discussions as a participation grade, which worked when we were fully online. However, when we went to a hybrid classroom in 2021, students mostly posted responses online, and only a few showed up in person. It seemed like a waste of time for the professors to come and sit in a mostly empty room, while I tried to spark some kind of discussion. It was boring and awkward for everyone involved. I knew I needed to change the set up. I wanted a flipped classroom, I just needed to figure out how to engage students better in person.

At ITL, an abstract titled, “Using the ‘flipped classroom’ to promote equity in undergraduate biology courses,” from Drs. Marisol Lopez and Donika Rakacolli gave me the push I needed. I agree with their assessment that providing content for students to study at their own pace outside of the classroom allows for a more equitable learning environment to reinforce the difficult concepts during class time (3). I knew I wanted to use class time for discussions, and Dr. Lopez gave me advice on how to provide more structure, and to ensure buy-in from the students. I did this by adding “Team Based Learning” quizzes (IRAT and TRAT) for each class (4). This ensured students would come to class prepared, and ready for the questions the professors posed. Additionally, the Rubric the students created included “Commitment to the group by coming to class prepared,” and “Contributing quality information to the group for the TRAT, discussions, and projects.” It worked. We had very robust discussions during class time. I learned more about what interested the students as the semester progressed and asked the professors to think about how their system might affect or be affected by exercise and/or pregnancy and come prepared. This was rewarding for everyone. Some of our professors who normally don’t teach or even think about the physiology of pregnancy, now had to answer very thoughtful questions about how their system might have to adapt. I was excited to come to class knowing that we would be having invigorating discussions about our topics in ways we never had before.

You may have noticed that I mentioned ‘projects’ in reference to the student prepared Rubric. This comes from another abstract that inspired me at ITL, “Clinical and Translational Physiology: Student perceptions of processed based learning to create an authentic learning experience.”(5)  Dr. Joseph Rathner walked me through the work he did in his course, and I couldn’t help but notice how similar our courses were. Much like my Human Physiology in Translation course, Dr. Rathner’s course is divided into modules but instead of relying on exams, quizzes, and participation grades, he assigned team projects in each module. I thought this was the solution I needed to address the lack of diverse assessments in my course. For each module, I gave the students a list of pathophysiology’s to choose from and told them they could present on their chosen topic in any way they wanted: social media, websites, infographics, the sky was the limit. They had to designate an “intended audience,” of their choosing. For example, elderly patients that might be affected, or experts in the field wanting updates on the treatment options. The only requirement was to hit each mark from the provided Rubric. Did they specify the audience, and was their presentation appropriate for said audience? Did they show an understanding of the related physiology and pathophysiology? Was their presentation dynamic and engaging? The final rule was that they couldn’t present in the same way twice. With 8 students in the class, we had 2 groups of 4, Team AVORA and Team Sting. In the first module, Sting gave a power-point lecture, and AVORA designed an infographic. In the second module, Sting gave an abstract presentation for “Research Day at UF” (they made it up), and AVORA gave a power-point presentation and a dramatization (more on that later) to “High School Students.” In the third module, both groups recorded videos. This was a perfect example of how these flexible assignments accommodated my students. Three of my 8 students were exchange students from Spain. During the scheduled presentation, they were going to be out of town. With the flexibility of the assignment, they received full marks of participation, despite not being physically present during the presentation. In the final module the students gave the most dynamic presentations. Because they could not do the same format twice, they needed to get more creative. Team AVORA created an Instagram account @shiftworkdisorders (please follow and smash that like). Team Sting created an entire skit with 2 students playing MDs, and the other 2 playing a young patient being diagnosed with Asthma and her mother. It was fantastic! I am so proud of how they progressed through the semester.

It is later…So, time for more on “Dramatization.” At ITL, I attended a workshop given by Drs. Helena Carvalho, Patricia Halpin, and Elke Scholz-Morris, “Teaching strategies/tools: learning how to use dramatization to teach difficult concepts in physiology.” (6) I loved this workshop! We learned how to think of creative ways to ‘dramatize’ common physiological concepts using the students as the ‘parts’ in the system. For example, in dramatizing the cardiac cycle, each student becomes a part of the heart (SA node, myocyte, etc.) and has to contract and relax to pump ‘blood’ (another student) out of the heart.

 

During the workshop, one group came up with a skit to demonstrate insulin signaling and glucose transport. Another group demonstrated steroid hormone signaling. Our group demonstrated sarcomeric contraction. I used each of these examples in my class. I also created a new way to think of action potentials. It wasn’t as big a dramatization, because with only 8 students, we didn’t have enough people to play each part.  So, I used candy. I created a “membrane” with dry erase markers, and the students stood on either side of the table and, as pairs, acted as either a voltage-gated Na+ ion channel, a voltage-gated K+ ion channel, or the Na/K ATPase. The Na+ and K+ ions were different colored candy. The students went through the phases of the action potential, by moving the different ‘ions’ through their channels. One student said, “I have been taught this so many times, but this is the first time I feel like I actually understand it.” Music to my ears!

With all of the changes I made to this course, I asked one of my students to give me feedback after each module. I wanted to ensure I actually created a robust, inclusive learning environment from the student’s perspective. With this blog coming at the end of the semester, she has graciously agreed to share her feedback with you. The following is a question and answer with my student, Julia Henault.

 

How does this course compare to other courses you have taken?

          This course was completely different from any course I have taken before. While I have taken flipped classrooms before, never have I experienced one as interactive and engaging as this class. Since different chapters of the course were taught by different faculty members, each class discussion came to be a unique experience. We were able to ask the respective professor more personal questions about their field of study and learn the material in a much deeper way than if we just attended a lecture and studied on our own. The fact that there were so few students also created such a collaborative atmosphere. Whether we were acting out a physiological concept or answering quiz questions, we really worked as a team to understand the material.

What was your favorite part of the course? Why?

          While there were so many aspects of the course I really enjoyed, I have to say the dramatization learning activities were the most engaging and memorable. One of my favorite dramatization days was when we were learning about blood flow throughout the heart. Dr. Bruce assigned each of us to heart chambers and connecting valves and we had to figure out ourselves how to correctly assemble in the order of blood flow. When we were ready, Dr. Bruce acted as the blood and moved through our created chambers, coordinated to our “contractions” and directions. These acting activities were my favorite because while they were fun and engaging, they also made me realize gaps in my knowledge I wasn’t aware of. By listening to the lecture on blood flow the day prior, I thought I understood the order of the steps. But acting it out made us think critically. What was stopping the blood from flowing backwards? Why do the ventricles have to contract more forcefully?

We covered a lot of material. What physiological concept do you remember the most? Why?

          I was joking with my parents the other week that my two biggest takeaways from this course are how exercise is one of the best things you could do for your body, and how pregnancy is the craziest. I say this jokingly because in actuality, we dove deep into the physiology of several different body systems, such as respiratory, nervous, cardiac, and muscular. While this information was interesting, I most remember the topics we learned during in-class discussion, where we could go beyond basic physiology and discuss applications, like pregnancy and exercise. These real-life applications are ones that I have never learned about in my other pre-medicine courses, yet I learned such important information that I wish everyone could learn.

What would you improve in the course?

          As I mentioned earlier, the course material was taught by the UF physiology department, which meant different professors taught different material based on their area of expertise. While I loved this format, as it helped me connect with different professors and learn the material in a deeper way, I sometimes felt that the information could have been more cohesive between different professors. In the future, I think this course would benefit by more communication between the professors so they can coordinate their lectures at the same level of depth and difficulty.

Thank you so much, Julia! I sincerely appreciate your feedback, and all of your work this semester.

What I have taken away from Julia’s feedback, as well as my other students, is that the small class size, the dramatizations, and the discussions with professors were the best parts of the course. I could see that my students were comfortable with me, and I felt comfortable with them. Aside from this course, I had a really stressful semester. Coming to this class three days a week was like taking a break from the world and just having fun. I could see the difference our time made in their lives as well. So, when I say, one small goal can lead to bigger changes, this course is my proof. Had I not gone to EB, I would not have applied for, let alone been awarded, the PrEP-E Fellowship or gone to ITL. Without that inspiration, I may not have made the dramatic changes to my course that had such a positive impact on my students. A small pebble can have a wide ripple effect. What will your small goal be this year? I hope you will achieve that goal and see the ripples you will create. Happy New Year!

Resources:

  • Murray-Johnson, K. (2022). “Where do we go from here? Race and equity focused teaching in trying times.” Plenary Lecture and Concurrent Workshop 1.
  • Cooper, K. (2022). “The opportunities and challenges of active learning for student anxiety/depression, LGBTQ+ students and students with disabilities. Plenary Lecture 2.
  • Lopez, M. & Rakacolli, D. (2022). “Using the “flipped classroom” to promote equity in undergraduate biology courses.” Abstract 10.3
  • Sibley, J. & Spiridonoff, S. University of British Columbia faculty of Applied Science; Center for Instructional Support. Team Based Learning Collaborative (2022). “A handout on ‘Why and how TBL works’” org/more-resources
  • Rathner, J., Tay, J.A., Fong, A., Sevigny, C., (2022). “Clinical and translational physiology: Student perception of processed based learning to create an authentic learning experience.” Abstract 19.4
  • Carvalho, H., Halpin, P., Scholz-Morris, E. (2022). “Teaching strategies/tools: learning how to use dramatization to teach difficult concepts in physiology.” Concurrent Workshop 6.
Erin Bruce is a Lecturer at the University of Florida College of Medicine in the Department of Physiology and Aging. She teaches Physiology to Undergraduates, Post-Baccalaureates online, Graduate Students, Medical Students, and Physician Assistant students. Her research interest has moved to Educational Research and looks forward to learning more about the field.
Supporting Student Development of Competencies for Health Professions

Like many undergraduate physiology instructors, most of the students I teach are targeting health professional graduate programs after they graduate.  These future physicians, physician assistants, physical therapists, and occupational therapists are interested in the content of my physiology course, as it is often a prerequisite for their applications.  However, in addition to the content of my course, I seek to develop and observe several core competencies that extend beyond subject matter knowledge.  Various health professional organizations have identified a range of competencies they seek in applicants, and most centralized application services ask recommenders to address students’ level of attainment of these competencies.

 

One resource that I have found valuable is the Anatomy of an Applicant guide from the Association of American Medical Colleges which includes the 15 Core Competencies for Entering Medical Students.  These competencies are endorsed by the AAMC Group on Student Affairs (GSA) Committee on Admissions (COA) and help communicate the standards expected of all applicants accepted into medical school.

The competencies are organized into three categories:

Preprofessional Competencies: service orientation, social skills, cultural competence, teamwork, oral communication, ethical responsibility to self and others, reliability and dependability, resilience and adaptability, and capacity for improvement.

Thinking and Reasoning Competencies: critical thinking, quantitative reasoning, scientific inquiry, and written communication.

Science Competencies: living systems and human behavior.

While a physiology course can obviously address science and thinking and reasoning competencies, there are also other opportunities to develop preprofessional competencies in class.  By designing in-class activities in groups, I am able to observe students’ teamwork and oral communication skills.  Oral exams, a technique I employ in my classes also allows me to observe oral communication skills.  Cultural competency can be developed through emphasizing an inclusive classroom and incorporating diverse perspectives into the content included.

Not all of my students are targeting medical school, but there are similar competencies identified in other professions including physician assistant, physical therapy, and across multiple health professions.  In fact, these overlapping competencies can be used as ways to connect students that are pursuing different career paths and highlight the similarities across professions.

One of the challenges of non-science competencies is how to evaluate a students’ achievement.  We are all familiar with standardized exams that can assess the level of science knowledge, or thinking and reasoning capabilities.  Less well-known and discussed are the emerging ways in which other competencies are assessed.  Several programs now require applicants to take the CASPer exam, an open-response situational judgement test.  According to CASPer, the exam assesses: collaboration, communication, empathy, equity, ethics, motivation, problem solving, professionalism, resilience, and self-awareness.  Research has shown predictive validity of CASPer scores and national licensure outcomes which likely supports the increased use of this noncognitive assessment in the application process.  In addition to standardized exams that can be used in application processes, it may be of interest to physiology educators to be aware of assessment tools for specific competencies such as cultural competence and resilience.

Whether one is formally assessing the desired competencies or informally observing them in the classroom and/or laboratory, it is clear that there will continue to be an increased interest in students’ capabilities beyond simply their scientific knowledge.  As educators, it is important to try to support student development in these areas in our classrooms and design activities with this goal in mind.

 

Anne R Crecelius, Associate Professor, University of Dayton

She teaches Human Physiology and a Capstone Research course. She returned to her undergraduate alma mater to join the faculty after completing her M.S. and Ph.D. studying Cardiovascular Physiology at Colorado State University. Her research interest in in the integrative control of blood flow. She is a member of the American Physiological Society (APS) and an inaugural member of the advisory board of the newly established Center for Physiology Education.

Letter to my trainee-self: translating my research from the bench to…classroom?

I love to read quotes by Greek philosophers. They were wise individuals and did not have access to immediate “knowledge” as we do today thanks to available technologies. After all, the internet would not be created for thousands of years later. What this did afford them the opportunity to do is to engage in what we call critical thinking. It is all they did! Today, their quotes help to keep me grounded; my favorites are the quotes attributed to Aristotle. Aristotle was a scientist, a biologist, an intellectual, and a philosopher, just like us! Yes, it is hard to consider ourselves “philosophers.” However, we are — and among those of us with a Philosophy Doctorate (Ph.D.) represent  2% of the population in the United States (less than 1% worldwide) (OECD, 2021). Earning our doctoral degrees required years, sweat and tears working through graduate training. Most of us have spent countless hours conducting research, analyzing, and interpreting data; our contributions to the field of study are meaningful and novel.

We know a lot of things, so any recent graduate should be ready to land their dream job and hit the ground running, right? Unfortunately, for most trainees this is not the case. The bottom line is that our training did not prepare us for the job, at least not fully prepare for it. In most of the classical doctoral programs in the U.S. you will be trained to be a great research scientist. Chances are you will be teaching, managing lab personnel, and juggling with grant budgets, without any training in pedagogy, human resources, or accounting, respectively. So, how are we supposed to be successful? I wish somebody had told me these things when I was a trainee! I can’t change the past, and I have learned a lot since I was a trainee, so here I am listing some of my learned lessons, using Aristotle’s words of wisdom. This could have helped my younger self, and I am writing this with the hope that my experience helps other young scientists beginning their careers in academia.

The more you know, the less you know

Aristotle was right about this one! The more immersed in your research you are, the more you realize you are missing information. That is, the beauty of research, it never ends, we never know all the answers or mechanisms. No matter what research you are conducting, you are the absolute expert on your study. It is very specific to that one population, system, enzyme, or molecule. Chances are that your first job involves teaching, in some cases a lot of teaching, and it can be intimidating.

Unfortunately, like most of faculty in biomedical sciences, my doctoral studies in physiology didn’t include pedagogy or evidence-based practices in teaching. Yet, most of us are expected to teach high quality courses with large enrollment and be proficient at it. I knew I had a lot to learn, and I wanted to create my identity as an instructor, but I didn’t know how. I had this feeling that I knew a lot of “stuff” about my research and how it could be translated into clinical practice, but not much about teaching physiology!

I dedicated, and I still dedicate long hours and effort to become the best professor I could be, in the classroom, in the lab and in the community. Thankfully, there are resources for you to implement the best evidence-based practices in your classroom:

1-           Join the Teaching section of your professional association. In my case, The American Physiological Society Teaching Section has been my main source of information and training in teaching physiology. “The American Physiological Society Teaching Section promotes excellence in physiology education through educational research and scholarship in physiology.” Most people join other sections because it closely aligns with their research interests. However, you can make the teaching section your secondary or tertiary section and be able to access all of the benefits in training, workshops, mentoring, and generous awards for trainees, early and mid-career, and senior professionals!

2-           Consider attending conferences dedicated to teaching. In my case, attending the APS Institute on Teaching and Learning allowed me to become a better classroom instructor, which changed the trajectory of my career, as I was exposed for the first time to the possibility of conducting research in teaching physiology. Not only did I learn a lot, but also I was able to learn how to incorporate research in teaching into my workplan, increasing productivity and career satisfaction.

3-           Join the newly created Center for Physiology Education. The center was developed with input from more than 500 educators in the field, and it is structured around five interconnected themes: evidence-based teaching practices, inclusive teaching, teaching, and learning integrative physiology, physiology education research and curriculum development.  Together, these components provide a comprehensive approach to advancing physiology education and learning.

4-           Attend as many workshops on teaching as you can! At the University of Louisville, we are fortunate to have UofL Delphi Center for Teaching and Learning, many institutions have similar centers or support for teaching faculty, find yours and attend every workshop possible!

5-           Participate in professional development opportunities for mentoring, depending at what point of your career you are, you can participate as either as a mentee or a mentor, you will be gaining invaluable experience that can be easily transferred to your students in class or research students and trainees in your lab. In my case, I learned a lot about teaching and my mentoring style as a mentor of the Teaching Experiences for Bioscience Educators Fellows and Mentors.

“Those who know, do. Those who understand, teach.”

This is another quote attributed to Aristotle that relates to my teaching philosophy. You can “do” by giving a lecture, or you can teach using critical thinking. In order to teach you have to fully understand the concept, of course! But also, you have to understand the environment, your classroom, department, college and university cultures. To teach, you need to know your students. Not at a personal level necessarily, but understanding the idiosyncrasy of your class is going to be the key for success. Expectations for a class with non-traditional students will be very different than with traditional 18-year-old first year students. You always must know your audience, and how to engage diverse students. You will also learn about your students and community if you are out and engaged. Be out in the community, help or organize science fairs or outreach programs to local schools. Be engaged in your community, this will make you a better teacher too!

To facilitate critical thinking, use data or applied problems. For instance, consider using real life cases to teach mechanisms! After teaching thousands of students, I realized that learning happens by doing, by experimenting, by solving problems. When I teach physiology, I want my students to remember the previously learned system, and the interrelationships among systems. There is nothing better than the work of more seasoned colleagues! The national center for case study teaching in science, now part of the national science teaching association provides thousands of case studies and assignments with the keys and rubrics, that have been previously peer-reviewed with a high level of scrutiny.

Even if teaching is not the core of your identity as a scientist, chances are that at some point you will be teaching trainees, the community, or potential investors, you need to learn how to engage students. Mentoring workshops are very helpful to find your mentoring styles and how to manage your research team. I am going to end this blog with one of my favorite quotes “Excellence is never an accident. It is always the result of high intention, sincere effort, and intelligent execution; it represents the wise choice of many alternatives – choice, not chance, determines your destiny.”

1-           OECD. (2021). Educational attainment of 25-64 year-olds (2020).

Dr. Terson de Paleville teaches Advanced Exercise Physiology, Neuromuscular Exercise Physiology, and Human Physiology courses. Her research interests include motor control and exercise-induced neuroplasticity. In particular, Dr. Terson de Paleville has investigated the effects of activity-based therapy on respiratory muscles, trunk motor control and autonomic function in people with chronic spinal cord injury. Additionally, Dr. Terson de Paleville investigate the effectiveness of team-based active learning in physiology courses.

Daniela Terson de Paleville, PhD

Associate Professor

University of Louisville

Incorporating Conference-Based Assignments into Coursework

Attending professional conferences is an excellent opportunity for students to network, learn, and gain a greater understanding of how science works. Undergraduate students often attend conferences because they are presenting their work; however, attendance at professional conferences even if not presenting can open a variety of opportunities for students (Gopalan et al., 2018). Potential benefits of participation include content knowledge or application gains, exposure to different ideas, better understanding of how different areas of a field integrate, networking building, career exploration, and practice with professional interactions.

 

Prior to attending the conference, instructors should consider preparing students for attendance. Instructors should explain the purpose of professional conferences, highlighting the importance of the exchange of ideas and building professional networks. First time undergraduate attendees, especially, may be unsure of what to expect and how to interact with others professionally. Just as faculty mentors would practice with student presenters, practicing with and mentoring non-presenting student attendees can optimize the student conference experience. Holding a pre-conference information session with students will help them be prepared and make the most of their experience. Informational session topics can include: how to ask questions, talking to poster presenters, what to expect from grad school admissions tables, how to earn continuing education credits, developing or revising a resume to have on hand, identifying presenters in attendance to connect with, and creating a conference schedule. Additionally, instructors can help students create and practice an “elevator pitch” to describe their work and professional goals (Das & Spring, 2022). Das and Spring (2022) recommend students set goals for the conference in advance so their time at the meeting is intentional. In addition to pre-conference instruction and conference-based assignments, a general follow up with students after the conference can provide insight into what students learned, what challenges they encountered, and what they found interesting. Student insight can be helpful in planning for future meetings.

 

Incorporating conference attendance into a course can significantly add to the student course experience. Using conferences to augment a course is a great opportunity to help students integrate course content with development of professional and communication skills. What follows is a list of potential assignments instructors might consider to encourage student participation in conferences. Many of the suggestions below would work well for in person or virtual conferences. The assignments can be implemented for any type of conference; however, encouraging students to attend smaller, regional conferences first is an excellent way to prepare them for larger, national and international conferences. Conference- based assignments could be evaluated for credit, extra credit, or as an additional demonstration of engagement or understanding.

 

 

  1. Make a spotlight box, similar to one you would find in your textbook, about one of the conference presentations. Include background context, important points from the speaker’s talk, and practical applications. Add relevant figures or graphs from other research papers or the speaker’s presentation to frame the spotlight and make it visually appealing to the reader. Be sure to cite your sources.
  2. Make a short YouTube video that summarizes the general topic presented by one speaker. After summarizing the broader content area, highlight information from the speaker’s presentation. Feel free to be creative- present it as a news story or host a debate with fellow classmates! (Heffernan, 2020)
  3. Design a proposal for a talk for next year’s meeting. Choose an area of exercise science you are interested in learning more about. Describe 3-5 learning objectives of the presentation and identify 3 experts in the field who would serve as your speakers. (Heffernan, 2020)
  4. Tell a young child about what you learned at the conference. Choose one of the keynote speakers’ presentations and make a short children’s story about the topic. Make the content fun and easy to understand. Include illustrations which help kids visualize the ideas you present.
  5. Watch/read 3 poster presentations. For each one, summarize the presentation. What are the strengths and limitations of each study? What would you do differently if you were the researcher? Why? What would your next study be and why? (Heffernan, 2020)
  6. Take visual notes on one of the presentations you watch. Your goal is to make your notes about the content visually appealing and make connections between ideas. Because you are connecting ideas, the notes do not need to be in top to bottom order, but organized according to themes. Include questions asked by the audience members and the speaker responses in your notes. (Google “visual note taking” for some cool ideas and pictures).
  7. Write a 2 page scientific summary of a presentation, locate 2-3 peer reviewed resources (preferably by the speaker) related to the talk and infuse them into the summary. (Heffernan, 2020)
  8. Make an infographic (Try programs like Canva, for example) about one of the presentations- include the main points, supporting evidence, conclusions, and practical applications. Be sure the infographic includes figures, is easy to read, and is visually appealing.
  9. Write a poem or song about one of the presentations. For example, write a series of haiku or use a rhyming scheme in a poem. Put your own song lyrics about the talk or content area to the music of another song or use refrains/verses to your own lyrics. For example: “you’re a vein” to “You’re so vain”.
  10. Create a movie trailer (iMovie works great and has pre-made templates) about one of the talks. Use open access videos and pictures from the internet in the movie or make your own with 2-3 classmates (groups of 4 or less). Include info about the presentation as if you were publicizing the talk. Be sure to include the main ideas or conclusions and relevant contextual information.
  11. Ask one or more of the speakers about their career path(s). Write up a 1-page summary of their responses to the following questions. How did they get to where they are? Did their path change and how? Did their interests change as they moved through their careers and if so, why? Was it different or the same as what they expected at your stage in your career? Why is it important to recognize our paths might take different directions than expected?
  12. Create a “BINGO” style card or scavenger hunt to encourage students to communicate with people or investigate different aspects of the conference. (Gopalan et al., 2018)
  13. Use twitter to react to the presentation. Tweet key points from the talk. Tag the speaker or use the conference hashtags in your tweet. (Heffernan, 2020)
  14. Write a short reflection, 1-2 pages, on what you learned about HOW science works. You may want to think about the following: What is the purpose of a conference like the one you attended? How do different presentation types advance research in the field or clinical practice? Why is dissemination of research important?
  15. After learning about different areas of research, what might you be interested in researching? What new ideas were sparked for you from the presentations you attended?

Professional conference attendance is an important opportunity for presenting and non-presenting students. Conference attendance can easily be integrated into various courses from introductory level courses which may encourage students to develop research later in their college careers to upper-level students who may be interested in building professional networks for graduate or professional school. Conference-based assignments are useful ways for instructors to integrate course content, professional development, and conference attendance into their courses.

References

Das, B., & Spring, K. (2022, September 22). 11 Tips for Instructors Bringing Students to ACSM Regional Chapter Meetings. ACSM_CMS. https://www.acsm.org/home/featured-blogs—homepage

Gopalan, C., Halpin, P. A., & Johnson, K. M. S. (2018). Benefits and logistics of nonpresenting undergraduate students attending a professional scientific meeting. Advances in Physiology Education, 42(1), 68–74. https://doi.org/10.1152/advan.00091.2017

Heffernan, K. (2020). MARC in the Classroom. https://www.acsm.org/docs/default-source/regional-chapter-individual-folders/mid-atlantic/marc-acsm_integrating-into-classroom.pdf?sfvrsn=503ff16e_0

Dr. Mary Stenson earned her B.S. in Biology from Niagara University and her M.S. and Ph.D. in Exercise Physiology from Springfield College. She is an Associate Professor of Exercise and Rehabilitation Science at the University of Minnesota Duluth. Dr. Stenson teaches exercise physiology, metabolism, and nutrition. Her research focuses on recovery from exercise and improving the health of college students. Dr. Stenson mentors undergraduate research students each year and considers teaching and mentoring the most important and fulfilling parts of her work.
Dramatization: The Marriage of Theater and the Teaching of Physiology

This blog tells a little bit of my personal history as an educator: from a typical boring lecturer to an extroverted educator who has tons of fun playing drama in the classroom with students.

But first let me wonder: wouldn’t it be great if we teach, and our students learned well and far beyond the exams?

What to do when students’ attendance is not required, like most medical schools, and regardless of the time we spend preparing the session only a few students attend it. Or when attendance is required, like in many undergraduate courses, students struggle and only learn enough to pass the exam. Many of us experience frustration.

It is not fun when we invest so much time in preparing to teach, but the students are overwhelmed with too much content, become so consumed with the exams, and end up relying on memorization that many times only works until the exams.

This was especially true in my early experience with teaching. I was a very traditional lecturer with a clear teacher-centered mind. One year I had to substitute for a colleague and taught the pre-requisite course (cell biology) to my class (physiology). I enjoyed teaching them and the students did well with 100% approval.

When I met the same class in the subsequent semester, I started by telling them that the physiology course would be much easier since I knew that they were taught (by me!) all they needed to know in the pre-requisite course. My naïve belief was that because they were taught, the students would have learned and would not have forgotten. I was confident they were all ready to dig deep into physiology. To my dismay and complete frustration, I realized the students did not remember what I taught them when I had them in my class just a few months before. I started doubting my abilities as a teacher and blamed myself for passing those students. I oscillated between feeling depressed and ashamed.

Who in heaven let me teach them!!!

I guess due to my scientific training, I looked for help in the literature and discovered the journal Advances in Physiology Education. Reading papers about research in education, I realized that something was wrong with the method of teaching most of us use. Lecturing and pushing a massive amount of information at the students makes it difficult for them to learn and remember. I wasn’t the only professor whose students didn’t remember what was taught. Richardson (1) showed that naïve students without prior physiology instruction scored the same as students who had learned physiology before.

All students benefit from some fun in their classroom. When we smile, nerves send signals to the brain, releasing neurotransmitters such as dopamine, endorphins, and serotonin into the bloodstream. Dopamine is the main neurotransmitter in the regulation of motivational processes. It drives us to achieve goals.

Thanks to Advances, the readings opened my mind to explore all forms of learning and teaching – visual, audiovisual, reading, and kinesthetic. Back in 2002, at Unigranrio Medical School in Brazil, the students would come to me struggling to understand action potential and cardiac cycle. The next thing I saw was, that I get them to lift their arms to demonstrate depolarization and step forward to contract the cardiac muscle cell. All of this would happen spontaneously in the corridors and university halls with me telling them to imagine “the depolarization goes from cell to cell, and the electrical signal precedes the mechanical event”. Then with the help of very dear students, DRAMATIZATION was born as a method of teaching that is fun for the students (and teachers) and allows students to better learn new and complicated concepts.

Learning must be fun (2), and we teachers should love teaching. To enjoy teaching we need to create an exciting and relaxed environment for our students. Dramatization is the perfect way to teach while having fun in the classroom. Each participant acts as a cell/structure, and the entire group mimics the organ/system. In this very interactive and engaging activity, every mistake is a learning opportunity (3).

I have been having an extremely positive experience with Dramatization while doing it for two decades. From my first student in 2002, who contacted me years later, to tell me he became a cardiologist due to having fun with cardiac cycle dramatization, from physiology educators who attended my workshop (4) in 2017 at IUPS in Buzios (Brazil), to ITL this year in Madison, WI just to cite a few. Every time I teach other faculty how to do Dramatization, it is a rewarding experience that fills me with the hope that I am contributing as an educator to a better physiology education for a broad learner community.

Art in general is part of our lives, and theater can and should be used for the training of future health professionals. When we think about theater and science education, an aspect that must be considered is the importance of interpersonal relationships between teachers and students. A good interpersonal relationship can contribute as another motivating factor for the fixation on knowledge. A relaxed atmosphere in which humor is present brings the parties involved in the learning process closer together, thus creating an even more favorable space for the process of acquiring knowledge at the same time as creating a moment of relaxation from the usual state of tension experienced by our students. The students might forget what you said, but they will remember what they did.

When students experience this innovative learning modality, it not only promotes retention of information, but it also stimulates a highly engaged class participation. Such an environment favors bonds among classmates and reinforces interrelational intelligence, an invaluable skill for the work of health professionals.

When I first published dramatization, I not even use this name (5).  Then I presented it for medical students at VTCSOM, and one of my students got inspired and developed his own dramatization of the Starling forces (6). Also, very rewarding is to see faculty who attended my workshop, get to develop, and publish their own original dramatizations (7).

I hope you are inspired to try something new in your classroom. If you need data to be convinced how well Dramatization works, the graphs below show the scores of a class of VTCSOM 1st year medical students before doing it (pre-test); for the students who watched it but elected not to actively participate in it (post don’t act); and the students who acted in it (post drama). In summary, simply watching peers doing dramatization already helps to learn, but when the student actively participate in it, they learned even more.

 

 

Next blog I will tell you all about an exciting new project: DramaZoom (8, 9). The lockdown during COVID stimulated us to develop dramatization via Zoom. In collaboration with two physiologists who participated in my workshops before, Patricia Halpin and Elke
Scholz-Morris, we created videos that use dramatization to teach online. Also, Daniel Contaifer Jr designed the background, and Rosa de Carvalho taught us how to do the mimics and facial expressions in DramaZoom.

So, if you want more information on how to bring drama to the classroom, please contact us and let us know how it goes. Finally, if you publish it please cite us, and let’s spread the fun!

Happy teaching

helena@vt.edu

References:

  1. Richardson DR. Comparison of naive and experienced students of elementary physiology on performance in an advanced course. Adv Physiol Educ. 2000 Jun;23(1):91-5. doi: 10.1152/advances.2000.23.1.S91. PMID: 10902532.
  2. DiCarlo SE. Too much content, not enough thinking, and too little fun! Adv Physiol Educ. 2009 Dec;33(4):257-64. doi: 10.1152/advan.00075.2009. PMID: 19948670.
  3. Carvalho, H., McCandless, M. J., 23rd Annual IAMSE meeting, “Dramatization Promotes Learning and Engages Students,” IAMSE, Roanoke (June 11, 2019).
  4. Carvalho, H., IUPS & ADInstruments Teaching Workshop, “The Use of Dramatization to Teach Physiology,” IUPS, Armação de Buzios – Rio de Janeiro, Brazil (August 7, 2017). Additional Information: Start Date: August 2017.
  5. Carvalho H. A group dynamic activity for learning the cardiac cycle and action potential. Adv Physiol Educ. 2011 Sep;35(3):312-3. doi: 10.1152/advan.00128.2010. PMID: 21908842.
  6. Connor, B., Carvalho, H. (2019, August). Using dramatization to teach Starling Forces in the microcirculation for first year medical students. 2019;15:10842.https://doi.org/10.15766/mep_2374-8265.10842.
  7. Halpin PA, Gopalan C. Using dramatizations to teach cell signaling enhances learning and improves students’ confidence in the concept. Adv Physiol Educ. 2021 Mar 1;45(1):89-94. doi: 10.1152/advan.00177.2020. PMID: 33529141.
  8. Carvalho H, Halpin PA, Scholz-Morris E (2022). Dramatization via Zoom to Teach Complex Concepts in Physiology FASEBJ 36:S1. https://doi.org/10.1096/fasebj.2022.36.S1.R2956
  9. Carvalho H, Halpin P, Scholtz-Morris E and de Carvalho R (October 28, 2021). Can We Teach Using Dramatization via Zoom? Teach Excellence Academy for Collaborative Healthcare, Teach Education Day Poster Presentations via zoom. Virginia Tech Carillion School of Medicine.
Helena Carvalho is an educator with more than 20 years of experience. She is an associate professor at Virginia Tech Carilion School of Medicine, Block Director for basic sciences, a PBL facilitator, and teaches several areas in human physiology for medical and Ph.D. students. The main focus of her educational research is to develop innovative teaching methodologies such as Dramatization, DramaZoom, and Manipulatives. She also enjoys outreach and has been sharing excitement about physiology with all levels of education including middle and high school.

 

Rosa de Carvalho is a theater/drama director, actress and teaches mimicking and acting to children and adults for 25 years.  She has specialization in psych pedagogy and has used her talents to empower low-income communities in Rio de Janeiro (Brazil). Her has an incredibly creative mind and uses theater to improve all levels of education and human relationship. Her contribution to education span from elementary school to college level.

Still looking for an ethical way to assess “lifelong learning”

Medical school accreditation process requires that institutions document that medical students develop the skills for “lifelong learning”.  As other standards of the section require that you answer precisely the question that is asked, I found this topic particularly challenging.  “Lifelong” requires that the assessment occurs at the end of life.   Otherwise, you may have been a learner for three-quarters of your life, and this is not lifelong.  One option would be to assess learning capability and then immediately “dispatch” the individual, providing a data point that indeed reflects lifelong learning.  Even as my caffeine titers swing wildly from under- to over-caffeinated, this approach seems unlikely to pass the Institutional Review Board.  In fact, submission of the application may result in my developing a close relationship with individuals with behavioral clinical expertise.

When reaching an impasse, return to the original question. Revisiting the Liaison Committee on Medical Education (LCME) element # 6.3, the title is actually “Self-Directed and Lifelong Learning”.  So, there may be an opening – focus instead on Self-Directed Learning.  The accreditation documents helpfully provide an expanded description

“The faculty of a medical school ensure that the medical curriculum includes self-directed learning experiences that allow medical students to develop the skills of lifelong learning. Self-directed learning involves medical students’ self-assessment of learning needs; independent identification, analysis, and synthesis of relevant information; appraisal of the credibility of information sources; and feedback on these skills from faculty and/or staff.”

Part of the quandary is rooted in the shift of professional education from information acquisition to the development of competencies.  Competencies are much better aligned with professional behaviors, and include aspects of knowledge, skills, and attitudes.  Among the competency domain buckets, self-directed learning is more appropriately identified as a skill and an attitude.

Conversation with a friend (pre-pandemic) indicated that a transposition of the phrase would be useful, and that “directed self-learning” is a more appropriate goal for professional school.  Each institution has a desired set of learning outcomes – the curriculum for the faculty must guide the students so that the skill of independent learning focuses on the knowledge content that must be learned.

The first component in the LCME expanded definition of the element is “…self-assessment of learning needs.”  Assessing this is a challenge – if a learner does identify a gap, you as the facilitator can check off that box.  More challenging is a situation when you recognize a learning need and the learner does not.  To get to check off that box, you have to use open-ended questions to probe the learner’s current state of awareness and lead them on a voyage of self-discovery.  It is indeed a challenge, but the ability to self-identify gaps is an essential characteristic of a professional.  While the journey is a challenge, the creation of the list of learning objectives as an outcome is nice, tangible, and easy to assess.

The second component is more straight-forward “…independent identification, analysis, and synthesis of relevant information.”  Finally, I get to return to my comfort zone – information.   Acquiring information as proof that you know how to acquire information is one logical outcome that is easy to assess.  Assessment of the ability to synthesize that information with other relevant information gets more obscure, and ultimately requires a value judgment.  Overall, still doable.

The third component is “appraisal of the credibility of information sources”.   After establishing a few boundaries (such as “Cite Wikipedia and I will hold you up for public shaming”), learners progressively master when to use texts, professional society position papers, clinical research studies and meta-analyses to obtain the appropriate type and depth of information.  That box is checked.

The concluding component “feedback on these skills”, returns the focus to assessment.   To document this, you have to do an assessment on assessment, or a meta-assessment.  And as evidence both that knowledge alone is not enough and that the ability to appraise the credibility of sources is needed, a Bing search produced over 1 billion web hits for the term “meta-assessment”.  Google Scholar was a little more selective returning only 1,290 results.  None of which I intend to read.

We now live in a world where knowledge gaps are no longer perceived as a problem.  For example, what if I wanted to go to Vermillion South Dakota and did not know how to get there?  The knowledge gap is unimportant as long as I know a successful strategy to remedy that gap.  Apple maps now becomes my new best friend.  Even in 2022, knowledge does still matter.  A keyboarding or spelling error can send (and has sent) travelers in interesting directions.  An individual needs to realize when they are headed in the wrong direction.

So, the “lifelong” adjective remains a non-starter in terms of assessment.  Directed self-learning, however, is a needed goal as we prepare professionals for the challenges that await them.

 

Robert G. Carroll earned his Ph.D. in 1981 from the Graduate School of Biomedical Sciences of the University of Medicine and Dentistry of New Jersey-Newark. Following a 3 year post-doc at University of Mississippi Medical Center in Jackson, he moved to East Carolina University in 1984 as an Assistant Professor of Physiology. He is currently Professor of Physiology at the Brody School of Medicine at East Carolina University and the Associate Dean for Medical Education.

Rob is the past chair the Education Committee for the American Physiological Society, and currently chairs the Education Committee of the International Union of Physiological Sciences. He was editor of the journal “Advances in Physiology Education” from 2008-2013.

Robert G. Carroll, PhD.

Professor of Physiology

Associate Dean for Medical Student Education

Brody School of Medicine at East Carolina University

Greenville NC USA

Do Animals & Aliens belong in a Human Physiology course?

As a human physiology instructor, one of the most frequent comments I get from students is about how hard the course is. In fact, I have started to bring this up right at the beginning of the semester and offer my students many ways to overcome the challenges, including keeping up with the reading and the homework, coming to office hours with questions, forming study groups, etc… There are several reasons why the students struggle with the physiology course. Physiology can be hard for students due to the amount of material and the nature of the subject which requires integrating knowledge from other fields such as anatomy, biochemistry, cell biology, physics, and chemistry. There is also a lot of heterogeneity among the students learning human physiology. They may be biology majors taking physiology as an elective, or those who are preparing for a career in a health profession, and they may be coming from different backgrounds with varying levels of preparation. Some students may start the course with basic biology knowledge and some pre-conceived notions that may even hinder their ability to learn the intricacies of human physiology.

There is a belief among many physiology students that since there is a lot of factual detail then memorization is the way to go. This inevitably leads to memorization fatigue, and confusion when seemingly contradictory material is encountered. Instead of focusing on the overwhelming number of details, a better strategy would be to focus on common themes or core concepts that once learned will allow the formation of a strong foundation. When the students learn core concepts, they do not need to learn all the details of all the systems, just the common themes and this reduces the cognitive load. By having to remember fewer items, the students can work on learning as opposed to memorizing. Focusing on core concepts allows the students to transfer their learning from one body system to another with an understanding of the basics. Core concepts provide a way to raise the level of knowledge of the students, so that long after they have completed the course, they can continue to learn physiology even if they do not remember all the details.

Michael & McFarland (2011) have compiled a list of 15 physiology core concepts based on physiology faculty surveys that describe the most important parts of teaching physiology. It is clear from Michael et al. (2017) that these core concepts are ‘general models’ as they are widely applicable in most areas of physiology. Some of these core concepts include homeostasis, cell membrane, cell-cell communication, flow-down gradients, and interdependence and provide an excellent framework for the teaching of physiology.

The wide applicability of core concepts allows the instructor to generate models involving animals as well as hypothetical aliens. It may be reasonable to assume that learning core concepts will then enable the students to answer questions and solve problems involving animals and aliens. There are some really good reasons for the use of animal and alien models for teaching core concepts as well as for assessment. The use of animals & aliens in teaching and assessment removes any preconceived notions about how the human body works and can hone in on the most important facets of the concepts that we want the students to learn. Animal & alien models in assessment can be an excellent way to test for comprehension of concepts and the ability to transfer the learning from the known system to a novel scenario.

Problem sets with animals & aliens can be used in teaching as well as assessment. Courses on animal physiology or comparative physiology can shine a spotlight on the common themes between animals and humans. Animal models are routinely used in research to study human diseases as well as to test interventions. Teaching modules that incorporate animal physiology like the one from HHMI Biointeractive on dinosaurs’ ability to maintain their body temperature can engage the students to apply principles of physiology to understanding how dinosaurs were able to regulate their body temperature. Tools like the Fictional Animal project (Batch et al. 2017) help students in their systems thinking to identify the most important physiological models to integrate the various body systems and in addition to understanding the interactions between an animal and its environment.

With the increased interest in space exploration and human travel to moon and Mars, physiology questions on aliens can help us learn more about human physiology and how we might adapt to space. Research on extraordinary life forms at the bottom of the oceans and hydrothermal vents that provide us with more ways to imagine life in space while emphasizing similarities with human physiology. Most importantly, bringing animals, fictional or real, and aliens into the classroom can increase student engagement and impact learning and transfer of knowledge.

One way to use non-human examples is by using the framework of Test Question Templates (TQTs; Crowther et al. 2020), in which clearly articulated Learning Objectives (LO) are used to generate questions. Every TQTs based on an LO can be used to create multiple questions, thus reducing the possibility of memorizing answers. The use of TQTs can result in questions that assess student understanding and application of core concepts, expecting students to use higher levels of Bloom’s taxonomy. (Casagrand & Semsar, 2017). The consistent use of TQTs can build an appreciation of physiology concepts leading to better preparation for patient care and real-life medical scenarios.

The appeal of TQTs for students, in addition to learning concepts as opposed to facts, is also that they can envision what questions can be asked based on an LO. TQTs can be used in class as models for generating questions in which the students can also participate. As instructors, we like it when our students answer questions, but it is even better when they ask the questions. So, does it matter to a pre-health student whether a dinosaur was endothermic or ectothermic? And the answer to that is if it helps the student understand how temperature regulation works, it certainly does.

References:

Batch, S.A., et al. 2017 Adv Physiol Educ. 41:2 https://doi.org/10.1152/advan.00159.2016

Casagrand, K. and Semsar, J. (2017). Adv in Physiol Educ. 41: 170-177. 10.1152/advan.00102.2016

Crowther, G. J. et al. (2020). HAPS Educator 24(1):74-81. https://doi.org/10.21692/haps.2020.006

Michael, J. and J. McFarland (2020). Advances in Physiology Education 44: 752-762. https://doi.org/10.1152/advan.00114.2020.

Michael, J. & McFarland, J. (2011) https://doi.org/10.1152/advan.00004.2011

Usha Sankar Ph.D. is a Sr. Lecturer at Fordham University, Bronx, NY and has been teaching human physiology for over 10 years. Usha is very interested in bridging the gap between teaching and learning and is looking to improve her own physiology teaching as she believes learning about the inner workings of the human body is the most fun thing anyone can do. Usha is also involved in conducting air quality research and collaborating with young scholars from middle and high schools about air quality, health impacts, and climate change research. This research combines all her interests including human health, education, and climate change.

Usha Sankar Ph.D.

Senior Lecturer

Dept. of Biological Sciences

Fordham University

441 E Fordham Rd

Bronx, NY 10458

Impactful activities to create a framework to support team-based activities

While the recent pandemic has forced a number of rapid reforms in learning and teaching, the need to rethink how we learn and teach at the tertiary level began well before that. This has been exemplified by increasing interest in topics such as flipped classrooms, authentic assessments, and students as co-contributors. Although one might argue that the idea of flipped classroom is not new, there has been a growing push to create authentic learning experiences and authentic assessments to better prepare our graduates for the next stage of their careers – be it further professional education or employment. To work towards this goal our department recently restructured our final-year physiology courses to create an environment that empowers students to be agents of their own learning. We believe that over their lifetimes of their degrees, the students should transition from learning through knowledge transfer to self-guided agents in their own learning to promote lifelong learning. To achieve this aim, our assessments were restructured to shift the focus and emphasis from tests and exams, to more authentic assessment tasks. Here we will share an example of one such assessment and the guides we provide to help the students succeed.

In one subject Physiology: Adapting to Challenges, the students are required to work in a team on a project to be presented in a mini-student conference at the end of the semester, to mimic a scientific conference. While a team presentation might not be a truly novel idea, a few factors that we have included in the project design make it distinctive from other similar assessments.

In the early years we were concerned that students would shy away from the team project aspect of the subject. We, like many of our colleagues, thought that the students would detest the prospect of group work and thus be put off by a group project as was observed in a study at another Australian University (White et al. 2007). However, when we surveyed our second- and third-year Physiology students, it was interesting to find that approximately 75% of respondents in both second- and third-year preferred working in groups rather than individually, and the majority of the students understand the importance of acquiring teamwork skills. Many raised concerns about working in a group from prior negative experiences, similar to concerns raised in a previous blog post here. This led us to come up with ways to support the students’ success in this team project. Here we will share some of the lessons we have learned along the way.

1) Broad topics with multiple possible directions

The students were presented with a number of broad research topics or questions of physiology, examples of topics include “Tips and tricks to aging well.” Or “Stress: is it always bad?”. While at first these topics might seem like ‘bad’ topics as they do not appear to provide any research direction, this apparent flaw is also the beauty of this design, as the ‘vagueness’ of the topic gives the student groups flexibility and scope to develop and identify their own common interests within the broad field of physiology and is one of the unique aspects of this assessment. As the starting point covers a broad range of potential directions, the team must arrive at a consensus on the ultimate and final direction of the project. This freedom was an intentional design to give students agency and choice in their project. While some teams do find this lack of direction challenging, the majority of the feedback from the students was positive, with 85% of the respondents in an end of semester survey enjoying the flexibility this provides. In fact, some students stated that they have never experienced this type of freedom in taking their learning into their own hands in their university degree and felt empowered by this option. The feedback from academics who help review these presentations was overwhelmingly positive and we have been consistently impressed by the quality and depth of work produced by our undergraduate students.

2) Create groups based on common interest

The groups were created based on the student nominated projects and not randomly assigned. The students are asked to nominate and rank their top three picks of the projects, together with a short description of their reason for picking that project. The student groups are created from their nominations and the rationale for their interest in the project. This creates groups with a common goal and facilitates the group formation process. While diversity in groups is a well-recognized factor in strong groups, it is also important that groups have common goals. A fine balance must be struck between diverse groups and the common goal. Student feedback on this aspect of the assessment was positive as it gave them a choice on what to research on a topic of their choice. Something that they don’t often get a chance to do in other subjects.

3) Nominate a team mate – if you want

Our previous experience in group formation has shown us that being introduced to a group of unfamiliar people can be a stressful experience for some students, especially with the added stress of an associated assessment. We found that many students appreciated the option and opportunity to nominate a team mate. This reduced their social anxiety in the formation phase of the team. While some students did try to ‘cheat’ the system by either nominating multiple people, or in some cases nominating people in a chain, it is up to the academic to decide whether to allow or disallow these cases. It is important to keep in mind a number of other factors such as making sure that no single student in any group is the solo person without a nominated ‘buddy’ to minimize social exclusion, and still maintaining diversity in the group. The observation from the tutors and teaching staff was that this nominated ‘buddy’ system reduced the social anxiety in early group formation and allowed the groups to move forward to the next stage to discuss their direction sooner.

4) Effective ice breaker activities

Most of us would have experienced ice-breaker activities in a workshop or other types of settings and may have cringed at the idea of these activities. However, finding effective ice breaker activities can help overcome the initial social anxiety and allow the students to get to know each other. The key to effective ice breakers is to choose ones that require and assist their communication, whether it is discussing an idea that is not associated with the assessment (e.g. team name) to reduce the stress, or activities where the team members get to learn something about each other, or work towards a common goal that is not assessment associated. The ultimate aim is to get them to start conversing and help ease the more in depth and intense discussions that will follow. Indeed, in a survey of our students following the ice-breaker activity, the students noted that the ice-breaker activities were cliche but did benefit by increasing comfort with team members by the end of the activity and thus could see the benefit of the activity.

5) Team contract

Following the ice breaker activity, the student teams are asked to discuss and sign a team contract. The team contract provides a framework for the students to discuss and outline their expectations within the team. It includes basic information such as contact information. There are also general procedural discussions such as location for sharing documents, the best means of communication within the team, the preferred method for everyone. The students are advised to set up a team chat that everyone can access. This was an extra layer of challenge in the online learning space as some messaging tools may not be available in some geographical locations.

As the team progresses through the contract, the discussion topics get progressively deeper. The team is asked to discuss their goals and expectations of the project and of each other. They are encouraged to discuss the frequency and duration of meetings outside of scheduled class times; to include discussion of people work responsibilities so they can be considerate of others in setting alternative meeting times; preparation for meetings; note taking in meetings. Finally, the team is asked to discuss how they will deal with conflicts in their group, including topics such as assigning specific tasks, or unmet expectations. The students are provided with scenarios on potential conflicts that they might face and given the time to work through the scenarios as a team. Thus, the team contract guides the teams in a structured and scaffolded discussion about some of the challenging situations they may face.

For the majority of students, this is the first time they have encountered this type of document and it was a daunting task to begin with. However, many students also found the structure of the document with the guided discussion points helpful in navigating some of the more tricky questions.

6) Peer-review and feedback

The student teams undergo two rounds of peer review over the course of 8 weeks. The first peer-review is a required (hurdle) task but is not included in the assessment. This peer review takes place 3 weeks after the groups are formed. The first peer-review is entirely a formative feedback for each member so they have the opportunity for self-reflection and to receive anonymous feedback from their team. This feedback provides the students with an opportunity to adjust any problem behaviors before the final peer review at the end of the project. It also provides the academics with an opportunity to identify any group dynamic issues before it gets too late!

The second peer-review occurs after the final presentation and is counted towards the student grade. The average of the grade they receive from their team mates is used for the grade. In each peer review, the students are asked to assess their team members in a number of criteria:

  • Initiative / self – motivation / motivates others
  • Communication
  • Accountability & sense of responsibility
  • Timeliness and preparation
  • Contribution to the team work & Commitment to the team success
  • Respect & Adaptability

Another key factor is that the peer-review score may be used to adjust the team presentation grade if the student receives a low grade from their team. This increases the student accountability to their team. This also provides the team members a means to hold their team mates to account and minimizes the impact of ‘freeloading’ in the team project. Student feedback on this aspect confirms that peer review is a good way to encourage individual accountability and contribution to the team project with 83% of the respondents in our end of semester survey agreeing to that statement.

We used the tool Feedback Fruit for the peer-review process and it has been a smooth process as this is integrated into our learning management system (Canvas) and the groups synch and import automatically. This reduces the workload tremendously! Before Feedback Fruit become available we tried the same process with Qualtrics. However, this required much more background work to set up the groups for the peer-review process.

We have now run this assessment or similar variations of it, for 5 years, over this time we have made a number of tweaks and adjustments to improve the student learning experiences. Here we have shared some of the lessons we have learned along our journey that we hope readers will find useful. We believe that with some careful sign posts and guard rails we have created a positive and enjoyable learning experience for the students. Not only has this made for an enjoyable learning experience and environment for the students, the workshops have become a highlight of our weeks as we watch the student projects develop and grow. This is reflected in the overall feedback from students, tutors, and assessing academics. Most pleasing is perhaps the student feedback that many found this to be an enjoyable and highly memorable experience and was a highlight of their university journey and they may have learned some interesting facts about physiology that they will take with them as they continue their life journeys.

Angelina is a senior lecturer and the Physiology discipline coordinator in the Department of Anatomy and Physiology in the Faculty of Medicine, Dentistry and Health Sciences, at the University of Melbourne. Her current learning and teaching focus is on practical-based in practical classes, using technology to engage learners in large cohorts in Physiology, and in integrating employability skills within the science and biomedicine curriculum.

Dr Angelina Y Fong PhD GCUT | Senior Lecturer

Physiology Discipline Coordinator

Department of Anatomy and Physiology

School of Biomedical Sciences

Faculty of Medicine, Dentistry and Health Sciences
The University of Melbourne, Victoria, Australia

White, F., Lloyd, H., & Goldfried, G. (2007). Evaluating student perceptions of group work and group assessment. Sydney University Press

 

Designing asynchronous learning material: the Pomodoro way

This post shares my reflection on making asynchronous learning materials during COVID19. I taught physiology to years 1 and 2 medical students at Newcastle University Medicine Malaysia. My usual approach in the classroom is: passive – active – passive i.e. I would first clarify the concepts in which students listen passively, ask questions to push students to think actively, back to passive again, and so forth.

 

When the pandemic hit Malaysia and the country went into complete lockdown, teachers were asked to decide if they wanted to make their teaching session synchronous or asynchronous. It was a stressful time as it was just my third year of teaching, and I still had a lot to learn about teaching. Fortunately, this happened during the semester break, and I had time to ponder these potential issues. Synchronous online sessions happen in real time, just like an in-person teaching session but online. Asynchronous sessions, on the other hand, allow students to go through the learning materials at their convenience.

 

I chose to make all my teaching sessions asynchronous after reflecting on several issues which the students and I might encounter if they were synchronous sessions. The student demography in the university consists of both local (Malaysian) and international students (ranging from Australia, to South Asia, and all the way to Canada). Considering where the students were from, the first problem with conducting synchronous sessions would be the time difference. After making adjustments, we had only a couple of hours a day where the schedule was appropriate for everyone.

 

Using Zoom for teaching was my first time, I needed to take into consideration student engagement, internet connectivity (both students’ and mine), glitches etc. Taken together, I realized that there were more things that were not within my control for a synchronous session, so asynchronous session was the better choice: the students could just go through the materials at their convenience. They could learn at their own pace without the need to stress themselves (and myself) about internet connectivity during a synchronous session or waking up at 5 in the morning; And I could avoid real-time technical issues in the middle of a teaching session. What’s left is student engagement. How do I engage students during asynchronous teaching? What can I do to motivate the students to complete the seemingly ‘boring’ hour-long lectures when they were on their own? Once I decided to make asynchronous materials, I actually felt relief in a way as I just needed to focus on making the materials rather than worried about other issues.

 

When I started working from home during the semester break, I had productivity anxiety which I had not experienced before. I began watching videos and reading articles which people shared on how to be more productive. This was when I discovered the Pomodoro technique. In general, this time management technique improves productivity by breaking down the work day into 25-minute blocks (also called Pomodoro’s) with 5-minute breaks in between the blocks. This actually gave me the idea on how I could help the students to go through the asynchronous learning materials with ‘less suffering’, as well as to achieve more when they were on their own.

 

I divided an hour-long lecture into three parts: Part 1, Part 2 and Summary which mimicked the block mentioned above. Parts 1 and 2 were recorded lectures that were 20-25 minutes long, and the Summary was a short, 5-minute roundup of what had been mentioned. Within the recorded lectures, I also prepared activities for students to assess their own understanding (active learning). For instance, after describing the structure of the skeletal muscle, I inserted another diagram of muscle fibers and asked students to pause the video to try and label the diagram. After explaining the two-neuron model, receptors and the neurotransmitters in the autonomic nervous system lecture, I prepared another diagram and students were asked to pause the video to fill in the blanks. When students resumed the video, I explained the answers. The videos were uploaded into Microsoft Stream and the links to the videos were shared on the university learning management system. I could easily track the number of views of the videos.

 

In between the two parts, there was a 5-minute-long interlude that mimicked the break in Pomodoro technique. A variety of activities was used in the interlude, including a short reading or fun fact related to the previous part. For instance, a question that required students to apply what they learned from the previous part; or games such as crossword puzzles, drag-and-drop for students to match the meanings with the terminology; or in the muscle physiology lecture, a short reading on rigor mortis were given in the interlude. Students could skip this if they wanted to but I encouraged them to follow the activities in the interlude to take a break from the passive listening, and do something active.

 

Other small things I did with this ‘Pomodoro arrangement’ of the learning materials included a clear instruction and the estimated time required to complete it. These are common if one is familiar with taking online courses. Clear instructions and estimated time of completion helped setting goals and expectations for the students the moment they opened the asynchronous learning materials. This might seem trivial, but it’s one of the keys of getting things done.

 

I included captions to all my videos to improve accessibility. Particularly for the new students, they might need time to get used to my accent and certain terminology. On top of that, captions could also be useful to English speakers to improve comprehension (1). PLYmedia found that videos with captions are more engaging and the viewers tend to watch until the end (1). These are something that I wanted for my videos as well. In fact, the sound quality, the accent of the teachers, the internet connection, and whether English is the student’s first language, could all affect the quality of synchronous teaching without proper captions. I would acknowledge that adding captions could be troublesome. When I first tried to edit the caption generated automatically by Microsoft Stream, I was amused by how bizarre it was, full of errors. However, I was actually glad as it reminded me to put efforts into my speaking and pronunciation (especially if you do not have a good microphone). One thing that I learned was that YouTube actually has a better AI system in terms of generating captions, the accuracy rate was high. After getting used to recording videos and adjusting how I speak, I didn’t have to do much editing in my subsequent videos. I also took caption-editing as an additional step to assess the contents of my videos.

 

The completion rate of the videos was 100% based on the number of views recorded in Microsoft Stream and students showed great appreciation about the captions in their feedback. When I asked them privately how they felt about the ‘Pomodoro arrangement’, some students said that they felt accomplished whenever they finished the 20-plus-minutes long videos and were motivated to continue. I believe this is the effect of the original Pomodoro method. Although COVID19 is pretty much ‘over’ in most countries and in-person teaching has resumed, I think this ‘Pomodoro arrangement’ could still be beneficial in blended learning. One might argue that there is no need to deliberately include the ‘breaks’ for the students since the students can just pause an hour-long video on their own. But I see no reason why we can’t actively make this happen by breaking up the lectures into smaller chunks and inserting fun active learning in between.

References:

[1] Albright, Dann. “7 Reasons Your Videos Need Subtitles [Infographic].” Uscreen, 18 Nov. 2020, www.uscreen.tv/blog/7-reasons-videos-need-subtitles-infographic/.

Dr. Tan received his BSc and MMedSc from the University of Malaya, Malaysia, and his Ph.D. from the National University of Singapore. He then worked at Newcastle University Medicine Malaysia (2018-2021) as lecturer, teaching physiology to years 1 and 2 medical students. Currently, he is a lecturer at the Chinese University of Hong Kong (Shenzhen), teaching physiology and histology to years 1 & 2 medical students.