Category Archives: Technology for Teaching

Developing a Community of Practice in an A&P Course

This blog is about striving to create a Community of Practice (CoP) to engage students in Situated/Social Learning by using Team-based activities and assessments along with the web-based social learning annotation platform, Perusall.

We have all experienced those “Aha” moments when something we were struggling with suddenly becomes clear.  Think back to a time when you experienced real/durable learning.  When I did that, three things popped into my mind:  a hallway discussion in graduate school with classmates in my neurophysiology class about the Goldman-Hodgkin-Katz equation; American Physiological Society – Institute of Teaching and Learning (APS-ITL) conferences/interaction with Physiology Educators Community of Practice (PECOP); and the Community of Practice at HCC via the Instructional Development Center (IDC) which organizes and facilitates Best Practices and Faculty Academy.  And what this made me realize was that I learned best in a social setting with peers rather than isolated in my room/office tackling a topic by myself.  Although this was new to me, Lave and Wenger realized this long ago.

Lave and Wenger put forth the social learning theory of situated learning and communities of practice (CoP) in the early 90s.  Core ideas of their theory are that learning is identity formation through social participation and that communities of practice are groups of people (communities), brought together by a need for shared learning (domain) for something they do together (practice) and learn how to do it better as they interact regularly (Lave and Wenger, 1991; Wenger, 1998). And I believe, in a classroom setting, this should be framed within a significant learning environment. See Fink (2003) for explicit steps that can be taken to create an environment conducive to learning.

While a CoP is often discussed relative to professional societies, I believe that a CoP can develop within an A&P course and bring about durable learning through social interaction.  In this case, then, the domain includes the students who are in the course to learn A&P – shared learning needs; the community includes the class as well as the community within student groups/teams; and the practice includes interactions and participation in evidence-based teaching best practices from the resources those produce.

The following infographic is a summary of best practices in evidence-based teaching (Petty, 2006) which Michaelson and Sweet (2011) suggest can be met by and are a part of Team-based Learning (TBL). These include Visual presentation and graphic organizers which are met in my classes by team projects; feedback and assessment for learning; cooperative learning; reciprocal teaching e.g., peer instruction; whole-class interactive teaching; requiring concept-driven decisions e.g., concept questions and higher-order thinking levels for summative assessments.  This provides a very strong rationale for using TBL.  And TBL, by its very nature, promotes social learning.

Michaelsen and Richards (2005) identified the four key components of TBL: group formation; meaningful team assignments; routine feedback; and accountability.  The following infographic includes the components of TBL and summarizes some of the ways they are addressed in my courses.  I will go into more detail on some of these throughout the blog.

Formation of diverse teams is very important for the successful use of team-based learning.  In the physical classroom, I used a ‘show of hands’ to questions asked on the first day of class and had the students line up, then I counted them off into the appropriate number of groups. Questions used were: “How many have ……had me as an instructor before?; had medical terminology?; a college degree or certificate?; been born outside of IL?” etc.  This provides transparency in how the teams are formed and lets students know what things the instructor thinks are important to include in each team.

For the virtual, online-synchronous classroom, I use the web-based platform, CATME Smarter Teamwork, Team-maker tool.  Team-maker tool page can be found at this link.  The Team-maker tool simplifies the team-assignment process, for the virtual classroom, and creates diverse teams.  Instructors decide which criteria will be used to form teams/student groups.  For example, it is helpful for team members to have similar work schedules to facilitate group work.  It is also helpful for team members to have dissimilar GPAs.  Instructors can also write custom questions and criteria to add to the Team Maker Tool survey.  CATME Smarter Teamwork platform is a product of and administered by Purdue University.  General information about the CATME Smarter Teamwork platform can be found at this link.

In addition to properly forming teams, teams must be properly managed. Team members should receive feedback regarding their effectiveness in the team early and often.  I use Peer Evaluation (PE) Surveys administered by the CATME Smarter Teamwork platform to help teams and team members become more effective.  The TBL community uses the phrase “forming, storming, and norming,” to describe phases teams go through during the semester.  PE surveys helps teams to progress to the norming phase more quickly.  Team members are evaluated in 5 areas: contributing to the team’s work, interacting with teammates, keeping the team on track, expecting quality, and having relevant knowledge, skills, and abilities.

Three PE surveys are administered over the course of the semester.  The first two PE surveys (week 5 and week 10) were formative and the third one (week 15) was summative.  Students’ PE score is based on how well they evaluate their teammates and how well their teammates evaluate them.  I used the ‘additional questions’ option for each PE survey.  They provide information on team dynamics and effectiveness which is very helpful to identify teams that are struggling which might require instructor intervention. Survey results can be viewed and then released to the students.  Students receive anonymous information on how their teammates evaluated them compared with how students evaluated themselves and this provides encouragement when they have rated themselves lower than their peers and praises students whose teammates have rated them highly. It is important to emphasize that students are evaluating, not judging, their teammates.  The CATME Smarter Teamwork website has a plethora of resources for instructors and students to help improve team effectiveness.

In addition to the CATME Smarter Teamwork PE surveys the Peer Evaluation form obtained from the University of Buffalo Case Study Workshop I attended is used to evaluate teammate participation in the team projects.  This evaluation produces a score that is used as a multiplier to the grade on the team project which helps to improve student accountability.

To promote learning, team development, and provide timely and frequent feedback, I use Just-in-time-teaching, combined with Peer Instruction (PI) and Concept Questions that are assessed using a classroom response system (Learning Catalytics) in a manner described by Mazur (1991).  Students are to complete pre-class reading assignments followed by a pre-quiz in the Learning Management System (LMS).  The pre-quizzes check for knowledge comprehension as well as identify confusing topics which are the focus of the concept questions used in the ensuing class meeting.  Each concept question has an individual round followed by a team round.  Students answer the individual questions on their own from memory.  Once students have answered the individual questions, they are instructed to discuss it with their teammates, using all available resources before the question is asked again.  These activities provide formative feedback to students and the instructor alike and provides practice for team-based summative assessments which focus on the conceptual application of material and strive for more authentic assessments with questions situated in a clinical scenario.  Learning Catalytics, the classroom response system used in my classes, has a variety of question types that can be used to write questions that require lower-order or higher-order thinking skills.

Additionally, the PI and team interaction help students negotiate their identity in the group and facilitates new learning, which are earmarks of social learning in a community of practice.  Of course, all of this is dependent upon students coming to class prepared.

Much to my dismay, even though pre-quizzes are given to hold students accountable, rather than read the assignment, they tend to ‘hunt and peck’ in the textbook or search Google for answers which are out of context and don’t really answer the question.  Funnily enough, pre-class reading assignments and pre-quizzes didn’t even hold Harvard physics students accountable to complete the reading assignments.  So, Eric Mazur and his team developed the social annotation platform Perusall.  Information about the platform can be found at this link.

Perusall allows for/encourages social interaction ‘outside’ of class and uses programs like those used in social media. Students annotate pre-class reading assignments and can comment on classmates’ annotations, “like” comments, and ask and answer questions; they are not reading/processing material alone. Students can interact with classmates in the entire class, rather than only with their teammates, which expands the community for social learning.  By clicking on an annotation in a pre-reading assignment a current conversation window opens, and the thread of conversation shows who made comments and when they were made.  This shows the asynchronous social interaction taking place in Perusall, and documents social learning taking place outside of class.  It lets the students know they are not alone in their struggle to understand a topic and offers opportunities for students to offer explanations and suggestions to help classmates learn.

Using Perusall helps students to become better prepared for in-class activities.  Following the adoption of Perusall, 88% of students annotated 80-100% of the pre-class reading assignments throughout a semester. Whereas only 69% of students completed 80-100% of the pre-quizzes associated with the pre-class reading assignment before using Perusall.  Completing the pre-quiz, as mentioned above does not necessarily indicate that students read the assignment.  They may have just Googled the answers.

So far, I have talked about Perusall as a social annotation platform that encourages students to thoughtfully annotate reading assignments as a way to promote social learning and a sense of community which is one of the main reasons I use Perusall and why I believe Perusall helps to build a CoP in my courses.  However, I think it is important to point out that the adoption implementation of Perusall is very easy and offers valuable features without adding to the instructional load.  Once the course is set up, which does not take long, there is little to no extra work for the instructor.  The quality of the annotations is graded automatically using a machine algorithm to assess intellectual content.  Also, with a click of a tab, instructors receive a ‘confusion report’ listing the top three points of confusion with the top three annotations articulating the confusion and other analytic reports. Perusall also automatically sends emails to students who have missed reading assignments.  For anyone interested in viewing a course in Perusall a demo course has been set up – course code = CHAPMAN-GJZQV.  To access the course, follow this link and click the ‘register’ link provided on the page.  Once the registration is complete there will be an option to enroll in a course, click on that tab and enter the course code listed above.  Or just jump into the deep end of the pool and register as an instructor just to see how easy and intuitive the platform is to use.

By putting students into diverse, permanent/fixed student groups the sense of community can grow. During group work and the social annotation of reading assignments throughout the semester, students negotiate their identity in the group, negotiate new learning, and work together to learn anatomy and physiology. The following photo is of a team on the last day of the semester.  The “CEO” of the team made the t-shirts using team members’ identities negotiated throughout the semester and gave them to all teammates near the end of the semester.

When it works properly a Community of Practice can develop.  I have witnessed tremendous learning in my classroom which is the result of helping my students create a community of practice within the framework of efforts to create a significant learning environment and allowing students to socially interact via team-based activities/assessments and social interaction while annotating pre-class reading assignments.

References:

Fink, L.D. (2003) Creating Significant Learning Experiences: An Integrated Approach to Designing College Courses, Jossey-Bass, San Francisco, CA.

Lave, J. Wenger, E. (1991) Situated Learning: Legitimate Peripheral Participation. Cambridge UK: Cambridge University Press.

Michaelsen, L. K., Knight, A. B., and Fink, L. D. (2004) Team-Based Learning: A Transformative Use of Small Groups in College Teaching. Sterling, Va.: Stylus.

Michaelsen, L. K., Parmelee, D. X., McMahon, K. K., and Levine, R. E. (eds.). (2008) Team-Based Learning for Health Professions Education: A Guide to Using Small Groups for Improving Learning. Sterling, Va.: Stylus.

Michaelsen, L., & Richards, B. (2005). Commentary: drawing conclusions from the team-learning literature in health sciences education: a commentary. Teaching and learning in medicine, 17(1), 85-88.

Michaelson, L.K., and Sweet, M.  Team-based Learning.  (2011) New Directions for Teaching and Learning.  no. 128. Wiley Periodicals, Inc. Published online in Wiley Online Library. DOI:10.1002/tl.467.

Petty, G. (2006) Evidence-Based Teaching. Gloucestershire, U.K.: Nelson-Thornes, 2006.

Wenger, E. (1998) Communities of Practice Learning, Meaning and Identity. Cambridge, UK: Ca

After a post-doctoral fellowship at Washington University School of Medicine, Jane began her academic teaching career at Benedictine University in the graduate programs in exercise physiology.  After that Jane taught in the Physician Assistant Programs at Rosalind Franklin University and the University of Kentucky. For the past 18 years Jane taught Anatomy and Physiology at Heartland Community College in Normal, IL, where innovative, student-centered instruction is encouraged. For the last decade, Jane employed Just-in-Time Teaching with Peer Instruction and concept questions assessed with a classroom response system.  Recently, permanent, fixed teams were used in her classes, along with team-based summative assessments, as well as with in-class and post-class forced retrieval activities. Jane is a Professor Emerita of Biology and had served as the Anatomy and Physiology course coordinator.

Jane received her B.S. from Eastern Illinois University, her M.S. from Illinois State University, and her Ph.D. from Marquette University.

mbridge University Press.

Flipped and Distant Multi-Section Teaching: An A&P Course Director’s Perspective, Pandemic Plan, and Transition Back to the Classroom.
Historically, flipped classrooms have been around since the mid-2000s and began as bottom-up pilot experiments in a single classroom or section of a course at the will of an inventive instructor. With a robust body of literature deeming these modern content delivery models effective in achieving student success in the classroom and beyond, many educators in the sciences have adopted this approach to active learning. However, I doubt very few decided the pandemic-forced transition to distance learning was the right time to pull the trigger on flipped classroom implementation at the course director level in a multi-section course. I’m happy to share my wild idea and the wild ride we (myself and the A&P faculty at Jefferson) have been on while we were “building the plane as we flew it” over the past 2 years.

I direct A&P undergraduate courses at Thomas Jefferson University and manage a large staff (12 faculty) consisting of myself and a largely part-time adjunct workforce serving about 300 undergrads spread across 12 sections of lecture and 20 sections of lab. Since 2019 when I took the job at Jefferson we have been ballooning with growth and the demand for A&P courses has nearly doubled in the past 3 years. I was just getting used to the new course director role, when we were all challenged in March of 2020. Overnight I went from settling into my new job, to calling upon every skill and resource I had in my academic tool bag.

This unique choice to flip at the director level was borne out of pandemic-generated necessity for a means to deliver a single series of digital content of core A&P concepts, remotely, to all students to ensure an equitable experience across sections. The A&P courses at Jefferson have historically been face-to-face only with the exception of a few “snow days” with “take-home” assignments across the Spring semester during hard Philadelphia winters. The decision to flip a classroom in general aligns well with Jefferson’s active (Nexus) learning approaches, however a flipped distant digital classroom taught in a course director-led multi-section, multi-instructor course is something only a pandemic makes one crazy enough to dream up.

Additional rationale for the implementation of the flip in Fall of 2020 was to seize the day, using March of 2020 as an opportunity to fully revamp a dated class, albeit in a very stressful crisis mode. At that very infamous time, during widespread lockdown, emergency recordings of A&P lectures over slides were the go-to tool to preserve the integrity of the course. With a small amount of course director forethought and rock star faculty teamwork, those initial post-spring break A&P II content videos were recorded with the thought and intention to not waste any effort as the entire sequence would in all likelihood need to be converted to a digital format to carry the FA20/SP21 rising cohort of students though the standard 2 semester A&P sequence.

While I can currently say from the perspective of the course director/major course designer that the goal of generating a flipped classroom that works both at distance and in person was absolutely, successfully, met.  I cannot yet speak to the experience of the faculty members who were handed the curricula and directed to teach in a new modality adopted over a short summer break in July of 2020. In hindsight, the A&P faculty ended up being tested much more than the students with little prep time, and direction to teach in a way they may be unfamiliar with, the flipped classroom, online. A plan for reflection and a revelation of the faculty member experience is in the works.

To better describe the design, active learning is implemented both equitably and autonomously across sections. All sections share the same assignment types, but not necessarily identical assignments nor the same instructor. All students must give two “teach-back” presentations where the student is tasked with becoming an expert on a single learning outcome (LO), and then “teaching-back” that learning outcome to a classroom audience of students. “Teach backs” account for about 25-30% of synchronous class time. The other 70-75% of synchronous class time is devoted to reviewing core concepts, demonstrating study strategies, and facilitating active learning activities. The active learning activities are curated by the course director with the intention that the individual instructors modify and adjust activities as they go, but have a safety net of resources to deliver the course as is.

Noteworthy, not all activities were totally unknown to the faculty with institutional knowledge when the new core curricula materials were shared. There were some upcycled former laboratory activities that were really “dry” classroom friendly labs. For example, basic sensory tests could be done at home with any willing quarantine mate. Activities requiring materials did have to wait for in person days. The future goal is to add more in-house generated collaborative work to the shared instructor pool to elevate each iteration of the course. However, “not fixing anything that wasn’t already broke” was deemed a resourceful jumping off point.

The course, now, is robust and both A&P I & II lab and lecture have run online in FA2020/SP2021. The course is now mid re-test during our first in person semester back, FA2021/SP2022, with the same content and resources generated in crisis mode March 2020-Summer2020-Fall 2020. We, transitioned synchronous lecture back to masked-face-to-masked-face in person learning in Fall of 2021 and the course is running as planned. No major changes needed to be made to Canvas sites housing core lecture content to make the shift back to in person. Courses were relatively easy to share and copy over to individual instructors prior to the start of the semester to allow time for autonomous course personalization.

The story is still in progress as we have only just begun to experience Spring of 2022. The course is being tested in another way now, with a virtual start and a mid-semester transition back to in person as the pandemic distance learning challenges keep coming. At this point I’m very grateful to say the course can also seamlessly transition with little notice from remote-to-face-to-face and back again. Collaborative drawing activities on white boards work on digital white boards with screen sharing. Paper worksheets can also be completed digitally and collaboratively in small digital break out rooms. Not every activity will transfer perfectly, but that is what makes a growing pool of shared instructor resources important and valuable. The flipped classroom does not have to be grassroots anymore. A growing body of generous teacher networks, education organizations, and professional societies continue to share and widely make active learning resources available to all and often, free.  And finally, there is also nothing like a global pandemic bearing down under uncompromising deadlines to force a little creativity and development of new ideas to share back to the community.

**Illustration by Andrea Rochat, MFA

Dr. Nanette J. Tomicek is an Assistant Professor of Biology in the College of Life Sciences at Thomas Jefferson University, East Falls where she has been a faculty member since 2019. Currently, she directs the undergraduate introductory A&P courses serving a variety of basic science, and clinical-track majors. Dr. Tomicek specializes in large lecture course, and multi-section course management and has previously done so at both Penn State (2006-2017) and Temple Universities (2017-2019). Her current work focuses on pedagogy, active learning, laboratory, and excellence in biology education. Dr. Tomicek is also an adjunct faculty member for Penn State World Campus in the Eberly College of Science. She has been teaching a special topics course, The Biology of Sex for almost 10 years and is an expert in reproductive physiology and digital course delivery. Past doctoral work at Penn State and research interests include developing targeted cardiovascular therapeutics for aging women, examining downstream estrogen receptor signaling pathways in the heart in an ovariectomized rat model of aging and estrogen deficiency. Dr. Tomicek earned her Ph.D. in Spring of 2012 at Penn State in the Intercollege Graduate Degree Program in Physiology, and is a proud active member of the Human Anatomy and Physiology Society.
The trepidatious return to in-person instruction during the COVID-19 pandemic: valuable lessons applied from online teaching using Lt in the face-to-face classroom

 

To say that the past 20 months of higher education have been a hardship is a gross understatement. The speed at which educators have embraced new technologies to bridge the pivot to virtual instruction has been remarkable.

This has been particularly difficult in courses where hands-on experiences are the norm, such as in anatomy and physiology laboratory courses. Instructors of laboratory courses where students must gain practical skills and experience the process of science found themselves relying on new (to them) technologies to fill the gap in their newfound teaching methods during the forced switch to virtual instruction (1, 4). As such, many platforms stood out amongst a sea of offerings for physiology educators.

Adapting pedagogical approaches in the virtual landscape is not a new phenomenon for anatomy and physiology educators with many successful reports providing best practices to adapt didactic and laboratory methods to online or hybrid learning (2, 3) long before the COVID-19 pandemic. Although online approaches have demonstrated an effectiveness in achieving course objectives, effective combinations of both online and face-to-face instruction must be investigated to help accommodate the convenience that online approaches offer students as we adjust to the return to in-person modalities.

Our experiences at the University of the Incarnate Word (UIW) have mirrored our colleagues in the scramble to identify suitable stand-ins for laboratory courses that still provide as robust an experience as possible. Thanks to a fortuitous introduction during the January 2020 CrawFly Workshop we now host annually at UIW in association with ADInstruments, we were introduced to the Lt suite of laboratory courses, most notably their Human Physiology and Anatomy packages. While we were impressed by the capabilities of their labs and lessons, any thoughts of immediate use were placed on the backburner as we already had the Spring 2020 curriculum planned out – or so we thought.

During the confusing and uncertain switch to virtual instruction in March of 2020, fraught with pandemic panic, we haphazardly pieced together the second half of our virtual lab curriculum relying on any lab simulations we knew of that were free and easily accessible to our students. Following this “dumpster fire” of a semester, we reassessed our future directions for what we were sure was going to be another traipse into the virtual landscape, and we knew that our Frankenstein approach would not be suitable going forward. That is when the decision to completely redesign our Anatomy and Physiology I and II Lab curriculum using Lt was made.

Beginning in the Fall of 2020, 12 laboratory activities were selected from the pre-built modules and lessons available in Lt for human anatomy and physiology that met our pre-determined course objectives for both BIOL 2121 (Anatomy and Physiology I Lab) and BIOL 2122 (Anatomy and Physiology II Lab). We used these pre-built lessons as the outline for each lab and edited the material to accommodate an online lab experience. Where the ADInstruments PowerLab stations, sensors, and electrodes would normally be used for data acquisition with Lt software, we replaced these sections with either videos or descriptions of how data would be collected for each lab. These sections providing the theory and sample protocols were followed by using the Lt sample data sets for students to complete data analysis and formulate conclusions. To help facilitate virtual dissections, we took advantage of the dissection videos and guides provided in the pre-built Lt labs that students could refer to in lieu of having their own specimens at home. The final product allowed us to replace the hands-on experience preferred in an undergraduate anatomy and physiology lab in the best way possible when virtual instruction was our only option.

To gauge student satisfaction with this new platform, and importantly to determine if the educational goals for our students were being met, a survey was designed and administered to students at the end of the semester. This was used to adjust the lab offerings and fine-tune the activities that were used again in proceeding semesters. Figure 1 shows an improvement in the overall rating for Lt where students provided scores in between 1 and 5 with 5 being the highest rating from Fall 2020 to Spring 2021 by just over 8% (from a score of 4.18 to a score of 4.53 in the spring semester). Both semesters were conducted using remote instruction; therefore, the increase is attributed to improvements made to the existing labs in spring based on student feedback.

Moving forward to Fall 2021, our labs returned to mostly in-person instruction with only 30% offered with either asynchronous online or synchronous online instruction. The same Lt Student Survey was administered as the current semester has come to an end and the data demonstrate a further increase in the overall rating for Lt with an average rating of 4.7 (Figure 1). Although we hypothesize that this increase is mostly attributed to the transition back to in-person instruction as students mostly cited comments similar to, “Visually and physically being able to carry out the experiment and dissection labs,” or “Being able to learn things in person and on Lt really helped my learning and broadened my knowledge,” when asked, “What are one to three specific things about the course or instructor that especially helped to support student learning?” This indicated to us that the more hands-on approach with the return to in-person instruction was helping to support our students’ learning.

Importantly, when asked, “If you took an Anatomy and Physiology Lab online in a previous semester, and are currently taking an Anatomy and Physiology Lab in-person with Lt, what about your experience has changed or improved?” students replied with comments such as, “Definitely improved from A&P1 lab, still used Lt in lab but in person as well helped,” or “The labs have definitely improved and the course work… I think that I learned better in person than online.”

Given the data we have collected thus far, we are learning that while students appear to prefer in-person lab instruction, the flexibility provided by the online Lt lab platform still allows for the inevitability of students in quarantine who are unable to attend in-person labs. And although we are still in a period of uncertainty and flux, we think we are finding an effective combination of online and in-person lab instruction to best serve our students and maintain the rigor expected of an undergraduate anatomy and physiology lab experience.

References:

1.       Alves, N., Carrazoni, G. S., Soares, C. B., da Rosa, Ana Carolina,de Souza, Soares, N., & Mello-Carpes, P. (2021). Relating human physiology content to COVID-19: a strategy to keep students in touch with physiology in times of social distance due to pandemic. Advances in Physiology Education, 45(1), 129.

2.       Anderson, L. C., & Krichbaum, K. E. (2017). Best practices for learning physiology: combining classroom and online methods. Advances in Physiology Education, 41(3), 383.

3.       Attardi, S. M., Barbeau, M. L., & Rogers, K. A. (2018). Improving Online Interactions: Lessons from an Online Anatomy Course with a Laboratory for Undergraduate Students. Anatomical Sciences Education, 11(6), 592-604.

4.       Lellis-Santos, C., & Abdulkader, F. (2020). Smartphone-assisted experimentation as a didactic strategy to maintain practical lessons in remote education: alternatives for physiology education during the COVID-19 pandemic. Advances in Physiology Education, 44(4), 579.

Dr. Bridget Ford is an Assistant Professor in the Department of Biology at the University of the Incarnate Word (UIW) in San Antonio, Texas. She obtained her bachelor’s degree at St. Mary’s University in Biological Sciences with a minor in Chemistry. She then went on to earn her Ph.D. in Molecular Medicine at UT Health San Antonio in 2012. Bridget completed her postdoctoral fellowship training at the United States Army Institute of Surgical Research in the Extremity Trauma and Regenerative Medicine task area and at UT Health at San Antonio between the Magnetic Resonance Imaging Division and the Department of Medicine.

 

Bridget serves as the Anatomy and Physiology I and II Lab Course Coordinator and teaches Anatomy and Physiology I and II lecture courses, Endocrinology, and Cell Biology at UIW. She is dedicated to mentoring undergraduates in the research laboratory where her research focuses on understanding the molecular mechanisms involved in renal cell injury in diabetic kidney disease. The overall goal she has for all her trainees is to apply what they learn in the classroom to ask scientific questions in the quest to become independent and creative thinkers.

 

Desperate times call for desperate measures: Teaching Physiology in a hybrid/online format and block schedule

Physiology and STEM educators at colleges and universities around the world have deployed creative and innovative strategies to preserve class and laboratory instruction during a pandemic.

My residential, liberal arts, undergraduate institution implemented a hybrid learning format, as did many others.  The hybrid format was adopted by the institution because room capacities were reduced to accommodate physical distancing and because we expected that COVID quarantines and isolations would force faculty and students to attend remotely.  Classrooms were outfitted with cameras and microphones in the HyFlex model to facilitate remote participation.  All classes and laboratories were forced to move online during certain blocks as a response to regional COVID rates and some students participated remotely for the entire year—including those who participated from their international homes.

More drastically, we converted our “normal” semester schedule (students complete four courses across a semester) into a block schedule.  Under the block schedule, students enrolled in one course at a time, intensively, for just under four weeks per course.  Courses met for three hours per day, four days per week.  Students completed a forced-choice mini-exam at the end of each unit and larger exams with forced-choice and short answer questions at the middle and end of the course (Table 1).  Laboratories were scheduled as additional meeting times.  Instructors and departments were granted a great deal of flexibility in laboratory scheduling so there were many permutations to lab schedules within a block—sometimes a student attended laboratory for three-hour sessions twice per week, other times a student attended for 1.5 hours four times per week.

In this post, I’ll address the changes that we made to our Human Anatomy and Physiology I and II (Biology 325 and Biology 326) sequence.  I’ll also reflect on the successes and challenges of the revisions and what we have retained in our return to in-person, normal semester scheduling.

Although we no longer utilize the block schedule at my institution, these reflections may be useful to instructors who are considering intensive summer courses and to instructors who would like to facilitate active and remote learning for other reasons.  It is important to note that the difficulties I address below are more likely to affect underserved, underprepared, or otherwise disadvantaged students and faculty, so particular attention to equity is important in considering how to deliver remote and/or intensive learning experiences.

Class (“lecture”) revisions

We adopted a flipped approach to the classroom portion of the course.  We chose this approach primarily in recognition that three-hour time blocks could only be successful with substantial interaction.  The flipped approach also helped us to navigate the hybrid format given that we anticipated technical concerns and/or limited attention spans would negatively impact the quality of meetings for remote students (three hours is an exceptionally long time to attend a Zoom class!).  Four instructors taught the courses each semester.  We divided each semester’s material into four units and each instructor created pre-class lecture videos of the relevant material for their assigned unit (Table 1).  Pre-class lecture videos totaled approximately one hour to 1.5 hours per class meeting.  The instructor also developed in-class materials for their assigned unit—typically case studies and/or worksheets.  Class began with instructors answering questions about pre-class video content and daily class objectives in response to student small group discussions.

Importantly, the block schedule reduced net class meeting hours and required us to prune as much content as possible.  We also integrated units that were previously separate.  For example, rather than address cellular physiology and skeletal physiology in separate units, cellular physiology was delivered using the calcium homeostasis and skeletal physiology for application (Table 1).

Lessons learned:

As noted above, instructors divided video and class material preparation by unit.  This required a high level of trust between instructors, and a willingness to try new ideas and pedagogies.  It worked well because our instructional team is cohesive and, although our pedagogical approaches vary, we value each other’s approaches.  Students benefitted from the lecture styles of four different instructors.

The flipped approach was helpful for practice and application of material.  The block schedule affords little time between class meetings given that classes meet for three hours per day on consecutive days.  Case studies and worksheets that applied lecture content helped students to identify points of confusion and build understanding. Further, students loved the ability to return to pre-lecture videos and rewatch points of confusion.  We now have a wealth of videos and in-class activities in our toolbox.  We continue to use many of the videos and assignments and recommend this approach to others– you might try flipping portions of class meetings as a starting point.

The intensive nature of the block schedule was advantageous in that students focused on one course at a time (so only needed to catch up in one course if COVID forced them to miss class).  A single course was their primary school-related responsibility during a block because they had no other courses and sports were largely on hold.  On the other hand, the intensive schedule left little time to develop content retention and build conceptual mastery.  There was little to no opportunity for spaced repetition.  We are currently seeing under-retention of content from last year in this year’s students.  If others attempt intensive schedule courses, it is important to recognize that content retention may be curtailed but conceptual development could be preserved with sufficient practice and application.

More generally, we are finding that students forgot how to time-manage and study in the block schedule.  They did not need to balance multiple classes or, for the most part, sports and social engagements.  The intensive nature of the block meeting schedule meant that much of their out-of-class time was spent preparing for the next day’s class rather than reviewing and studying material.  Some students (particularly those who are already disadvantaged) balanced this experience with intensified caregiving demands amid COVID restrictions.  Overall, student study habits declined—they are now struggling to optimize location, motivation, strategies, and pacing for self-regulated learning.

Students often operated in semi-isolation last year—often interacting with black boxes on a screen instead of classmates—and struggled to stay engaged via Zoom, even in breakout rooms.  This is a particular struggle for small, residential, liberal arts institutions where learning is typically done in small communities supported by close relationships.  Faculty found it difficult to build relationships with students during a four-week class with 50% remote participation each day and a requirement for meetings via Zoom (office visits were prohibited).  Students were less able to build a sense of STEM identity and belonging given the weaker relationships and reduced laboratory engagement (see below).  Sense of belonging and identity was likely especially challenging for individuals from minoritized groups with already lower STEM identity and belonging.

Lab revisions

All physiology experiments were removed from the laboratory sequence for the 2020/2021 academic year in response to the block schedule and to requirements for physical distancing and reduction of respiratory droplets.  The laboratory sequence consisted entirely of human anatomy.  We immediately recognized that learning a semester’s worth of human anatomy in four weeks—on top of class material—would be near impossible.  Therefore, we proposed a self-paced online anatomy lab experience that students could complete outside of their other coursework across the entire semester.  We utilized the Complete Anatomy platform (Elsevier; https://3d4medical.com/) and required students to submit a schedule for studying and completing practicals based on their own course schedule and other obligations each block.  Instructors held weekly instructional sessions via Zoom and met with students for tutoring as needed.  Instructional sessions were recorded and provided to students.

Lessons learned:

Any online, self-paced instructional platform will be subject to technical difficulties including spotty or slow home internet access and limited computing resources.  In addition, the Complete Anatomy platform posed surprising technical difficulties with gradebook access, content generation, and personal computer compatibility.  There were also notable technical glitches when delivering assessment via the Complete Anatomy platform.  We were able to either troubleshoot or work around each of the difficulties (for example, uploading Complete Anatomy images into our LMS for assessment), but it was labor-intensive and stressful.  Content generation was time-intensive and required a team of undergraduate teaching assistants during each semester and the prior summer.  We were lucky to have an outstanding team of teaching assistants who were so capable that they were awarded as institutional Student Employee Team of the Year (https://www.csbsju.edu/news/student-employee-awards-2021).

We were hopeful that the 3D visualization aspect of the platform (https://cdn.3d4medical.com/media/complete-anatomy-3/2019/screens.mp4) would help students improve mental 3D visualization abilities given that this has been a struggle for past students.  This did not seem to occur, although it is difficult to be sure given that most student work was completed away from instructors.  This year we paired Complete Anatomy software with physical models for in-person lab instruction and the combination works well.  We value Complete Anatomy as a study tool but some technical difficulties have continued, making it less suitable for assessment.  Online anatomy assessment was, of course, also limited because we had no way of enforcing a closed-book requirement.

Instructors observed that students did not retain as much content compared to previous years.  This is likely a result of multiple factors, including procrastination and approaches to learning.  Regardless of the original schedule developed by each student, many procrastinated and completed a flurry of practicals near the end of the semester.  Clearly those students were not practicing the spaced repetition that is important for learning.  Additionally, students often approached practicals as an item to be checked off a to-do list rather than a learning task.  When we hold laboratory sessions in-person, we can motivate and encourage students toward deep-, rather than surface-, learning in a way that we were unable to do remotely.  If we were to repeat the self-paced structure, we would enforce the students’ planned schedules more strictly.

Summary

We are happy to be back to a normal schedule with in-person instruction—made possible (thus far) by an institutional vaccination requirement for students and faculty and by masking requirements.  We have retained tools and strategies from last year, including flipped instructional materials and Complete Anatomy as a study tool.  We have moved away from other tools and strategies.  However, we (and others) may continue to offer intensive online summer options in which many of these approaches may be retained.

Table 1:  Class schedule

Pre-class video topics In-class activities
Unit 1 Day 1 ·       Course introduction

·       Homeostasis

·       Endocrine system

·       Osteoporosis case part 1

·       Study plan

Day 2 ·       Cellular signaling

·       Microscopic structure of bone

·       Bone remodeling mechanisms

·       Bone remodeling regulation

·       Osteoporosis case study part 2
Mini-exam 1
Day 3 ·       Cellular junctions

·       Passive membrane transport

·       Active membrane transport

·       Ca++ transport (osteoclast and intestinal epithelial cell)

·       osteoporosis case study part 3
Day 4 ·       Bone growth and fracture repair ·       Osteoporosis case study part 4

·       Bone growth disorders activity

Mini-exam 2
Unit 2 Day 5 ·       Resting membrane potentials ·       Resting membrane potential worksheet and practice questions
Day 6 ·       Neuron functional anatomy

·       Graded potentials

·       Neuron functional anatomy worksheet

·       Graded potentials worksheet

Mini-exam 3
Day 7 ·       Action potentials

·       Action potential propagation

·       Action potential worksheet and practice questions
Day 8 ·       Synapses and synaptic transmission

·       Synapses and synaptic integration

·       Synapses and synaptic integration worksheet and practice questions
Exam 1
Unit 3 Day 9 ·       Nervous system introduction

·       CNS protection

·       Brain trauma case study
Day 10 ·       Functional brain anatomy ·       Brain regions functional scenarios activity
Mini-exam 4
Day 11 ·       Receptor physiology (somatosensation)

·       Pain

·       Neanderthal pain discussion (Zeberg et al., 2020)
Day 12 ·       Vision

·       Autonomic nervous system

·       Autonomic nervous system case studies
Mini-exam 5
Unit 4 Day 13 ·       Control of movement

·       Functional skeletal muscle anatomy

·       Brain machine interface worksheet (Flesher et al., 2016; Moritz et al. 2008; O’Doherty et al., 2011; Sasada et al., 2014)

·       Muscle functional anatomy worksheet

Day 14 ·       Sliding filament theory

·       Neuromuscular junction

·       Excitation contraction coupling

·       Neuromuscular junction worksheet

·       Malignant hyperthermia case study

Mini-exam 6
Day 15 ·       Graded contractions

·       Muscle metabolism and fiber types

·       Motor recruitment worksheet

·       Muscle training worksheet

Exam 2

 

Jennifer Schaefer is an Associate Professor of Biology, the Biology Department Chair, and the Neuroscience Minor Director at the College of St. Benedict/St. John’s University.  She earned her B.A. in Biology from St. Olaf College in 2002 and her Ph.D. in Physiological Sciences from the University of Arizona in 2010.

Jennifer’s teaching expertise is in anatomy & physiology and neurobiology.  Her research in the science of teaching and learning investigates the interaction between metacognition and self-efficacy for student academic performance.  Jennifer collaborates on an ongoing national collaboration to develop a consensus set of core concepts for undergraduate neuroscience education and her research in neurobiology investigates motor control circuits in Drosophila.

Jennifer is a member of the American Physiological Society, Society for Neuroscience, Faculty for Undergraduate Neuroscience, and Phi Beta Kappa

Jennifer E. Schaefer

Associate Professor of Biology

College of Saint Benedict and Saint John’s University

Using Google Jamboard for Collaborative Online Learning in Human Physiology

Active and cooperative learning strategies are useful tools for engaging students in the classroom and improving learning (Allen & Tanner, 2005; García-Almeida & Cabrera-Nuez, 2020; Montrezor, 2021). These learning strategies require students to engage with course content by “seeking new information, organizing it in a way that is meaningful, and having the chance to explain it to others” (Allen & Tanner, 2005, p. 262). Both active and cooperative learning emphasize peer interactions and give students opportunities to demonstrate understanding.

The COVID-19 pandemic provided an opportunity for instructors to practice new pedagogies in face to face, hybrid, and remote learning environments. Prior to the pandemic, I often asked students to use the classroom white boards collaboratively to draw diagrams, processes, and outline concepts. Given limitations on face to face interactions in hybrid and remote classes, I used Google’s Jamboard to recreate this in-class experience for a virtual Human Anatomy & Physiology course. Students were Exercise and Health Science majors and minors. The course was offered in 15, three-hour class periods over a four-week course block in spring 2021. The three-hour class periods necessitated a variety of pedagogies to maintain student engagement.

Jamboard is a virtual white board space that can be used collaboratively by sharing a link with others. Before sharing, the link settings must be adjusted to allow any user with the link to edit the Jamboard. Each board can hold up to 20 different frames, or white board spaces, which can be modified by adding figures, text, drawings, and sticky notes. I began the first day of class demonstrating to students how to use Jamboard. We started with a blank frame and I asked students to add “sticky notes” to the board with thoughts about how they would stay engaged with the course during our three-hour meeting time. Students also practiced using various editing tools such as the pen, textbox, and creating shapes. The students and I both found Jamboard very user friendly and easy to navigate.

In subsequent classes, I created specific Jamboard frames prior to class with the outline of an activity or figures. Some frames were created for the class to contribute to collaboratively, similar to a jigsaw format. For example, a picture of a neuron was added to one frame (Figure 1).

Preassigned student groups worked in Zoom breakout rooms to identify one anatomical location and describe its primary function on the neuron. Each group was assigned a different neuron structure and reported back to the class after their group work. During the cardiovascular physiology unit, student groups were each assigned one component of the cardiac cycle on a Wigger’s diagram. Groups worked in Zoom breakout rooms to identify their component of the cycle and write an explanation on the diagram. Groups also collaboratively completed a chart with each group completing one row or column in the chart (Figure 2). Jamboard was also useful for students to order and label steps in a physiological process. In the skeletal muscle unit, students worked in groups to correctly order the steps of muscle contraction. Each group was assigned one picture on the Jamboard frame, groups placed their picture in the correct order and used a textbox or sticky note to describe the picture.

 

 

 

 

 

For other activities, frames were created once and duplicated for each group with the group number noted at the top of the frame. Frames containing concept map instructions or feedback loop skeletons were duplicated for each group. For example, groups worked in Zoom breakout rooms to design a concept map demonstrating the relationships between cell membrane components (Figure 3) or outline a control system for different responses to deviations for homeostasis. During the homeostatic control system activity, each group was assigned a different control system. Groups reported back to the class as a whole and described their work to the class (Figure 4).

 

At the end of the course, students were surveyed about our Jamboard use. Of 17 students, 11 completed the survey. Overall, students indicated that Jamboard was an effective learning (100%, n=11) and group engagement tool (100%, n=11). In open-ended responses, students indicated that Jamboard was most effective for engaging in collaboration and checks for understanding during class. They especially liked that Jamboard helped create an in class feeling and kept them engaged with their class and their group in an interactive way. Even though groups were often labeled on Jamboard (e.g.- one frame labeled “Group 1 Concept Map” or a diagram with a “1” and arrow pointing to a specific area for identification for Group 1), several students remarked that they liked the anonymity provided by Jamboard and the lower perceived pressure to answer correctly. Students listed labeling diagrams (n=10), creating concept maps (n=7), and drawing physiological processes (n=6) as their favorite Jamboard activities. The students also appreciated that the boards were available after class for review. I posted the Jamboard link to our learning management system (Canvas) and students could return to the boards to review after class. 100% (n=11) of student respondents indicated they went back to the Jamboards two or more times after class to review.

From the instructor perspective, Jamboard provided an easy online collaborative tool for teaching physiology. Jamboard was user-friendly, flexible, and easy to set up before or during class. I found that my students were able to sustain engagement during three hours of remote class. The Jamboard group assignments were not graded, but asking student groups to report back to the class was effective motivation for producing quality group work. Challenges associated with Jamboard were consistent with most online activities including student access to a computer and reliable internet. Students occasionally had issues accessing the board anonymously if they were logged into their personal google accounts.

In moving back to face to learning, the Jamboard activities could be easily done on a whiteboard; however, collaborative drawing and annotating diagrams and charts might still be difficult without appropriate projectors or smartboard technology. Additionally, extra steps involved in taking a picture of the white board and uploading the picture to a course webpage may be barriers to making the collaborative work available after class for review. Jamboard could also be used for out of class individual or group assignments such a pre- or post- class assignments or for brainstorming activities. While the class size in the present example is quite small (17 students), use of Jamboard in these ways would be easily adaptable to larger classes and may improve student engagement in large classes (Essop & Beselaar, 2020)

 

Overall, Jamboard was an effective online collaborative tool for teaching and learning human physiology. Jamboard was user-friendly, easy to prepare before class, and kept students engaged with the class and their groups.

 

 

 

 

 

 

 

References

Allen, D., & Tanner, K. (2005). Infusing Active Learning into the Large-enrollment Biology Class: Seven Strategies, from the Simple to Complex. Cell Biology Education, 4(4), 262–268. https://doi.org/10.1187/cbe.05-08-0113

Essop, M. F., & Beselaar, L. (2020). Student response to a cooperative learning element within a large physiology class setting: Lessons learned. Advances in Physiology Education, 44(3), 269–275. https://doi.org/10.1152/advan.00165.2019

García-Almeida, D. J., & Cabrera-Nuez, M. T. (2020). The influence of knowledge recipients’ proactivity on knowledge construction in cooperative learning experiences. Active Learning in Higher Education, 21(1), 79–92. https://doi.org/10.1177/1469787418754569

Montrezor, L. H. (2021). Lectures and collaborative working improves the performance of medical students. Advances in Physiology Education, 45(1), 18–23. https://doi.org/10.1152/advan.00121.2020

Dr. Mary Stenson earned her B.S. in Biology from Niagara University and her M.S. and Ph.D. in Exercise Physiology from Springfield College. She is an Associate Professor of Exercise Science and Sport Studies at the College of Saint Benedict/Saint John’s University in Saint Joseph, Minnesota. Dr. Stenson teaches exercise physiology, research methods, anatomy & physiology, and health & fitness. Her research focuses on recovery from exercises and improving health of college students. Dr. Stenson mentors several undergraduate research students each year and considers teaching and mentoring the most important and fulfilling parts of her work.
Synchronous and asynchronous experiences in Advanced Exercise Physiology Courses: what teaching tools work best for my students?

Covid-19 caught all of us off guard, but educators were hit particularly hard and uniquely. I already have flipped classroom teaching and active learning, so the transition was not too difficult for me. However, I found myself incorporating many technological innovations. Was I doing too much? Which features were helping my students, and which ones were overwhelming? In this blog, I want to share some of the strategies I used with undergraduate students taking Advanced Exercise Physiology synchronously and asynchronously.

 

Additionally, within this blog, I am sharing the student’s perceptions of these technological innovations. In total, fifty-two students enrolled in different sections of “Advanced Exercise Physiology” culminating undergraduate experience (CUE) were invited to participate in a short survey regarding their learning experiences during this current Spring 2021 semester. A total of thirty-nine (n=39) students completed the confidential survey about whether different technological innovations helped them understand the material and study.

Who completed the survey?

Figure 1: Fifty-two students enrolled either in synchronous or asynchronous undergraduate advanced exercise physiology sections were invited to participate, and thirty-nine (n=39) responses were obtained. Seventy-two percent of the responders were enrolled in the asynchronous section, and 27.78% were enrolled in the synchronous section.

 

 

Video assignment for glucose metabolism

 During pre-COVID-19 times, I would teach using active-learning team-based instruction. For the first team-based assignment, student teams were asked to discuss and explain in easy terms one of the most difficult topics for my students: glucose metabolism. For this activity, I would bring Legos, markers of different colors, magnets, and other toys; and students were asked to use the materials and make a video of the complete oxidation of a glucose molecule. This in-class, graded assignment seem to help students to understand the metabolic pathways.  I modified the project due to distance learning, so each student has to create a video using any material desired to explain in simple words (without chemical formulas). This assignment is based on the constructivism theory of learning. It makes it innovative because the students learned that glucose is a six-carbon molecule that has to be fully “broken down” (oxidated) through different stages. Once they understand the steps, they could “name” each step and each enzyme. Some students used coins, Legos, or wrote down the step while explaining the process verbally. Some examples of the submissions can be seen in the links below:

Example submission glycolysis  one and example complete glucose oxidation.

 Students perception on making a video assignment for glucose metabolism

Figure 2: Students’ responses to the question “Having to make the video of metabolism in assignment two helped me understand glucose metabolism.” 71.43% responded true (it was helpful), and 28.57% responded false (it was not helpful)

 

 

 

Incorporation of Virtual Lab Experiences using Visible Body and Lt Kuracloud platforms.

One of the main concerns for me was to maintain and increase engagement while teaching virtually or remotely. I incorporated the Lt Kuracloud, a platform for interactive assignments, immediate feedback, videos, and physiology laboratory experiences in all my courses. I took advantage of the free trial, and I used it for some assignments. I received unsolicited emails from students expressing how helpful they found these assignments.  I also used Visible Body Anatomy and Physiology, which I used for lectures. I recommended it to students as supplemental material and for self-graded quizzes. Visible Body Anatomy and Physiology is available at no cost to students as our Institution’s library obtained the subscription for all the students.

Students’ perceptions: “How helpful do you find the following features? “

Figure 3: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for assignments in Lt Kuracloud was 79.08/100 (sd= 21), and for Visible Body was 74.74/100 (sd= 24)

 

Old Reliable Discussion Board

I recently completed my training on Quality Matters (QM) certification (1), and so my courses follow the rubrics of QM Higher Education General Standards. Specifically, QM Module 1 suggests using an introductory welcoming video encouraging the students to introduce themselves to the class using a video, a meme, a photo, or text. The best, and probably the only feature on Blackboard to do this is the “Discussion Board.” The discussion board is a great feature that allows students to increase participation. After all, students are the biggest consumers of social media, videos, and memes. The Discussion Board should be the closest FERPA approved version of TikTok or Facebook, right? WRONG! It worked fine for the first thread entitled “welcome,” most of the students responded by typing to answer the questions. Nobody made a voice thread, a meme, or a video. Afterward, I encouraged participation on the discussion board by posting questions and suggesting posting questions on the discussion board. After a few “virtual crickets” on Discussion Board, I quit posting questions there and developed interactive lectures with pop-up quizzes. As expected, Discussion Board was not very popular among my students.

Students’ perceptions: “How helpful do you find the discussion board on Blackboard? “

 Figure 4: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for the discussion board was 43.08/100 (sd= 25).

 Interactive pre-recorded lectures

Pre-recorded lectures are integral components of my synchronous and asynchronous course sections. These are developed using the interactive feature in Camtasia, in which I developed animated lectures. Thus, students are asked to watch the lessons and complete short quizzes that provide immediate feedback. If the concept is mastered, the student continues watching. If not, they are redirected to the lecture or part of the lecture where the concept is explained.

 Students’ perceptions: “How helpful do you find the interactive pre-recorded lectures? “

Figure 5: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for interactive pre-recorded lectures was 79.27/100 (sd= 16.8), and for Visible Body was 81.74/100 (sd= 17.8)

 

Quizlet and Quizlet live game

Like many educators worldwide, I teach my students and support their learning throughout our virtual synchronous meetings. Indeed, this is not easy. One day, as I was finishing my class, I heard screams and laughs! My ten-year-old was having so much fun in his most favorite subject. What is going on? I asked, “it was a close one,” my son said, “I got second place.”  It turned out that he was playing a “Quizlet Game.” Quizlet and Quizlet live have been used by teachers and students to reinforce learned material. I decided to try it, and I created a teacher profile to play games during the remote lectures. Every class, I started a Quizlet game; students use their phones or computers to play a race (team and individual). They play a “race” at the beginning of the class and again at the end of the class. This low-risk activity provides me with important information about misconceptions or concepts that are not mastered yet. Students play again towards the end of the class. This simple activity takes 10 minutes of instruction (5 minutes each “race”). However, it has been proven to be both helpful and fun for the students. Quizlet live was used only in my synchronous classes, but the Quizlet study sets were available to both synchronous and asynchronous sections.

I used this with graduate students enrolled in Human Physiology in the previous semester, and it was a hit! Students loved it, and class after class, this became very competitive. Not only were my students very well prepared for class, but also the competition made it so much fun!

Similar to Quizlet are such programs as Kahoot, Brainscape,  and others that are available for free or very affordable options.

Students’ perceptions: “How helpful do you find Quizlet study sets and Quizlet live? “

Figure 6: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for Quizlet sets was 76.86/100 (sd= 24), and for Quizlet live was 68.31/100 (sd= 28). One limitation is that most responders were students in the asynchronous section who did not participate in Quizlet live games.

 

MS Teams meetings and/or virtual office hours

 I chose Microsoft Teams (MS) for my virtual meetings simply because it is widely adopted at my Institution, and I prefer to keep it simple for students. For my synchronous section, I used a flipped virtual model, in which we meet once per week, and the other day they work on their own on assignments. I did this to avoid screen burnout students in the synchronous section. However, I have been happily surprised with students attending remote classes and the various office hours I provide. Yes, I do provide different office hours; very much this semester, I made every space available on my calendar as extra office hours. I realize that for many, meeting online for “virtual office hours” is more accessible to them (and perhaps less intimidating) than attending office hours in my office, as we did pre-pandemic.

Why did I offer so many office hours? First of all, because I could. Since I can’t conduct research studies with humans during the pandemic, it freed some time I had set aside for data collection to teaching.

Additionally, not driving to and from campus saved me an average of 75 minutes per day, which allowed me to have another office hour option. In reality, I did not use all these hours in meetings with students. Many times nobody needed to meet. However, there were a couple of times in which I’d meet with a student who was struggling. Not with the class or the content. But struggling with life, some students had somebody close to them sick or dying; some lost their job or financial aid, some were working exceptionally long hours as essential workers. For some, isolation was too much. One student, in particular, told me recently, “I do not have any questions today; I just needed some social interaction.” Flexible and various virtual office hours seemed beneficial for students, particularly for those in asynchronous e-learning experiences.

Students’ perceptions: “How helpful do you find the MS Teams meetings and virtual office hours? “

 

Figure 7: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for MS Teams and Virtual Office Hours was 75.86/100 (sd= 21).

 

 

 Conclusions

 Like most higher education instructors, I had to adapt quickly and shift to e-learning due to the pandemic. Fortunately, I had already taught online several times before and introduced several components to my flipped courses. However, I still struggled to find more interactive ways to keep my students engaged. Not only educators have to deal with the mental exhaustion of finding pedagogical tools that work in this new scenario when we have not had the time to produce evidence-based successful approaches to teaching remotely. But also, we are teaching distraught students. From the scarce but rapidly growing literature, we know that “our college students are currently struggling to stay hopeful and positive in the wake of the COVID-19 pandemic” (2). When asked about their feelings during the transition to virtual classes, students reported that they felt “uncertain” (59.5%), “anxious” (50.7%), “nervous” (41.2%), and “sad” (37.2%). (3) We have to teach students that are dealing with a lot of negative emotions and stress. We, educators, are also living with many of those emotions. My goal with this blog was to share some of my experiences teaching virtually and provide some ideas for any physiology educator that may need them.

References

Standards from the Quality Matters Higher Education Rubric, Sixth Edition. Quality Matters. Retrieved from Specific Review Standards from the QM Higher Education Rubric, Sixth Edition

  • Munsell, S. E., O’Malley, L. & Mackey, C. (2020). Coping with COVID. Educational Research: Theory and Practice, 31(3), 101-109.
  • Murphy, L., Eduljee, N. B., Croteau, K. College Student Transition to Synchronous Virtual Classes during the COVID-19 Pandemic in Northeastern United States. Pedagogical Research,5(4), em0078. https://doi.org/10.29333/pr/8485
Dr. Terson de Paleville teaches Advanced Exercise Physiology, Neuromuscular Exercise Physiology, and Human Physiology courses. Her research interests include motor control and exercise-induced neuroplasticity. In particular, Dr. Terson de Paleville has investigated the effects of activity-based therapy on respiratory muscles and trunk motor control after spinal cord injury. Additional research project involves the assessment of the effects of exercise training in elementary and middle school students on balance, visual efficiency, motor proficiency, motor control and behavior in the classroom and at home. Dr. Terson de Paleville is interested in elucidating any links between physical activity and academic skills and performance.

 

Poster sessions: not just for Experimental Biology

At the University of Minnesota, we teach a large physiology lecture/lab class directed at nursing and other allied health focused students. Around week 12 or 13 of a 14-week semester, we host a lab exercise we call “Project Day.”  In this lab, students choose a learning objective, from one of the class sessions previously during the semester, and develop a way to teach this learning objective to their student peers.  Students can make a poster, a work of art or a model.  They can compose a song, write a poem or record a video.  The sky is the limit as long as the project relates to a course objective, emphasizes physiology rather than anatomy and demonstrates a good faith effort.

After more than 15 years of project days, I have experienced an amazing variety of topics and approaches.  I heard about the cardiac cycle in a song called “It’s how your heart works” sung by the Lady Lub Dubs.  Cookies can be primary and secondary active transport proteins and M & Ms can be Na and K ions.  A beaded bracelet can illustrate the phases of the menstrual cycle. Students can learn about renal physiology by playing a game called “Kidney Land.” Lady Gaga’s song, “Poker Face”, can be turned into a parody about the SRY gene. Pipe cleaners can be converted into contractile apparatus. Beer caps can be calcium ions.  The functions of the autonomic nervous system can be dramatized in a play in which Mr. Sympathetic and Mrs. Parasympathetic are in divorce court because they cannot agree on anything.

Over the years, what I have enjoyed the most were the poster presentations.  A song or a video can be a one-way performance but the posters spark interactions. Students stand by their posters during half the class, the TAs and the faculty circulate around the lab rooms.  At the half way point we call “Switch” and the second half of students present as the first presenters circulate. The beauty of project day is the conversations sparked by all those posters.  Conversations about the difference between negative and positive feedback, the difference between skeletal and smooth muscle, the difference between graded potentials and action potentials and the difference between steroid and peptide hormones.

During Project Day, the lab is brimming with enthusiastic questions.

·         Do both cardiac and skeletal muscles have troponin? 

·         Are gamma motor neurons involved in the stretch reflex?

·         Can you help me understand why norepinephrine stimulates the heart but inhibits the intestines?

·         When does the menstrual cycle go from negative feedback to positive feedback?

·         Why do you need a bigger stimulus during the relative refractory period?

·         Are you telling me that T3 works just like the steroids?  How did I not know that?

As I circulated through the lab, I often asked, “why did you choose this topic?”

Sometimes students would say, “I picked this topic because I already knew it and felt confident about it”.  Through my smile, I felt a twinge of sadness that the student decided to play it safe.  More often, a student would say, “Well because I didn’t understand it and I wanted to.”  Or they might say, “I got this wrong on the last exam and I want to make sure I get it right on the final.”

My next question was, “Do you understand it now?”  A beaming smile would show me their answer.

At the end of the lab, we ask the students to engage in a metacognition exercise.  After viewing the posters and other projects we ask, “Can you list three concepts that are still “muddy” for you?  Are there three concepts that you realize you need to study more for the final?”  We ask the students to write down those three concepts and then we ask them to promise that they will intentionally include those three concepts in their studying for the cumulative final exam.

During the Spring of 2020, we suddenly had to switch gears.  The students submitted videos or PowerPoint slides of their projects.  They were posted on the learning management site and students were invited to view them.  Unfortunately, Project Day was not the same. We were missing a vital component……….the conversation! 

What will we do this semester?  We are going to ask the students to make a poster and take a picture of it or craft a poster from one power point slide to present on Zoom (https://zoom.us/).  The students will be sent to breakout rooms and given the ability to share their posters.  TA will be assigned to break out rooms to coordinate the poster presentations of the students.  We are thinking about groups of 8-10 students.  With 5-minute presentations and 5 minutes of questions for each poster, it should take 40-50 minutes.  We will scramble the groups and have them present again. We will grade based on a simple rubric: did it address a learning objective, did it emphasize physiology, was it a good faith effort.

I can imagine that a poster session in zoom breakout sessions could lend themselves to a number of presentation types.  Students could present on famous physiologists, on their own lab work or on a pathophysiologic application of a physiologic concept.  Instructors could adjust their grading rubrics accordingly to meet their specific learning outcomes.

This activity would not have to be done synchronously either.  Students could record a 5-minute presentation of their poster using a software called Flipgrid (https://info.flipgrid.com/). Students could upload their poster into Flipgrid, record their video and view the videos of others.   This software then permits students to post a video response or question.  Students could post a video, comment on 4 other videos and then return to record follow up videos, answering the questions of their peers about their own projects.  This would make a great final project in a lab or a class. 

Synchronous or asynchronous, the important element is that student poster sessions get students talking. As our friend Mary Pat Wenderoth often says, “The students who are doing the talking are the students who are doing the learning.” 

Lisa Carney Anderson is an Associate Professor and Director of Education in the Department of Integrative Biology and Physiology at the University of Minnesota. She completed her doctoral training in muscle physiology at the University of Minnesota. She directs the first year medical physiology course. She also teaches nurse anesthesia students, dental students and undergraduates. She is the 2012 recipient of the Didactic Instructor of the Year Award from the American Association of Nurse Anesthesia.  She co-authored a physiology workbook called Cells to Systems: Critical thinking exercises in Physiology, Kendall Hunt Press. Dr. Anderson’s teaching interests include encouraging active learning through retrieval and assessment of student reflection.  She serves on APS Teaching Section Steering Committee as Secretary.

“Zoom” into data analysis with JupyterLab
Inimary Toby-Ogundeji, PhD
Assistant Professor
University of Dallas

The use of JupyterLab notebook provides a user-friendly method for learning data analysis.  It is easy to work with and also provides a variety of datasets for direct use and case study data discussions.  One example follow-up task that can be used to extend this data analysis activity is performing logistic regression.  An example approach using Firth’s logistic regression method is provided here (https://bit.ly/31gb7vG).  JupyterLab provides a temporary workspace to accomplish basic tasks in R.  One consideration is that it doesn’t maintain the user’s data and/or work once they close the browser.  Analysis performed in JupyterLab cannot be saved to the virtual platform, however files from the work session can be exported out and saved externally.  For users wanting to have the capabilities of saving work sessions and transferring between JupyterLab sessions in a streamlined manner, they can establish a freely available account.

The activity described in this article highlight a user-friendly method to learn some basic data analysis skills.  It is ideal for students with little to no experience in Biostatistics, Bioinformatics or Data Science.  The article provides an opportunity for students to reflect and practice analysis of data collected from biological experiments within an online learning environment.  The activity is suitable for an instructor led session (using an app with screen sharing capabilities). This article provides basic knowledge about how to use R for simple data analysis using the JupyterLab virtual notebook platform.

The goal of this activity is to familiarize the user with the basic steps for importing a data file, retrieval of file contents and generating a histogram using R within a JupyterLab environment.  The workflow steps to accomplish these tasks are outlined below:

  • Access JupyterLab
  • Access “R”
  • Access datasets
  • Perform summary statistics
  • Data visualization

Workflow Step-by-Step instructions and screenshots from JupyterLab

1. Access JupyterLab
a. Login to JupyterLab here: https://mybinder.org/v2/gh/jupyterlab/jupyterlab-demo/try.jupyter.org?urlpath=lab

Home page of JupyterLab Notebook

2. Access “R”

a) Select the (+) symbol at the top left of the JupyterLab screen;

b) Select R

R Console

3. Access the dataset

a) Select the directory titled: “UPMC_cohort”;

b) Identify the filename “meta.csv”.

c) Type data<-read.csv(“meta.csv”,header=TRUE, stringsAsFactors-FALSE)

d) Click run

e) Type data

f) Click run

Dataset from “meta.csv”

4. Perform summary statistics (on variable Cigarette_Pack_Years)

a) Type str(data)

b) Click run

c) Type data$Cigarette_Pack_Years

d) Click run

e) Type summary (data$Cigarette_Pack_Years)

f) Click run

Datatypes for each variable in dataset
Summary statistics

5. Draw a histogram using the “hist” function

a) Type hist(data$Cigarette_Pack_Years, 100, main=”Use of Cigarette (in years)”, xlab=Cigarette Pack Years”, ylab”Frequency”)

b) Click run

Histogram

References:
JupyterLab- https://jupyterlab.readthedocs.io/en/latest/getting_started/overview.html

R programming- https://www.r-project.org/

Github- https://github.com/initoby/JupyterLab_R_basics/blob/master/PECOP

Dr. Toby holds a PhD in Biomedical Sciences (specialization in Organ Systems Biology) from Ohio State University, College of Medicine. Her postdoctoral training was in Functional Genomics at the FAA-Civil Aerospace Medical Institute in Oklahoma City.  She is currently an Assistant Professor of Biology at University of Dallas.  She teaches several courses including: Human Biology, Bioinformatics and Biostatistics.  She enjoys mentoring undergraduate students and is an active member of The APS. Dr. Toby’s research program at UD is focused on cell signaling consequences that occur at the cellular/molecular interface of lung diseases. She is also leveraging the use of computational methods to assess immune sequencing and other types of high throughput sequencing data as a means to better understand lung diseases.

Evolution of Teaching Physiology and Accommodating Social Distancing
Andrew M. Roberts, M.S., Ph.D., FAPS
Associate Professor
Department of Physiology
University of Louisville School of Medicine
Louisville, KY

Our graduate physiology courses at the University of Louisville School of Medicine evolved from a lecture-based format supplemented by recitation sessions and modules for each topic.  Students work in groups to identify learning issues and discuss concepts needed to understand and solve assigned questions.  They present their findings to the class and respond to questions from faculty and students.  We found this to be an important forum whereby students gain experience applying their physiological knowledge. 

An additional step that fostered student understanding was problem-based learning modules where student groups discussed and answered exam type questions.  For the “pre-test” component, each group discussed and chose their answers together.  This was followed by a “post-test” with different but, similar questions answered by each student individually.  Our metrics clearly indicated students’ ability to apply their knowledge increased significantly.

Another component which bolstered student performance and encouraged use of multiple resources for information was online quiz questions for each learning module.  Questions were made available on “Blackboard” and answered according to a schedule.  Students received notification whether they answered correctly and could change their answer choices within an allotted time.  Team-based learning with activities that encouraged students to incorporate multiple information sources improved students’ grasp of physiological concepts and mechanisms.

In summary, we developed ways to effectively engage our students who have diverse educational backgrounds and learning preferences.  It is important to note that the classroom environment, with face to face instruction, provides the opportunity to teach and motivate students through interactions with faculty members and fellow students.  However, other types of activities work well to augment and encourage student learning.

In the last year, our faculty has been discussing the possibility and usefulness of supplementing our program with online course options that could enhance students’ academic backgrounds whether they were on or off campus.  Online learning has become prevalent as another teaching tool for a diverse student group and accommodates a variety of learning preferences.  It offers flexibility whether used to supplement a “classroom” physiology course, or course taught exclusively online.  Over the last year, our experience with online learning platforms indicated instructors could teach to an entire class simultaneously. 

Students can be divided into discussion groups for problem-based learning and instructors can virtually interact by “joining” the groups.  In addition, the platforms allow everyone to be seen and to be heard.  Furthermore, it is easy to link slide as well as video presentations and record class sessions.  Traditionally, we posted lecture notes and supplemental material on “Blackboard” for students to read before class and provided access to recorded lectures.  There also is a forum for students to interact with each other and faculty members. 

Educational methods are ever changing and can go forward and back again.  With this in mind, online learning is not necessarily a replacement for face-to-face learning but, can be an additional learning tool.  Even faculty less familiar with online learning have found the latest learning platforms to be relatively easy to use and actually to enhance their teaching styles.  A key ingredient to the success of our program, is having designated faculty members and staff available as teaching resources!  With the necessity for implementing social distancing during the COVID- 19 pandemic, online learning and video conferencing allowed us to continue and sustain our courses and academic program during this difficult time hopefully without jeopardizing student lifelong learning.

Andrew M. Roberts, MS, PhD, FAPS is an Associate Professor in the Department of Physiology at the University of Louisville School of Medicine in Louisville, Kentucky.  He received his PhD in Physiology at New York Medical College and completed a postdoctoral training program in heart and vascular diseases, as well as, a Parker B. Francis Fellowship in Pulmonary Research at the University of California, San Francisco at the Cardiovascular Research Institute.  His research focuses on cardiopulmonary regulatory mechanisms with an emphasis on neural control, microcirculation, and effects of local endogenous factors.  Current studies include microvascular responses altered by inflammatory diseases and conditions, which can lead to acute respiratory distress syndrome.  Additional studies include obstructive sleep apnea.  He teaches physiology to graduate, medical, and dental students and has served as a course director as well as having taught allied health students.

A Sabbatical in Australia Cut Short and the Rapid Transition of Course Delivery of an Australian University due to the COVID-19 Global Pandemic
Emilio Badoer, PhD
Professor of Neuropharmacology
School of Health & Biomedical Science with the College of Science, Engineering & Health
Royal Melbourne Institute of Technology (RMIT) University, Bundoora (Melbourne, Victoria, Australia)

Patricia A. Halpin, PhD
Associate Professor of Biological Science and Biotechnology & Visiting Associate Professor at RMIT University
Department of Life Sciences, University of New Hampshire at Manchester (Manchester, NH)

I was thrilled to spend my sabbatical performing education research at RMIT University in Australia during the spring semester of 2020. I met my collaborator Emilio Badoer at the APS ITL in 2016 and at that time we vowed to collaborate someday. I had a smooth flight to Melbourne AU and as we left the airport, I got my first view of the city covered in a smoky haze from the bushfires to the north1. The radio broadcast playing on the car stereo was alerting everyone to the tropical cyclones headed for the east coast and these would soon cause massive flooding in New South Wales. “Welcome to Australia” Emilio said, little did we know at the time that the worst was yet to come. The COVID-19 outbreak in China had caused Australia to close its borders on February 12,3 to foreign nationals who had left or transited through mainland China.  I arrived February 9 and the focus of my attention was the excitement and anticipation of starting our two research projects.  At my small college, my courses usually enroll 10-24 students, at RMIT our first study was working with a large nursing class (n =368) with the primary goal of using Twitter to engage them outside of class with the course content. 

The nursing cohort started two weeks prior to the start of the term, and in the third week, the students went on clinical placements for five weeks. This course is team-taught and Emilio taught during the first two-week period so that content was the focus of our research for this study. We designed the study to collect data using paper surveys to be distributed at face-to-face class meetings at the beginning and end of the term to ensure a high rate of survey completion. The second study performed with his Pharmacology of Therapeutics class (n=140) started on March 2 with one face-to-face meeting followed by four weeks of flipped teaching (FT). During the FT period, we would engage them on Twitter with course content and they would meet during weekly face-to-face Lectorial sessions for review during the usual scheduled class time.  Students completed the paper pre-survey in the first class meeting and the scheduled paper post-surveys were to be distributed during the final Lectorial sessions on March 19 and 20.  Then on Monday March 16th everything changed; Victoria declared a state of emergency to combat the COVID-19 pandemic4 and Qantas announced that they would cancel 90% of their international flights5, with the remaining flights cancelled on March 31. 

I was contacted by friends and family back home urging me to come home right away. RMIT announced the decision that learning would go online starting March 23. In the United States, colleges had previously announced that students heading home for spring break should stay home as their classes would be delivered online due to the COVID-19 concerns 6. The faculty at the US schools had spring break to prepare the transition of their course content for the new delivery mode. At RMIT, they had recently started their semester with no spring break normally scheduled and the only break on the horizon was the distant Easter holiday (April 10-13) long weekend. Our hopes for data collection were quickly dashed as during the last Lectorial sessions only a few students attended, and we would not be able to survey the nursing students in person when they returned from placements.

My focus shifted to leaving the country as soon as possible. The only way to change my airline ticket home was through a travel agent and my personal travel agent spent a total of 11.5 h on hold with Qantas over a two-day period to secure my ticket home. I left Australia with hordes of anxious Americans. The airports were overwhelmed as we formed long lines trying to check in and then go through security. Everyone had a story to tell of how they had to cut their trip short and then changed their tickets. In Los Angeles I was joined by more Americans who were coming from New Zealand. Many of the American travelers were undergraduates very disappointed that their universities had called them home and they were leaving their semester abroad adventures. We would all soon arrive home safely to a country living in a new reality.

Meanwhile, in Australia, the situation at universities evolved rapidly. In line with the Australian Government mandate, students were told that all new arrivals into the country must self-isolate for 14 days effective March 16. Public gatherings of over 500 people were no longer allowed. Although universities were specifically exempt from this requirement, RMIT University proactively cancelled or postponed any events that were not related to the core business of learning, teaching and research. It also foreshadowed a progressive transition to lectures being delivered online where possible.  The University also indicated that students would not be disadvantaged if they chose not to attend face-to-face classes during the week of March 16. In response to the rapid changes occurring internationally, on March 20, the Australian Government restricted all non-Australian citizens and non-Australian residents from entering the country.  While Australian Universities could remain open and operating it was clear that this would not last for long 7. In response, RMIT University mandated that from Monday March 23 lectures were to be made available online but tutorials and seminars and non-specialist workshops could continue face-to-face until March 30.

On Sunday March 22 the State Government of Victoria (where the main RMIT University campus is based) mandated the shutdown of all non-essential activity from Tuesday March 24 to combat the spread of COVID-19 7. Immediately, RMIT University suspended all face-to-face learning and teaching activity on all its Australian campuses. Overnight, faculty became online teaching facilitators. Emilio produced and is continuing to produce new videos (15-30 minutes duration) covering the content normally delivered during the face-to-face large lecture session. Each week 3-5 videos are produced and uploaded onto Canvas (RMIT’s online learning management system) for the students. 

Unlike many of the US schools that are using Zoom, RMIT is using Collaborate Ultra within Canvas as its way of connecting with students on a weekly basis. Collaborate Ultra has the ability to create breakout groups and faculty can assign students to a specific breakout group or allow students to self-allocate to a specific breakout group. Emilio has allowed students to move between breakout groups to increase engagement. The only stipulation was to limit the group size usually to no more than six. Each student was originally registered to attend one small group Lectorial session that meets once per week for one hour and these groups have between 45-50 students each. The Lectorials were replaced by Collaborate Ultra sessions that were organized for the same times and dates as the normally scheduled small Lectorial sessions. The students and facilitators would all meet in the so-called “main room” where Emilio would outline the plans for the session. The main room session was conducted with Emilio’s video turned on so the students were ‘invited “into his home” and could feel connected with him. Dress code was also important. Emilio was conscious of wearing smart casual apparel as he would have worn had he been facing the students in a face-to-face session. In this way he attempted to simulate the normal pre-COVID-19 environment.

Following the introductory remarks outlining the tasks for the session, students were ‘sent’ to their breakout rooms to discuss and work on the first problem / task discussed in the main room. The analogy used by Emilio was that the breakout rooms were akin to the tables that were used in their collaborative teaching space in which he normally conducted the Lectorial sessions. Each table in that space accommodated approximately six students (hence the stipulation of no more than six in each breakout group). Emilio and another moderator ‘popped’ into each breakout room to guide and facilitate the students in their discussions. To date, the level of engagement and discussion amongst the students themselves generally appears to be much greater than that observed at face-to-face sessions which was a fantastic surprise. After a set time had elapsed, students re-assembled in the main room where the task was discussed with the whole class. This ensured that all students understood the requirements of the task and they had addressed all points that were needed to complete the task to the satisfactory standard. Next followed another task that differed from the first providing variety and maintaining the interest of the students.

Examples of tasks performed.

1 – Practice exam questions

A short answer question requiring a detailed response that would normally take at least 10 minutes in an exam environment to answer properly. Such questions were based on that week’s lecture (now video) course content and was contextualized in a scenario in which physiological/pathophysiological conditions were described and the pharmacological treatments needed to be discussed in terms of mechanisms of action, adverse effects, potential drug interactions or pharmacogenomic influences etc.

2 – Multiple choice questions – Quizzes

Emilio ran these using the Kahoot platform. By sharing his screen, Emilio could conduct such quizzes live providing instant feedback on student progress. This allowed Emilio to provide formative feedback, correct any misconceptions and discuss topics. Additionally, students were able to gauge their own learning progress. These tasks were performed in the main room with all participants.

3 – Completing sentences or matching answers

These could be done effectively in the breakout rooms, where a ‘lead’ student could utilize the whiteboard function in Collaborate Ultra which allowed all students in the group the opportunity to write on the whiteboard allowing discussion regarding the answers written.

4 – Filling in the gaps

Here Emilio would share his screen in which a diagram / figure / a schematic of a pathway etc. with labels/ information missing was provided and students were asked to screenshot the shared information. Then in breakout rooms, one student shared the captured screen shot with the group and the missing information was completed by the members of the group.

The Collaborate Ultra sessions were also utilized to provide students with a platform in which group work could be performed. With a lockdown in force and gatherings of groups forbidden, this utility was very important for enabling connection between students working on group projects. It also provided a sense of belonging within the student cohort.

In conclusion, with minimal preparation, a huge Australian University converted face-to-face teaching and learning to an online digital teaching and learning environment where working remotely was the new norm. It is almost inconceivable just a few short weeks ago that such a transformation could have happened in the timeframe that it did. It is a truly remarkable achievement.  

References

1 Alexander, H and Moir N. (December 20, 2019). ‘The monster’: a short history of Australia’s biggest forest fire. Sydney Morning Herald Retrieved on April 10, 2020 from https://www.smh.com.au/national/nsw/the-monster-a-short-history-of-australia-s-biggest-forest-fire-20191218-p53l4y.html

2 Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV) (Jan. 30, 2020). Retrieved on April 10, 2020 from https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)

3 Travel Restrictions on China Due to COVID-19 (April 6, 2020). Retrieved on April 10, 2020 from https://www.thinkglobalhealth.org/article/travel-restrictions-china-due-covid-19

4 Premier of Victoria, State of Emergency Declared in Victoria Over COVID-19. (March 16, 2020) Retrieved on April 10, 2020 from https://www.premier.vic.gov.au/state-of-emergency-declared-in-victoria-over-covid-19/

5 Qantas and Jetstar slash 90 per cent of international flights due to corona virus (March 16, 2020). Retrieved on April 10, 2020 from https://www.abc.net.au/news/2020-03-17/qantas-coronavirus-cuts-capacity-by-90-per-cent/12062328

6 Hartocollis A. (March 11, 2020). ‘An Eviction Notice’: Chaos After Colleges Tell Students to Stay Away. The New York Times. Retrieved on April 10, 2020 from  https://www.nytimes.com/2020/03/11/us/colleges-cancel-classes-coronavirus.html

7 Worthington B (March 22, 2020). Coronavirus crackdown to force mass closures of pubs, clubs, churches and indoor sporting venues. Retrieved on April 10, 2020 from https://www.abc.net.au/news/2020-03-22/major-coronavirus-crackdown-to-close-churches-pubs-clubs/12079610

Professor Badoer has held numerous teaching and learning leadership roles including many years as the Program Coordinator for the undergraduate Pharmaceutical Sciences Program at RMIT University in Bundoora AU and he coordinates several courses. He is an innovative instructor that enjoys the interactions with students and teaching scholarship. He has also taught pharmacology and physiology at Melbourne and Monash Universities. In addition, he supervises several postgraduate students, Honours students and Postdoctoral Fellows.

Patricia A. Halpin is an Associate Professor in the Life Sciences Department at the University of New Hampshire at Manchester (UNHM). Patricia received her MS and Ph.D. in Physiology at the University of Connecticut. She completed a postdoctoral fellowship at Dartmouth Medical School. After completion of her postdoc she started a family and taught as an adjunct at several NH colleges. She then became a Lecturer at UNHM before becoming an Assistant Professor. She teaches Principles of Biology, Endocrinology, Cell Biology, Animal Physiology, Global Science Explorations and Senior Seminar to undergraduates. She has been a member of APS since 1994 and is currently on the APS Education committee and is active in the Teaching Section. She has participated in Physiology Understanding (PhUn) week at the elementary school level in the US and Australia. She has presented her work on PhUn week, Using Twitter for Science Discussions, and Embedding Professional Skills into Science curriculum at the Experimental Biology meeting and the APS Institute on Teaching and Learning.