Category Archives: Undergraduate Physiology

Together or Apart? Lecture with Laboratory, or Taken Separately?

Think back to your days as a college student majoring in science. Was your college on the smaller scale such that your professor met with you weekly for both your lecture and laboratory in chemistry, biology and physics? Or was your university on the large size, and while you sat among dozens or even hundreds of your peers in an auditorium where your professor lectured, you then met weekly in a smaller laboratory session conducted by teaching assistants? Our past experiences as students may or may not bear similarities to our professional career teaching environment at present.

As college professors in biology, or related science disciplines, our student enrollment in the major and the headcount of part-time versus full-time faculty have likely dictated the course schedule each semester. Such quantitative data, meshed with the physical resources of chairs in a classroom and square footage of laboratory space for teaching purposes, may be the major drivers of curricular practices. Pedagogical tradition perhaps accounts for science course scheduling practices as well. Budgetary matters too weigh heavily on decisions to maintain the status quo, or to experiment with test piloting the implementation of emerging course designs.

I teach at a mid-sized public university that offers graduate degrees alongside our more populous undergraduate majors. Our biology majors number approximately 1,000. Our faculty include part-time adjuncts, full-time lecturers and tenured/tenure-track professors. We do not have graduate teaching assistants in the classroom. Most often the assigned faculty teach both their lecture and laboratory sessions for a given course. A recent trend in our college has been to identify traditional lecture/laboratory courses that could be split such that students enroll in completely separate courses for the lecture versus the laboratory. For example, our microbiology course that used to be one combined course meeting twice weekly for lecture and once weekly for laboratory is now two distinct courses, laboratory versus lecture, although both are taken in the same semester, each course posts an individual grade on the transcript.

When asked to consider if any of the courses I teach would or would not be appropriate for separation of lecture from laboratory, I went to the pedagogical literature to see what I could find on the topic. Where science courses are combined into a single course (one grade) with lecture and laboratory, the lecture may be to a large scale audience, while the labs are disseminated into smaller break out groups led by either the lecture faculty or else another faculty member or teaching assistant. On the other hand, a science “course” may have a completely separate course number where students enroll and earn a grade for lecture, and a distinctly different course number where they enroll and earn a separate grade for the laboratory. Knowing these two variations exist, the literature reveals other alternatives as well.

A paper in the Journal of Scholarship of Teaching and Learning evaluated college introductory biology courses where either the same instructor teaches both the lecture and laboratory sessions versus those where there are different instructors for the lecture versus the lab. The author reports “no general trend indicating that students had a better experience when they had the same instructor for both lecture and laboratory than when the lecture and laboratory instructor differed (Wise 2017).” In fact, he states that students may even benefit from having different lecture and laboratory instructors for the same course as such would afford students exposure to instructors with different backgrounds and teaching styles (this paper’s doi: 10.14434/josotl.v17i1.19583).

When I was a teaching assistant during my graduate school days, I developed my teaching style by trial and error as the TA for the laboratory session break outs from the professor-led large auditorium style lectures for the undergraduate first year students majoring in biology. That was the early 1990s, and it was a mid-sized private university where at the same time they were “experimenting” with upper level undergraduate laboratory classes that were lab only. They called them “super labs” and they were not attached to a concurrent lecture course. Indeed, a 2005 paper in Biochemistry and Molecular Biology Education by D.R. Caprette, S. Armstrong and K. Beth Beason entitled “Modular Laboratory Courses” details such a concept whereby the laboratory course is not linked to a lecture (doi/epdf/10.1002/bmb.2005.49403305351). These modular laboratory-only courses are shorter in duration, ranging from a quarter to a half of semester, for 1 or 2 academic credits. Their intent is to apply the learning of specific skills, methods and instrumentation in their undergraduate biology and biochemistry curriculum. Of note, they recognized that their transition to such modular short-term laboratory courses was eased by their academic program already having their traditional curriculum with individual laboratory courses separate from the lecture courses.

Studio courses had in my mind been those taken by the art majors and other fine arts students. In the literature, however, there is an integrated “studio” model for science courses. A paper in Journal of College Science Teaching details how a small private college converted their Anatomy & Physiology I course, among others, from traditional lecture/laboratory courses to the integrated studio model. Their traditional twice weekly 75 minute lectures with 60 students and 150 minute breakout laboratories with 16 students per section, was reconfigured to 30 students meeting with the same instructor and teaching assistant twice weekly, each for 2 hours. These longer duration class sessions each consisted of, for example, 20 minutes lecture followed by 30 minutes of a context-linked laboratory, and then 20 minutes lecture followed again by 40 minutes of a linked laboratory They report fewer course withdrawals and unsatisfactory grades and cite that students felt “engaged and active” as did instructors who spoke of “immediate application and hands on” activity in the interactive classroom (Finn, Fitzpatrick, Yan 2017; https://eric.ed.gov/?id=EJ1155409).

Based on my experience with comprehension by students with the content delivery, I have decided to redesign my upper level undergraduate Cell Physiology course such that the cell physiology lecture will be a standalone 3 credit course, and students will be encouraged to take either during the same semester or the following semester, the 1 credit cell physiology laboratory course. When viewed thru the course scheduling and facilities lenses, this “split” will afford more students to enroll in a single lecture course section, while then having multiple smaller capacity laboratory course sections. As this is an upper level elective, students may find that a 3 + 1 credit option as well as a 3 credit only option suits their needs accordingly. And they can decide for themselves, together or apart, lecture with laboratory, or taken separately.

Laura Mackey Lorentzen is an associate professor of biology at Kean University in Union, NJ, where her teaching emphasis is general biology for majors as well as cell physiology, neuroscience and senior capstone. She earned a PhD in Biomedical Sciences/Molecular Physiology and Biophysics from Baylor College of Medicine in Houston TX, an MS in Cellular & Molecular Biology from Duquesne University in Pittsburgh PA, and a BS in biology from The University of Charleston, WV. She is a past president of the New Jersey Academy of Science (NJAS) and past editor-in-chief of AWIS Magazine, for the Association of Women in Science.
The Capstone Experience: Implementing lessons learned from a pandemic educational environment to create inspirational real-world educational experiences
Historically, physiology undergraduate students across the world have undertaken a laboratory-based, fieldwork or critical review research project, their educational purpose for students to gain research experience. However, decreasing numbers of physiology graduates are going onto careers in research, many are leaving science altogether. It is therefore imperative that we, as educators, better prepare the majority of our students, through their projects, for the diverse range of careers they go onto.

Pre-pandemic opportunities

Over the last twenty years, physiology and the broader global bioscience educator community, recognizing this diversity of graduate career destinations, have been expanding the range of projects available to their students, introducing for example, public engagement, educational development or enterprise projects.  However, the focus and purpose of these projects remained for students to gain research experience. They were traditional research projects but outside of the laboratory. The literature and Accrediting Bodies project criterion still talked about students undertaking “hypothesis-driven research” and “project/research-based assignments”.

Whilst these traditional research projects may have been relevant fifty years ago, they do not enable the majority of current Bioscience graduates to be “work-place ready”. The world is currently going through its fourth industrial revolution (4IR), a world and workplace governed by robotics, artificial intelligence, digitization and automation. Graduate recruiters require graduates with different skillsets, the so-called 4th Industrial Revolution (4IR) skills1.

I recognized that radical change was required, not only in my School of Biomedical Sciences, but across bioscience Higher Education globally. Collectively, bioscience educators needed to rethink the purpose, practices and outcomes of undergraduate research projects in order to better prepare our students for an increasingly challenging 21st Century global workplace.

My solution was to introduce project-based capstone experiences into my program. their purpose to provide students with opportunities for personal and professional development, and to gain real life work experience.

A highly experienced science communicator, I facilitated ethical debates in High Schools.  I realized that this would make an ideal opportunity for my undergraduates – something different as their research project. Starting small, I collaborated with one of my project mentees to co-create and co-deliver an ethics-focused workshop for High School students at the 2005 Leeds Festival of Science2. The capstone experience, as an alternative to traditional research projects, was born.

Over the last sixteen years, I have progressively expanded the range of capstone opportunities in my course. Colleagues within my School of Biomedical Sciences at the University of Leeds (UK), recognizing the benefits of capstones to students, joined me. In partnership with our students, we have created a sector-leading portfolio of traditional research projects offered alongside science or industry-focused capstones, and those with a civic or societal focus in the same course (Figure 1)3. Students select the project that best addresses their individual developmental needs and/or future career intentions. By offering this broad portfolio of sixteen opportunities, it is inclusive, there is something for each and every student to realize their full academic potential and personal goals.

 

Figure 1: Research and capstone project opportunities available to students

My students have wholeheartedly grasped this opportunity, excelling academically.  Their course marks are significantly higher than students undertaking traditional research projects (2020: mean ± SD = 71.4±4.4% vs 68.4±5.8%, p<0.05).  In 2020-21, 27% selected capstones as their first choice of project, a massive cultural shift given we are a research-intensive (R1) Institution where laboratory projects have traditionally been viewed by both students and Faculty as the “gold-standard”.

Our work as a team has resulted in the award of a prestigious national (UK) higher education prize, an Advance HE Collaborative Award for Teaching Excellence.

My work came to the attention of other Bioscience educators. I was invited to run workshops at Institutions across the UK seeking to introduce capstones into their program. I re-wrote one of the two UK Bioscience Accrediting Bodies project accreditation criteria, incorporating my capstone ideas.

And then Covid struck!

With restricted or no access to research facilities, Bioscience educators globally struggled to provide alternatives to traditional research projects.  To support colleagues across the world, in partnership with Sue Jones (York St John University, UK) and Michelle Payne (University of Sunderland, UK), I ran virtual workshops, sharing my capstone ideas and resources.  I created and shared globally, guides for students4 and educators5, and resource repositories6,7. The workshops were attended by over 1000 educators from as far afield as Australia, Africa and America. The resources viewed 12,000 times from over 50 countries.

A year on, we surveyed both students and Faculty globally. All responding institutions had introduced capstone projects into their programs in 2020-21. More importantly, they are here to stay. Recognizing the benefits to their future employability and careers, a massive 94% of students wanted capstones to be provided alongside traditional research projects. Faculty thought the same. All are not only keeping capstones, but more importantly, are broadening their portfolios going forward. Each new format developing different skill sets and attributes, and therefore preparing students for additional career destinations. We have inspired sector-wide curriculum change!

Going forward, we cannot return to our old ways!

As the world opens up and returns to a new “normal”, we cannot go back to our old ways of just offering traditional research projects. We would be massively letting our students and wider Society down. We need to take the best from what we have learnt and achieved, both before and during the pandemic, and continue to develop and evolve our collective capstone provision going forward.

We are at the start of an exciting Global journey.  Capstones across the world are predominantly conservative in nature, for example taught courses, senior seminar series or extended essays. Educators globally have yet to fully realize the transformative (massive uplift in skills and attributes) and translational (preparation for the workplace) potential of capstones.

We need to create capstones that are more representative of the work place for example, multi-disciplinary teams and sub-teams working on the same capstone, and capstones that run over multiple years, with current students taking the previous year’s project outputs and outcomes to the next stage.  The events of the past two years have made Universities realize they need to better address their local and global civic and societal responsibilities and missions, so capstones that facilitate societal engagement. We need to move away from traditional dissertations or reports to more authentic real-world assessments.

Within my School of Biomedical Sciences and the broader University of Leeds, we have started down this journey. Ninety percent of the capstones in my course are now team-based. Students choose their primary assessment method (e.g. academic paper, commercial report, e-portfolio) – the one most suited to their particular capstone format and which best showcases their knowledge, skills and attributes. I have introduced Grand Challenges capstones where students work as to teams to create evidence-driven solutions to global Grand Challenges or UN Sustainable Development Goals (SDG). The intention to develop these into trans-national educational opportunities, where students from the Global North and South work collaboratively on the same SDG or Grand Challenge capstone. We have an Institutional requirement that all undergraduate students, regardless of discipline, must undertake a major research-based assignment in their final year of study. I have been awarded a Leeds Institute of Teaching Excellence to work with Faculty across the University to introduce capstones into their programs and to create pan-university multi-disciplinary capstone opportunities for our students.

I do not do things by halves. My vision is not just limited to Leeds, the UK or the Biosciences, but Global!

I have created a global Community of Practice for stakeholders across the world to work collaboratively together, sharing ideas, expertise and resources, to co-create and introduce inspirational multi-disciplinary, multi-national team-based capstone projects that address globally relevant issues into undergraduate and taught postgraduate degree programs across the world.  I want to make it a truly global and inclusive community, to include all stakeholders- students, alumni, educators, employers, NGOs, social enterprise, Global North or South, all disciplines or sectors….The list is endless.

If you would like to join this Community of Practice and be part of this exciting journey, please email me (d.i.lewis@leeds.ac.uk). Please share this opportunity amongst your colleagues, networks and across your Institution. The broader the membership, the greater the collective benefits for all.

If we pull this off, the benefits for students, other stakeholders and Society will be phenomenal. Our graduates would be truly global graduates, equipped with the skills and attributes to become leaders in whatever field they enter. As Faculty, we would be providing an exceptional educational experience for our students, properly preparing them for the workplace. Universities, through student capstones, would be better able to address their civic and societal responsibilities and missions. Employers would have graduates able to take their businesses forward and to thrive in an increasingly competitive global marketplace. We would be creating solutions to some of the complex problems facing mankind.

Figure 1: Research and capstone project opportunities available to students

1.    Gray, A. (2016). The 10 skills you need to thrive in the Fourth Industrial Revolution. World Economic Forum. https://www.weforum.org/agenda/2016/01/the-10-skills-you-need-to-thrive-in-the-fourth-industrial-revolution/

2.    Lewis DI (2011) Enhancing student employability through ethics-based outreach activities and OERs. Bioscience Education 18, 7SE https://www.tandfonline.com/doi/full/10.3108/beej.18.7SE

3.    Lewis DI (2020a). Final year or Honours projects: Time for a total re-think? Physiology News 119: 10-11.

4.    Lewis DI (2020b). Choosing the right final year research, honours or capstone project for you. Skills career pathways & what’s involved. https://bit.ly/ChoosingBioCapstone

5.    Lewis DI (2020c). Final year research, honours or capstone projects in the Biosciences. How to Do it Guides. https://bit.ly/BiosciCapstones

6.    Lewis DI (2020d) E-Biopracticals (Collection of simulations & e-learning resources for use in Bioscience practical education. Available at: https://bit.ly/e-BioPracticals

7.    Lewis DI (2020e) Open access data repositories (Collection of large datasets, data analysis & visualization tools).  Available at: https://bit.ly/OADataRep.

 

Dr. Dave Lewis is currently a Senior Lecturer (Associate Prof) in Pharmacology and Bioethics in the School of Biomedical Sciences, University of Leeds, UK. A student education focused colleague, he creates inspirational educational and professional educational interventions designed to promote learner personal and professional development, and prepare them for the workplace.  He is the architect of the introduction of capstone projects into Bioscience programs across the UK and beyond.  He also Chairs the International Union of Basic & Clinical Pharmacology’s Integrative & Organ Systems Pharmacology Initiative, working with Professional and Regulatory Bodies, and NGOs in India, China and across Africa to co-create and co-deliver professional education in research animal sciences and ethics.

In recognition of his exceptional contribution to Bioscience Higher Education globally, he has received multiple prestigious education awards including a UK Advance HE National Teaching Fellowship and its Collaborative Teaching Excellence Award, the (UK) Biochemical Society’s Teaching Excellence Award, the (UK) Physiological Society’s Otto Hutter Teaching Prize, and Fellowship of the British Pharmacological Society & its Zaimis Prize.

The COVID-19 Pandemic: An Opportunity for Change in my Teaching

As the 2020-21 academic year ended, I sighed with relief. I had survived the switch to an online teaching format, wearing a mask while teaching when I had to have a class in-person, and the loss of my father. But as quickly as my sighs of relief subsided, I began to wonder, “What will happen next academic year?” Will I be teaching all my classes in-person, will my classes be online, or will I have some classes or labs online and others in-person? As these questions swirled in my head, I began to reflect on this past year. Teaching online was tough. There were activities that bombed. But there were activities that rocked. And there were activities that could be improved. And believe it or not, there were some great things that came from teaching online. Some had to do with content, some had to do with skills, and some had to do with community. Now comes the challenge of choosing what I should take with me, and what I should leave behind? And as I reflected, I realized there are two experiences from this past year I want to use this year, whether I am teaching in-person or online. One had to do with the idea of community and the other had to do with skills. While others came up, I decided to be kind to myself and focus on two.

1. Forming an Inclusive Scientific Community
Prior to the COVID-19 pandemic, I had never taught a course online nor had I taken a class online. I had attended webinars but had never presented an online seminar either. Now I was being asked to teach courses online to students I had never met, and these students had never met each other in-person either. When I reflected on my teaching in-person, I realized I had never worried about whether I knew the students immediately or whether they knew each other. I assumed their presence in class with me and with the other students would allow relationships to form and a learning community to be built. But now they were just images on a screen and often, just names since cameras were not always on.
Now that I was teaching online, I had to be more intentional about building a learning community. This was to help not only me but also my students. Research has shown that students do not just want to be faces in a crowd (1, 2). They want to be recognized by the professor and by their peers. And as the pandemic progressed, they needed this more personal interaction. Creating a community would foster interaction and make students comfortable to share in an online environment (1, 2). To begin, I included icebreaker activities to allow me and the students to learn more about each other. And these icebreakers were not a one and done activity. They continued throughout the first several weeks of class. As the semester continued, polls or questions replaced the icebreakers. These were questions anyone could answer. They could be content questions, well-being checks, or simple questions about plans for the weekend or favorite ice cream. All meant to foster community. When in the classroom, peer interactions can be observed by the instructor. In the online classroom, it was more difficult to monitor interactions and those who were uncomfortable with group work could disappear when the breakout rooms opened.
Including these activities online allowed me and the students to feel like we were in this class together. While I was not a student, I was no longer “The Sage on the Stage.” We, the professor and the students, were in this online learning community together. When an online activity was successful, we celebrated together. If something did not work, what discussed the activity and what we could change. This community was most evident when my father fell ill and then passed away. These students I had been working with stepped up and helped me during this emotionally challenging time. While I still guided their learning, they took more on themselves, and they helped each other and me. The entire year we had spoken about grace and that we all needed to give and receive it. They gave me grace when I needed it most. Who would not want to take this community into the in-person classroom?


2. Promoting Scientific Soft Skills
With the initial move to online teaching, one of the challenges faced was laboratory experiments. Many laboratory exercises require specialized equipment (3). In my case, this was the Biopac Student Lab System®. One of the benefits of this system is that students get to record physiologic data on each other. The cost of and logistical issues regarding supervision and liability for the Biopac® home system prevented me from using this as an option. However, one of the benefits of the Biopac Student Lab System® is the free access to sample data and the free analysis software for downloading offered by the company (Figure 1). Additionally, as I had been using these systems for over 10 years, I had previously recorded student data at my fingertips (Figure 2). Students could download the software to their personal computers and open any shared data for analysis. While the students were not actually recording the data themselves, this provided an alternative for learning about physiological processes with data from subjects. This also allowed me to have the students focus more on how they presented the results and how they discussed the science behind the results. We could focus on the writing of the results and the understanding of the science because the students were no longer focusing on the possibility of user error as to why they did not get the results expected.
As I was reflecting, I realized that with lab exercises moving online that the reduction in focus on learning how to use equipment and collect data was a positive (3). This allowed students to focus on writing and understanding what they were writing. This made me think that I could expand the use of pre-recorded data to include other skills such as inter-rater reliability and statistical analysis. As stated earlier, in my physiology courses, students consistently would state user error was the reason they did not get the results they expected. While this may have been the case for some experiments it was not always the case. This is where sample raw data, whether the raw data was from the equipment company or recordings from prior years’ labs, is useful. Students can be provided with the same raw data to be analyzed. Students could then compare results with each other and determine if they were following the same directions for analyzing the data. The closer the values to their peers suggested they were analyzing the data in a comparable manner.
Another interesting opportunity that pre-recorded data provides is the ability to discuss statistical significance in a more detailed fashion. Often when students are collecting and analyzing their own raw data, there is not enough time to aggregate the data for statistical analysis. Now students could all be given multiple sets of raw data to analyze, these results could be aggregated, and statistical analysis performed. In upper-level courses, students can then learn when to use t-tests versus ANOVA, learn about post hoc tests, and p-values. As journals and professional societies recommend more in-depth presentation of statistical analysis, this can be added as well. In more introductory courses, this could be modified to focus on mean and standard deviation. Finally, by focusing on inter-rater reliability and statistics, students can further improve their writing of the results and discussion sections.
One of the reasons labs are often popular is because students get to be the scientist. I do not want this to disappear when in-person labs return. I still want students to learn how to use the Biopac® systems and record data from each other when we return to class; seeing the excitement in the students’ eyes when they see the ECG or EMG recording of their own bodies is one of the joys of teaching. But I want to find ways to keep the positive aspects of using pre-recorded data. Could this be a pre-lab activity? Could I take one or two of the experiments we do and provide the data rather than record the data? Could I have students record their own data and exchange the raw data with each other? I am still trying to decide how this might look in my class. Maybe that is my next blog?
In conclusion, the COVID-19 pandemic created a flurry of change in a short period of time. In higher education, we are not used to this quick a change. And as humans, we are typically resistant to change. However, I suggest that instead of being anxious to return to the way we used to be that we look back at this time as a needed push for some change. We should use this opportunity to see what we changed that made our teaching better.

1. Faulkner SL, Watson WK, Pollino MA, Shetterly JR. “Treat me like a person, rather than another number”: university student perceptions of inclusive classroom practices. Communication Education. 2021;70(1):92-111. doi: 10.1080/03634523.2020.1812680.
2. Kirn-Safran CB, Reid AC, Chatman MM. Peer Mentors Prove to be Strong Assets in Virtual Anatomy & Physiology Labs. Imprint. 2021:16-8.
3. Xinnian Chen CBK-S, Talitha van der Meulen, Karen L. Myhr, Alan H. Savitzky, Melissa A. Fleegal-DeMotta. Physiology Labs During a Pandemic: What did we learn? Advances in Physiology Education. 2021;In Press.

Figure 1: Image of free download Biopac Student Analysis Software®. Note you can review a saved lesson, analyze sample data from the company, or analyze data collected in the lab.

Figure 2:  Image of pre-recorded spirogram with vital capacity indicated. Values are indicated in the boxes on the top of the spirogram.

Opening image Creator: Victoria Bar; Credit: Getty Images

Melissa DeMotta, PhD is currently an Associate Professor of Biology at Clarke University in Dubuque, IA. Melissa received her BS in biology from Lebanon Valley College. After working for three years at Penn State’s College of Medicine in Hershey, PA, she received her PhD in Physiology and Pharmacology from the University of Florida in Gainesville. Following postdoctoral fellowships at the University of Arizona and Saint Louis University, Melissa joined the Biology Department at Clarke University. Melissa currently teaches Human Physiology and Exercise Physiology to physical therapy graduate students and undergraduates. She also enjoys teaching non-majors life science courses as well.
Reworking the recipe: Adding experimentation and reflection to exercise physiology laboratories

What do you get when you follow a recipe? We suppose it depends on how carefully you follow the instructions, but assuming you stay true to the steps and have the requisite skills, you get something that approximates the taste described on the food blog (it never looks as good). While following a recipe can get you an expected result in the kitchen, it does not make you a chef—you probably will not learn to create new dishes, improve tired ones, or reverse-engineer your favorite take-out order. What do you do if you run out of vanilla!? We think the same is true in a science laboratory: You don’t develop the skills of a scientist by just following instructions. Sure, scientists follow instructions, but they also need to choose, create, and improve instructions. How do scientists become nimble with their craft? They experiment, make mistakes, troubleshoot, and iterate (or “Take chances, make mistakes, and get messy” for those who grew up with Miss Frizzle). If we asked you where undergraduate students learn to become scientists, we expect “laboratories” would be the most common answer, but unless laboratory activities are intentionally designed to develop the curiosity, creativity, and skills to pose and answer questions, they won’t produce adept scientists. In contrast to traditional laboratory activities, inquiry-based laboratory activities allow learners to develop important scientific skills.

Two years ago, we began a project aimed at improving student learning by replacing recipes with authentic science in exercise physiology laboratories. With one year remaining in our project, this blog post will explore our rationale, progress, and future plans.

Section 1: Put the scientist cookie-cutter back in the drawer

In undergraduate exercise physiology courses, laboratory-based learning is common, but it focuses more on students learning techniques than experimenting (9). In our experience, a typical undergraduate laboratory activity requires students to follow step-by-step procedures to measure one or more variables in a limited number of participants, most commonly their lab mates. Students administer exercise protocols on bikes, treadmills, and dynamometers to collect a variety of data, including oxygen uptake, heart rate, and muscle strength. These labs are largely descriptive. For example, a quintessential undergraduate exercise physiology laboratory involves performing a graded exercise test to measure the maximal rate of oxygen uptake (V̇O2max). Students assume the role of physiologist, repeatedly increasing the speed of a treadmill (or power output of a cycle ergometer) while sampling expired gases until the participant is unable to continue due to exhaustion. Students are discouraged (actually, prohibited) from altering the protocol and rarely given the chance to fix mistakes in a future laboratory (don’t forget the nose clips!). While the specific results may not be known in advance—they depend on characteristics of the participant—this activity is not an experiment. This traditional approach to laboratory teaching is standard (8, 11, 13). In contrast, an inquiry-based approach allows students to act like scientists and experiment.

There is a terrific description of levels of student inquiry in science for interested readers outlined in Bell et al. (4) and summarized in Table 1 below. The authors describe four levels of inquiry, and in our early stages of reforming labs, we found these levels very helpful for grappling with and revising laboratory learning activities and assessments. In our experience, only level 1 inquiry-based activities are regularly included in undergraduate laboratories: For example, our students compare post-exercise blood lactate concentration responses to passive and active recovery. Even though the results are known in advance and students are following the instructor’s procedures for level 1 inquiry, learners are frequently assessed on their ability to create laboratory reports where they find themselves toiling over uninspired post hoc hypotheses and rewriting a common set of methods in their own words. This process is disingenuous. Furthermore, knowing that they are attempting to verify a known result may lead some students to engage in questionable research practices to obtain that result (14).

Table 1. The four levels of inquiry, as described by Bell et al. (4).

Level Type Description of student activities
1 Confirmation Students verify or confirm known results
2 Structured inquiry Students investigate instructor-determined question using instructor-determined procedures (results not known in advance)
3 Guided inquiry Students investigate instructor-determined question using student-determined procedures
4 Open inquiry Students develop questions and procedures for rigorously answering them

 

We think traditional laboratory teaching goes against the spirit of what science actually is: The application of rigorous methods in the pursuit of answers to questions. Although students may develop technical skills by completing descriptive activities and low-level inquiry activities (e.g., data acquisition, data analysis, technical writing), there is a missed opportunity to develop the habits of mind and skills of a scientist in traditional laboratories. More than that, there is a misrepresentation, or at least obfuscation, of science. If we pretend these laboratories represent the scientific process, how do we expect students to become curious about, inspired by, and ultimately capable of doing science on their own? Students need to progress to higher levels of inquiry-based learning, but implementing these types of laboratories can be challenging in exercise physiology.

It is understandable that exercise physiology laboratories tend to exclude inquiry-based learning, as all tests are performed on human participants. First, there are legitimate safety concerns in exercise physiology laboratories, as participants are asked to exert themselves, often maximally; manipulations have physiological consequences; and some techniques are invasive. It would be irresponsible to let students change data collection protocols on the fly and jeopardize the health and safety of their peers. Second, as multiple testing sessions may be required to collect experimental data, manipulating independent variables may also be impractical for an undergraduate course aiming to cover a broad curriculum. For example, with sessions spread over multiple weeks, standardizing for diet is difficult. Third, the types of interventions that would have large enough effect sizes to be observable with small sample sizes (with a reasonable amount of “noise”) may be impractical or inappropriate in an undergraduate laboratory. For example, learners may not want to exercise for prolonged durations in the heat or deplete their muscle glycogen in advance of an exercise test. And finally, laboratory instructors may be uncomfortable or inexperienced with facilitating inquiry-based laboratories that go beyond level 1 (to say nothing of the confidence and ability of the learners themselves).

In addition to the practical concerns of adding more inquiry to undergraduate labs, we know students must learn the technical skills associated with fitness assessment, as exercise physiology is a health profession. If students pursue exercise physiology as a career path, they will apply advanced technical skills to accurately measure variables that impact exercise prescription, health assessments, and disease prognosis. Technical rigor is paramount in this profession, and imparting these skills is a major reason to offer exercise physiology laboratories. Unless specializing in research, exercise physiologists may not perform scientific experiments in their occupation. It is also challenging to collect most physiological data, and certainly learners cannot become scientists without acquiring data collection skills. Students need to practice and develop confidence using laboratory equipment before they can answer their own questions.

We understand that performing true experiments (especially student-led experiments) is difficult in undergraduate exercise physiology laboratories and we also appreciate why technical skills are essential. Yet, we do not believe that an exclusive focus on technical skills is the best strategy for students to learn scientific reasoning, critical thinking, and problem-solving skills. Regardless of a students’ career path, these are transferrable skills, and a laboratory is the ideal venue to nurture scientific thinking.

Section 2: Can we move beyond cookbook style laboratories?

What makes a good scientist? This answer probably varies across disciplines: Some scientists may be skilled in animal surgery, some may interrogate enormous data sets, and others may focus on theoretical concepts and proofs. There is probably no single skill set that is common among all scientists. But, if we put the specific technical skills aside, students need to ask questions, create hypotheses, solve problems, and think critically in order to conduct experiments. The mechanism for developing any skill is practice: Learners need opportunities to develop and refine their skills, whether they are technical or cognitive. Some students may be able to walk into a first-year laboratory and create an experiment, but many more will need additional support to reach this level of competency. In short, students need to practice being scientists. To be effective, this practice must be authentic: As scientists do not just follow instructions, a recipe-based approach to laboratory learning will not develop a good scientist. The higher levels of inquiry, (see Table 1), are where students get to practice being scientists.

Including higher level inquiry-based learning in exercise physiology isn’t entirely novel. For example, Kolkhorst et al. (11) described the implementation of an inquiry-based learning model in an undergraduate exercise physiology course. The structure of this course was (i) an introductory laboratory session; (ii) five laboratory sessions focused on key concepts in exercise physiology; and (iii) nine laboratory sessions to complete two separate research projects (4-5 sessions each). In the latter portion of the course–an example of level 4 inquiry (Table 1)–students proposed research questions and hypotheses and worked with instructors to devise an experiment, collected and analyzed data, and presented their results to the class. After addressing one research question, students repeated this process with a new research question focused on a different physiological system. Following the initial iteration—from which Kolkhorst et al. (11) noted students were not sufficiently prepared for undertaking the research projects—the authors devised a more structured transition, providing students with more opportunities to practice answering research questions and developing technical skills (i.e., level 2-3 inquiry). The results of this shift in laboratory learning were largely positive: The authors reported that students were more enthusiastic about the inquiry-based labs and better able to describe and discuss physiological principles. A separate study (8) indicated that students reported preferring high-level as opposed to low-level inquiry in exercise physiology laboratories, crediting the independence, responsibility, freedom, and personal relevance as key influences on their satisfaction. These qualitative results are further supported by quantitative data from Nybo and May (13), which demonstrated greater test scores for students who completed an inquiry-based laboratory session related to cardiopulmonary exercise physiology compared to a traditional laboratory on the same topic. Collectively, these studies demonstrate that enabling students to experiment in undergraduate exercise physiology is possible and beneficial.

Although writing specifically about physics education, Drs. Emily Smith and Natasha Holmes (14) advise us to eliminate confirmation (level 1) work and attempts at learning theory in laboratories. Based on extensive research, they suggest increasing the amount of laboratory time students spend (i) making predictions about what they think might happen; (ii) doing activities that involve trial-and-error; (iii) practicing decision making; and (iv) processing how things went. By allowing students to devise questions, design experiments, and collect data (with the opportunity to fix mistakes), students are practicing being scientists. By design, inquiry-based laboratory activities facilitate the first three suggestions; however, whether Smith and Holmes’ fourth recommendation occurs in inquiry-based laboratory activities is hard to determine, but this recommendation is important. This processing phase of laboratory learning improves students’ capacities to make good decisions over time. Including this reflective step in laboratories is something we have taken to heart and into all of our reformed labs.

Section 3: Adding inquiry and mixing reflection into exercise physiology laboratories

In our project, we are focused on two specific exercise physiology courses, an introductory undergraduate course (n = 80-200 students, depending on the semester) and an advanced graduate course (n = 10), both of which have a weekly 3-hour laboratory session. Prior to intervening, we surveyed the nature of laboratory teaching in each course, finding that students indeed followed step-by-step instructions without the opportunity to make decisions or investigate new questions. The only form of inquiry-based learning was level 1 (Table 1). We planned to make two broad types of changes: (i) provide students with more autonomy in the laboratory, and (ii) encourage students to reflect on the activities they were completing. As the graduate course was much smaller, this was deemed the easier place to start, and because of its size, this course was also allowed to remain in-person during the COVID-19 pandemic. Accordingly, most of our progress to date has been in revising this graduate exercise physiology course.

Initially, our changes to the graduate course’s laboratory focused on asking students to make and validate predictions while using a standard set of protocols (i.e., level 1 inquiry). In our first iteration, we modified four laboratory sessions to focus on the “unexpected” breakdown in the linear relationship between oxygen uptake and cycling power output that occurs during exercise with constant-load efforts and the difficulty in identifying the boundary between the heavy and severe exercise intensity domains (10). We (and students in the course) felt these activities were successful, so we modified the laboratory again the following year to allow students to focus on answering novel questions rather than verifying results. Using a gradual implementation approach similar to Kolkhorst et al. (11), students were first asked to create and test unique hypotheses for a set of data they collected over four laboratory sessions, combining aspects of level 2 and 4 inquiry (i.e., instructor-led procedures and student-led questions). Next, based on an article read earlier in the course (1), students worked as a group to determine whether fatiguing one limb influenced measures of exercise performance and fatigue in the contralateral limb when contractions were isometric (level 2). Finally, with a focus on inquiry-based learning and professional development, students were challenged to develop their own laboratory activity for a hypothetical course, which required devising an experiment to teach an important concept in exercise physiology and collecting pilot data to demonstrate feasibility (nearing level 4). To fully understand the impacts of these changes, we have collected survey and semi-structured interview data from students in reformed laboratories, which we hope to formally report at the end of the project.

Despite teaching our undergraduate exercise physiology course online this year, we attempted to create a virtual exercise physiology laboratory that focused on developing the skills needed to answer research questions. Learning activities focused on hypothesis creation, research design, data analysis, and statistical analysis. For one activity, we asked students to design a hypothetical study comparing mechanical aspects of sprinting for two groups of athletes (e.g., bobsleigh vs. fencing). Although new to research design, students were given the freedom to choose the sample size, the variable of interest, and the two types of athletes (selected from normative data published by Haugen et al. (7)). Martin used the students’ choices to simulate datasets, and students performed statistical analysis to test their hypotheses. While students couldn’t collect their own data, this activity allowed them to pose and answer a question, while learning about sprinting and research design. When this lab returns to in-person learning, plans are being formulated to include inquiry-based learning, similar to the structure that Kolkhorst et al. (11) and Henige (8) reported.

After two years of tinkering with our graduate course and beginning to reform our undergraduate course (despite its online format), we have realized that we simply need to give students more time in the laboratory to work on their own questions. Note that Kolkhorst et al. (11) and Henige (8) each provided 4-5 sessions for their level 4 inquiry laboratory activities. This can be a tough sell for instructors (ourselves included): It means we need to cover fewer topics. But, sometimes the best addition to a recipe is a subtraction (e.g., prohibiting pineapple on pizza). The battle over which absolutely essential topic has to be removed has already begun!

While we think increasing autonomy and inquiry in the lab is an important part of enhancing student learning, we also think students need to be able to debrief learning activities and process their experiences to enrich their learning. For both courses described above, students were asked to engage in reflective activities each week. We know reflection can move learning from surface to deep and even transformative levels (12). Reflection is a form of cognitive housekeeping and processing that enables students to develop their understanding of complex or unstructured ideas (12). When students actively engage in a constructive sense-making process, they understand complex systems and concepts better (6). Metacognitive practices are shown to improve self-regulation and commitment to lifelong learning; however, instructional strategies often neglect or assume students are engaging in metacognition (2). Evidence suggests metacognition at the end of STEM learning activities enriches learning (17). Based on this evidence and our experiences with reflection as a catalyst for curiosity and connection-making, we integrated a small amount of reflection with learning activities and added a low-stakes assessment in both courses. Students were asked to thoughtfully reflect on and respond to a specific prompt in approximately 100 words at the end of each lab. Questions like those listed below acted as a call to metacognition:

What did you find most challenging (or surprising, or interesting) in this lab and why?

What did you learn in this lab? What would you still like to know?

What do you think is the major obstacle to performing high-intensity interval training?

How would you explain the importance of fat oxidation to a lay person interested in exercise?

By asking students to connect their experience, knowledge, ideas, and sometimes uncertainty to their lab learning activities, we hoped to support them in deepening, extending, and amplifying their learning.

As we reformed student learning activities and move away from recipe-only laboratories, our teaching practices needed to change too. Recognizing that the laboratory instructors had mostly been trained through traditional style laboratories, we identified a need for some targeted professional development for our group of educators. To meet this need, Cari developed an asynchronous learning module called “Teaching to Enable Learning in Exercise Physiology,” for the instructional team to complete prior to the start of term, and we debriefed this 6-8 hour module together at our first meeting. This meeting set the tone and expectation in many ways for the teaching practices we were expecting teaching assistants to try in labs. We took a community of practice (CoP) approach to supporting laboratory teaching and learning throughout the semester. A CoP is a group of practitioners who meet regularly, reflect and problem solve collaboratively to learn to do their practice (for us, teaching) better (16). CoPs have been used to facilitate teaching and learning change in many higher education projects (5, 15). Each week, we (Martin and Cari) invited the lab technician, the teaching assistants (i.e., laboratory instructors), and a graduate student researcher (Joy Camarao) to reflect on and share both positive and negative teaching experiences from the week that was.

Conclusion

Years after completing an undergraduate degree in biology, the laboratory activities that stuck with me (Martin) the most are those that let me experiment. My favorite laboratory activity involved transplanting barnacles from the exposed side of a breakwater to the inner harbor on the coast of Nova Scotia to examine phenotypic plasticity in leg morphology. My lab mates and I chose the topic and designed the experiment, basing our question on a relationship observed in a related species of barnacle (3). We drove to the coast to find and transplant the barnacles, and we returned weeks later to collect the barnacles for analysis, hypothesizing that they would increase their leg length to optimize feeding in the calmer waters. Unlike most of my other laboratory experiences, we were performing a real experiment with real hypothesis and a (somewhat) novel question. Our study had flaws, and our results weren’t perfect, but the laboratory report was authentic, and so was my excitement. This type of lab is a challenge in exercise physiology, but it’s possible and worthwhile. As we enter the final year of our project, we hope to give students more opportunities to experiment.

Image Credits: Image 1- Nicole Michalou, Image 2- Maarten VanDenHeuvel, Image 3 William Choquette, Image 4- Frans VanHeerden.

 

References

  1. Amann M, Venturelli M, Ives SJ, McDaniel J, Layec G, Rossman MJ, Richardson RS. Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol 115: 355–364, 2013.
  2. Ambrose SA, Bridges MW, DiPietro M, Lovett MC, Norman MK. How learning works: Seven research-based principles for smart teaching. John Wiley & Sons., 2010.
  3. Arsenault DJ, Marchinko KB, Palmer AR. Precise tuning of barnacle leg length to coastal wave action. Proceedings Biol Sci 268: 2149–2154, 2001.
  4. Bell RL, Smetana L, Binns I. Simplifying inquiry instruction. Sci Teach 72: 30–33, 2005.
  5. Elliott ER, Reason RD, Coffman CR, Gangloff EJ, Raker JR, Powell-Coffman JA, Ogilvie CA. Improved student learning through a faculty learning community: How faculty collaboration transformed a large-enrollment course from lecture to student centered. CBE—Life Sci Educ 15: 1–14, 2016.
  6. Eyler JR. How humans learn: The science and stories behind effective college teaching. West Virginia University Press, 2018.
  7. Haugen TA, Breitschädel F, Seiler S. Sprint mechanical variables in elite athletes: Are force-velocity profiles sport specific or individual? PLoS One 14: e0215551, 2019.
  8. Henige K. Undergraduate student attitudes and perceptions toward low- and high-level inquiry exercise physiology teaching laboratory experiences. Adv Physiol Educ 35: 197–205, 2011.
  9. Ivy JL. Exercise Physiology: A Brief History and Recommendations Regarding Content Requirements for the Kinesiology Major. Quest 59: 34–41, 2007.
  10. Keir DA, Paterson DH, Kowalchuk JM, Murias JM. Using ramp-incremental VO2 responses for constant-intensity exercise selection. Appl Physiol Nutr Metab (2018). doi: 10.1139/apnm-2017-0826.
  11. Kolkhorst FW, Mason CL, DiPasquale DM, Patterson P, Buono MJ. An inquiry-based learning model for an exercise physiology laboratory course. Adv Physiol Educ 25: 117–122, 2001.
  12. Moon JA. A handbook of reflective and experiential learning: Theory and practice. Routledge, 2013.
  13. Nybo L, May M. Effectiveness of inquiry-based learning in an undergraduate exercise physiology course. Adv Physiol Educ 39: 76–80, 2015.
  14. Smith EM, Holmes NG. Best practice for instructional labs. Nature 17: 662–663, 2021.
  15. Tinnell TL, Ralston PA, Tretter TR, Mills ME. Sustaining pedagogical change via faculty learning community. Int J STEM Educ 6: 1–16, 2019.
  16. Wenger-Trayner B, Wenger-Trayner E. What is a community of practice? [Online]. 2011. https://wenger-trayner.com/resources/what-is-a-community-of-practice/ [25 Jun. 2021].
  17. Wieman C, Gilbert S. The teaching practices inventory: A new tool for characterizing college and university teaching in mathematics and science. CBE—Life Sci Educ 13: 552-569., 2014.
Dr. Martin MacInnis is an assistant professor who studies exercise and environmental physiology from an integrative perspective, focusing on the skeletal muscle mitochondrial content, red blood cell volume, interval training, and applications of wearable technology. Martin teaches courses in exercise physiology at the undergraduate and graduate levels, and his SoTL research, in collaboration with Dr. Cari Din, focuses on using labs to develop scientific thinking.
Dr. Cari Din, PhD,  is an instructor, leadership fellow, and teaching scholar at the University of Calgary in the Faculty of Kinesiology. She works closely with Dr. Martin MacInnis, to support continuous improvement in teaching and learning experiences for students and graduate teaching assistants in the courses Martin leads. Cari works to enable agency, curiosity, and connection between learners in all of her work. She lives near the Rocky Mountains and appreciates hiking in them.
Synchronous and asynchronous experiences in Advanced Exercise Physiology Courses: what teaching tools work best for my students?

Covid-19 caught all of us off guard, but educators were hit particularly hard and uniquely. I already have flipped classroom teaching and active learning, so the transition was not too difficult for me. However, I found myself incorporating many technological innovations. Was I doing too much? Which features were helping my students, and which ones were overwhelming? In this blog, I want to share some of the strategies I used with undergraduate students taking Advanced Exercise Physiology synchronously and asynchronously.

 

Additionally, within this blog, I am sharing the student’s perceptions of these technological innovations. In total, fifty-two students enrolled in different sections of “Advanced Exercise Physiology” culminating undergraduate experience (CUE) were invited to participate in a short survey regarding their learning experiences during this current Spring 2021 semester. A total of thirty-nine (n=39) students completed the confidential survey about whether different technological innovations helped them understand the material and study.

Who completed the survey?

Figure 1: Fifty-two students enrolled either in synchronous or asynchronous undergraduate advanced exercise physiology sections were invited to participate, and thirty-nine (n=39) responses were obtained. Seventy-two percent of the responders were enrolled in the asynchronous section, and 27.78% were enrolled in the synchronous section.

 

 

Video assignment for glucose metabolism

 During pre-COVID-19 times, I would teach using active-learning team-based instruction. For the first team-based assignment, student teams were asked to discuss and explain in easy terms one of the most difficult topics for my students: glucose metabolism. For this activity, I would bring Legos, markers of different colors, magnets, and other toys; and students were asked to use the materials and make a video of the complete oxidation of a glucose molecule. This in-class, graded assignment seem to help students to understand the metabolic pathways.  I modified the project due to distance learning, so each student has to create a video using any material desired to explain in simple words (without chemical formulas). This assignment is based on the constructivism theory of learning. It makes it innovative because the students learned that glucose is a six-carbon molecule that has to be fully “broken down” (oxidated) through different stages. Once they understand the steps, they could “name” each step and each enzyme. Some students used coins, Legos, or wrote down the step while explaining the process verbally. Some examples of the submissions can be seen in the links below:

Example submission glycolysis  one and example complete glucose oxidation.

 Students perception on making a video assignment for glucose metabolism

Figure 2: Students’ responses to the question “Having to make the video of metabolism in assignment two helped me understand glucose metabolism.” 71.43% responded true (it was helpful), and 28.57% responded false (it was not helpful)

 

 

 

Incorporation of Virtual Lab Experiences using Visible Body and Lt Kuracloud platforms.

One of the main concerns for me was to maintain and increase engagement while teaching virtually or remotely. I incorporated the Lt Kuracloud, a platform for interactive assignments, immediate feedback, videos, and physiology laboratory experiences in all my courses. I took advantage of the free trial, and I used it for some assignments. I received unsolicited emails from students expressing how helpful they found these assignments.  I also used Visible Body Anatomy and Physiology, which I used for lectures. I recommended it to students as supplemental material and for self-graded quizzes. Visible Body Anatomy and Physiology is available at no cost to students as our Institution’s library obtained the subscription for all the students.

Students’ perceptions: “How helpful do you find the following features? “

Figure 3: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for assignments in Lt Kuracloud was 79.08/100 (sd= 21), and for Visible Body was 74.74/100 (sd= 24)

 

Old Reliable Discussion Board

I recently completed my training on Quality Matters (QM) certification (1), and so my courses follow the rubrics of QM Higher Education General Standards. Specifically, QM Module 1 suggests using an introductory welcoming video encouraging the students to introduce themselves to the class using a video, a meme, a photo, or text. The best, and probably the only feature on Blackboard to do this is the “Discussion Board.” The discussion board is a great feature that allows students to increase participation. After all, students are the biggest consumers of social media, videos, and memes. The Discussion Board should be the closest FERPA approved version of TikTok or Facebook, right? WRONG! It worked fine for the first thread entitled “welcome,” most of the students responded by typing to answer the questions. Nobody made a voice thread, a meme, or a video. Afterward, I encouraged participation on the discussion board by posting questions and suggesting posting questions on the discussion board. After a few “virtual crickets” on Discussion Board, I quit posting questions there and developed interactive lectures with pop-up quizzes. As expected, Discussion Board was not very popular among my students.

Students’ perceptions: “How helpful do you find the discussion board on Blackboard? “

 Figure 4: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for the discussion board was 43.08/100 (sd= 25).

 Interactive pre-recorded lectures

Pre-recorded lectures are integral components of my synchronous and asynchronous course sections. These are developed using the interactive feature in Camtasia, in which I developed animated lectures. Thus, students are asked to watch the lessons and complete short quizzes that provide immediate feedback. If the concept is mastered, the student continues watching. If not, they are redirected to the lecture or part of the lecture where the concept is explained.

 Students’ perceptions: “How helpful do you find the interactive pre-recorded lectures? “

Figure 5: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for interactive pre-recorded lectures was 79.27/100 (sd= 16.8), and for Visible Body was 81.74/100 (sd= 17.8)

 

Quizlet and Quizlet live game

Like many educators worldwide, I teach my students and support their learning throughout our virtual synchronous meetings. Indeed, this is not easy. One day, as I was finishing my class, I heard screams and laughs! My ten-year-old was having so much fun in his most favorite subject. What is going on? I asked, “it was a close one,” my son said, “I got second place.”  It turned out that he was playing a “Quizlet Game.” Quizlet and Quizlet live have been used by teachers and students to reinforce learned material. I decided to try it, and I created a teacher profile to play games during the remote lectures. Every class, I started a Quizlet game; students use their phones or computers to play a race (team and individual). They play a “race” at the beginning of the class and again at the end of the class. This low-risk activity provides me with important information about misconceptions or concepts that are not mastered yet. Students play again towards the end of the class. This simple activity takes 10 minutes of instruction (5 minutes each “race”). However, it has been proven to be both helpful and fun for the students. Quizlet live was used only in my synchronous classes, but the Quizlet study sets were available to both synchronous and asynchronous sections.

I used this with graduate students enrolled in Human Physiology in the previous semester, and it was a hit! Students loved it, and class after class, this became very competitive. Not only were my students very well prepared for class, but also the competition made it so much fun!

Similar to Quizlet are such programs as Kahoot, Brainscape,  and others that are available for free or very affordable options.

Students’ perceptions: “How helpful do you find Quizlet study sets and Quizlet live? “

Figure 6: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for Quizlet sets was 76.86/100 (sd= 24), and for Quizlet live was 68.31/100 (sd= 28). One limitation is that most responders were students in the asynchronous section who did not participate in Quizlet live games.

 

MS Teams meetings and/or virtual office hours

 I chose Microsoft Teams (MS) for my virtual meetings simply because it is widely adopted at my Institution, and I prefer to keep it simple for students. For my synchronous section, I used a flipped virtual model, in which we meet once per week, and the other day they work on their own on assignments. I did this to avoid screen burnout students in the synchronous section. However, I have been happily surprised with students attending remote classes and the various office hours I provide. Yes, I do provide different office hours; very much this semester, I made every space available on my calendar as extra office hours. I realize that for many, meeting online for “virtual office hours” is more accessible to them (and perhaps less intimidating) than attending office hours in my office, as we did pre-pandemic.

Why did I offer so many office hours? First of all, because I could. Since I can’t conduct research studies with humans during the pandemic, it freed some time I had set aside for data collection to teaching.

Additionally, not driving to and from campus saved me an average of 75 minutes per day, which allowed me to have another office hour option. In reality, I did not use all these hours in meetings with students. Many times nobody needed to meet. However, there were a couple of times in which I’d meet with a student who was struggling. Not with the class or the content. But struggling with life, some students had somebody close to them sick or dying; some lost their job or financial aid, some were working exceptionally long hours as essential workers. For some, isolation was too much. One student, in particular, told me recently, “I do not have any questions today; I just needed some social interaction.” Flexible and various virtual office hours seemed beneficial for students, particularly for those in asynchronous e-learning experiences.

Students’ perceptions: “How helpful do you find the MS Teams meetings and virtual office hours? “

 

Figure 7: Responses to the question: How helpful do you find the following features (from 0 to 100 being 0 not useful to 100 very useful). The mean value for MS Teams and Virtual Office Hours was 75.86/100 (sd= 21).

 

 

 Conclusions

 Like most higher education instructors, I had to adapt quickly and shift to e-learning due to the pandemic. Fortunately, I had already taught online several times before and introduced several components to my flipped courses. However, I still struggled to find more interactive ways to keep my students engaged. Not only educators have to deal with the mental exhaustion of finding pedagogical tools that work in this new scenario when we have not had the time to produce evidence-based successful approaches to teaching remotely. But also, we are teaching distraught students. From the scarce but rapidly growing literature, we know that “our college students are currently struggling to stay hopeful and positive in the wake of the COVID-19 pandemic” (2). When asked about their feelings during the transition to virtual classes, students reported that they felt “uncertain” (59.5%), “anxious” (50.7%), “nervous” (41.2%), and “sad” (37.2%). (3) We have to teach students that are dealing with a lot of negative emotions and stress. We, educators, are also living with many of those emotions. My goal with this blog was to share some of my experiences teaching virtually and provide some ideas for any physiology educator that may need them.

References

Standards from the Quality Matters Higher Education Rubric, Sixth Edition. Quality Matters. Retrieved from Specific Review Standards from the QM Higher Education Rubric, Sixth Edition

  • Munsell, S. E., O’Malley, L. & Mackey, C. (2020). Coping with COVID. Educational Research: Theory and Practice, 31(3), 101-109.
  • Murphy, L., Eduljee, N. B., Croteau, K. College Student Transition to Synchronous Virtual Classes during the COVID-19 Pandemic in Northeastern United States. Pedagogical Research,5(4), em0078. https://doi.org/10.29333/pr/8485
Dr. Terson de Paleville teaches Advanced Exercise Physiology, Neuromuscular Exercise Physiology, and Human Physiology courses. Her research interests include motor control and exercise-induced neuroplasticity. In particular, Dr. Terson de Paleville has investigated the effects of activity-based therapy on respiratory muscles and trunk motor control after spinal cord injury. Additional research project involves the assessment of the effects of exercise training in elementary and middle school students on balance, visual efficiency, motor proficiency, motor control and behavior in the classroom and at home. Dr. Terson de Paleville is interested in elucidating any links between physical activity and academic skills and performance.

 

Person First Teaching in Physiology

Many of us are continuously trying to be as inclusive in our teaching as possible. One early concept I learned in this effort was to use person-first language, where one “puts the person before the disability, and describes what a person has, not who a person is”. This small change can lead to a more comfortable and inclusive classroom and also model behavior that future health professionals (the majority of my students) will need to employ in their careers.

 

Yet, there’s another ‘person first’ approach that I take in my classes and interactions with students that I think also builds inclusivity and perhaps more importantly, trust and understanding between my students and me. I try to be a person first, and a professor second. I try to see my students as people first, and students second. In the past year, during the unprecedented COVID-19 pandemic, this has been especially important as we all attempt to deal with additional life stresses, course modalities, and uncertainties.

 

As a person, the past year has not only been marked by the pandemic, but rather a significant medical challenge. In March 2020, amidst emergency planning to send students home permanently for the semester and move to remote teaching, I was diagnosed with Stage IV metastatic breast cancer. In 2014, in my second year as a faculty member, I had gone through chemo, surgery, radiation, and continued therapy for what was at that time stage III breast cancer. Remission lasted nearly five years. Since the original diagnosis, while I never felt like cancer defined me, it became an essential part of me, as a person, and as a professor.

 

The hormonal treatment regimen I followed from 2015-2019 provided a real-life example of many of the principles of the endocrine system that I taught my mid-level Human Physiology students. Along with an example of my grandmother stubbornly tapering off high-dose IV steroids after a kidney infection, I began to teach “my story” as our application of the endocrine system chapter in my flipped-classroom course.

 

I present a case study on “Patient X”, only revealing that I am in fact patient X after the relevant physiology is covered. As I explain to students, it’s not just an example to allow them to apply what they are learning to a clinical situation. Rather, it’s my attempt to demonstrate that the knowledge they are (hopefully) gaining, the vocabulary and critical thinking skills are not meant to just serve their future professional goals, but their personal life as well. They may be the one in the future helping a loved one navigate a challenging health situation. I’ve been forever grateful for my own physiological knowledge helping me to deal with my diagnosis, treatment, and prognosis.

 

This year, with the progression of my disease, the lesson takes a slightly different tone (although better this semester since my current infusion treatment has led to some regression of lung metastases). I also take the time to have a “soapbox moment” (and yes, I call it that…) to also inform students about metastatic breast cancer in general, some statistics, and the importance of early detection. I remind the students about the importance of drug discovery and clinical trials in changing people’s lives, mine included.

 

This year, in anticipation of writing this post, as part of the pre- and post- reflection students complete about “why is important to understand hormones?” I asked them for feedback on my person-first approach of sharing my own story. In addition to many students reflecting that they did in fact “see the bigger picture” of why we learn basic physiology, many provided comments that support my approach. A selection of some of their responses:

 

I really liked that you incorporated your own personal story into class because it made me feel like I genuinely knew you better as a person rather than just my professor – students really don’t get to see their teacher’s lives outside of class, but I think it’s really special when they do and when they are vulnerable with us and can share things like you did. It also gave us some insight as to why you do the things you do and why you are interested in what you teach. Thank you for sharing!”

You sharing your story today and being vulnerable with us gave real-life application to what we are learning. We are able to now better understand that learning this information is not just about memorizing facts to get a good grade. Rather, it shows us the importance of what we are studying and how we can use it to help others throughout our lifetime. So, thank you very much for sharing and inspiring other teachers to share as well.”

I am really happy that you shared your personal story. I think case studies are a great way to learn in general, but actually knowing the person in the case makes is so much more powerful. I will never forget today’s class and I genuinely have a much better understanding and appreciation for the material that we covered.”

Obviously, not everyone has their own story to tell, but my guess is that we all have ways that we can be vulnerable and connect the material to our own lives, encouraging our students to do the same. Storytelling and narrative medicine have received recent attention as ways to promote empathy and build trust. Why not then share our own stories? Why not put the person first in our teaching?

To summarize, I am a person with cancer. I am a person who teaches physiology. I am a person who utilizes my cancer to help me teach physiology.


Anne Crecelius 
(@DaytonDrC) is an Associate Professor in the Department of Health and Sport Science at the University of Dayton..  She teaches Human Physiology, Introduction to Health Professions, and Research in Sport and Health Science. She returned to her undergraduate alma mater to join the faculty after completing her M.S. and Ph.D. studying Cardiovascular Physiology at Colorado State University.  Her research interest is in the integrative control of muscle blood flow.  She is a member of the American Physiological Society (APS) and on the leadership team for the Physiology Majors Interest Group (P-MIG).
Balancing Coursework, Student Engagement, and Time
Jennifer Rogers, PhD, ACSM EP-C, EIM-2
Associate Professor of Instruction
Director, Human Physiology Undergraduate Curriculum
Department of Health and Human Physiology
University of Iowa

First, a true story. Years ago, when my son was very little, he and his preschool friends invented a game called “What’s In Nick’s Pocket?” Every day before leaving for school my son would select a small treasure to tuck into his pocket.  The other 3- and 4- year olds at school would crowd around and give excited “oooh’s” and “aaah’s” as he presented his offering, which had been carefully selected to delight and amaze his friends.  And so it is with the PECOP blog forum—as each new post arrives in my inbox I wonder with anticipation what educational gem has been mindfully curated by colleagues to share with the PECOP community.

My contribution? Thoughts on the balance between coursework, student engagement, and time.  Student engagement in this context refers to a wide range of activities that exist outside of the traditional classroom that offer valuable opportunities for career exploration and development of professional skills.  Examples include:

  • Internships: either for course credit or independently to gain experience within a particular setting
  • Study Abroad opportunities
  • Participation in a student organization
  • Peer tutor/mentoring programs
  • Research: either as a course-based opportunity or as a lab assistant in a PI’s lab (paid or unpaid)
  • Job experiences: for example, as a certified nursing assistant, medical transcriptionist, emergency medical technician
  • Volunteer and community outreach experiences
  • Job shadowing/clinical observational hours

These are all increasingly popular co-curricular activities that allow students to apply concepts from physiology coursework to real-world scenarios as an important stepping stone to enhance career readiness and often personal development.  At the same time, however, students seem to more frequently communicate that they experience stress, anxiety, and concerns that they “are not at their best,” in part due to balancing coursework demands against time demands for other aspects of their lives.  If you are interested in learning more about the health behaviors and perceptions of college students, one resource is the American College Health Association-National College Health Assessment II (ACHA-NCHA II) Undergraduate Student Reference Group Data Report Fall 2018 (1).  Relevant to this blog, over half of the undergraduates surveyed (57% of 11,107 participants) reported feeling overwhelmed by all they had to do within the past two weeks.

I recently gave an undergraduate physiology education presentation that included this slide.  It was an initial attempt to reconcile how my course, Human Physiology with Lab, (a “time intensive course” I am told), fits within the context of the undergraduate experience.

I was genuinely surprised by the number of undergraduates in the audience who approached me afterward to essentially say “Thank you for recognizing what it feels like to walk in my shoes, it doesn’t seem like [my professors, my PI, my parents] understand the pressure I feel. “

In response, and prior to the changes in higher education following COVID-19, I began to ponder how to balance the necessary disciplinary learning provided by formal physiology coursework and participation in also-valuable experiential opportunities.  The Spring 2020 transition to virtual learning, and planning for academic delivery for Fall 2020 (and beyond), has increased the urgency to revisit these aspects of undergraduate physiology education.  As PECOP bloggers and others have mentioned, this is a significant opportunity to redefine how and what we teach. 

It has been somewhat challenging to me to consider how to restructure my course, specifically the physiology labs, in the post COVID-19 era when lab activities need to be adaptable to either in-person or virtual completion.  My totally-unscientific process to identify areas for change has been the “3-R’s” test. With regard to physiology lab, there may be many important learning objectives:

  • An ability to apply the scientific method to draw conclusions about physiological function
  • The act of collecting data and best practices associated with collection of high-quality data (identification of control variables, volunteer preparation/preparation of the sample prior to testing, knowledge of how to use equipment)
  • Application of basic statistical analyses or qualitative analysis techniques
  • Critical thought and quantitative reasoning to evaluate data
  • How to work collaboratively with others, that may be transferrable to future occupational settings: patients, clients, colleagues
  • Information literacy and how to read and interpret information coming from multiple resources such as scientific journals, online resources, advertisements, and others, and
  • Science communication/the ability to communicate information about human function, in the form of individual or group presentations, written lab reports, poster presentations, formal papers, infographics, mock patient interactions, etc.

Arguably, these are all important lab objectives.  Really important, in fact.

So, what is the 3 R’s test, and how might it help?  The 3 R’s is simply my way of prioritizing.  In order to triage lab objectives, I ask myself: What is Really Important for students to master throughout the semester versus what is Really, Really Important, or even Really, Really, REALLY Important?  For example, if I can only designate one activity that is Really, Really, REALLY Important, which one would it be?  The answer for my particular course is science communication.  It is obviously a matter of semantics, but I like being able to justify that all course activities are still Really Important, even if it is only my inner dialogue.  Going into the unknowns of the Fall semester, this will help me guide how course activities in physiology lab are transformed. 

Another worthy goal, in light of academic stress and allocation of effort for maximum benefit, is to improve the transparency of expectations for students.  A common question that arose during the spring semester was if students would still learn what they needed to in preparation for future coursework or post-graduation opportunities.  The identification of one or two primary learning outcomes (the Really, Really, REALLY important ones) may attenuate feeling overwhelmed by a long list of lab-related skills to master if there is another abrupt shift to virtual instruction mid-semester; course objectives can still be met even if we discontinue in-person lab sessions. 

To return to the original topic of balancing time demands allocated to formal coursework and valuable experiences, the two broad conclusions I have reached fall under the categories what I can do in my own courses and suggestions for conversations to be had at the program level.

In My Courses: COVID-19 has sped up the time course for revisions I had already been considering implementing in physiology labs.  Aligning course activities with what is Really, Really, REALLY important will help me manage preparation efforts for the coming fall semester (and hopefully keep my stress levels manageable).  Another important goal is to improve the transparency of course goals for students, ideally alleviating at least a portion of their course-induced stress through improved allocation of effort.  Ultimately, I hope the lab redesigns reinforce physiology content knowledge AND provide relevant experiences to promote career readiness.  *It is also necessary to emphasize to students that both will require focused time and effort.

At the Program Level:  Earning a degree in physiology is not based on acquired knowledge and skills in a single course, rather it is an end-product of efforts across a range of courses completed across an academic program.  Here are some ideas for program-wide discussion:

  • Faculty should identify the most important course outcome for their respective courses, and we should all meet to talk about it. Distribute program outcomes throughout the courses across the breadth of the program.  (Yes, this is backward design applied to curriculum mapping.)  From the faculty perspective, perhaps this will reduce feeling the need to teach all aspects of physiology within a particular course and instead keep content to a manageable level.  From the student perspective, clear communication of course objectives, in light of content presented within any particular course, may promote “buy in” of effort.  It may also build an awareness that efforts both inside and outside of the classroom are valuable if the specific body of content knowledge and aptitudes developed across the curriculum, relevant for future occupational goals, is tangibly visible.
  • Review experiential/applied learning opportunities. Are there a sufficient number of opportunities embedded within program coursework?  If not, are there other mechanisms available to students, for example opportunities through a Career Center or other institution-specific entities?  Establishing defined pathways for participation may reduce student stress related to not knowing how to find opportunities.  Another option would be to consider whether or not the program would benefit from a career exploration/professional skills development course.  Alternatively, could modules be developed and incorporated into already existing courses? 
  • Lastly, communicate with students the importance of engaging in co-curricular activities that are meaningful to them; this is more important than the number of activities completed. Time is a fixed quantity and must be balanced between competing demands based on personal priorities. 

As we consider course delivery for Fall 2020, the majority of us are reconsidering how we teach our own courses.  There are also likely ongoing conversations with colleagues about plans to navigate coursework in the upcoming semesters.  If everything is changing anyway, why not take a few minutes to share what is Really, Really, REALLY important in your courses?  The result could be an improved undergraduate experience related to balancing the time and effort allocations required for success in the classroom along with opportunities for participation in meaningful experiences.

Reference:

1. American College Health Association. American College Health Association-National College Health Assessment II: Undergraduate Student Reference Group Data Report Fall 2018. Silver Spring, MD: American College Health Association; 2018.

Jennifer Rogers completed her PhD and post-doctoral training at The University of Iowa (Exercise Science).  She has taught at numerous institutions ranging across the community college, 4-year college, and university- level higher education spectrum.  Jennifer’s courses have ranged from small, medium, and large (300+ students) lecture courses, also online, blended, and one-course-at-a-time course delivery formats.  She routinely incorporates web-based learning activities, lecture recordings, and other in-class interactive activities into class structure.  Jennifer’s primary teaching interests center around student readiness for learning, qualitative and quantitative evaluation of teaching strategies, and assessing student perceptions of the learning process.

Involving students in the teaching experience
Karen L. Sweazea, PhD, FAHA
Arizona State University

As faculty, we often find ourselves juggling multiple responsibilities at once. Although many of us are interested in adding hands-on or other activities to our classes, it can be difficult to find the time to develop them. This is where more advanced students who have already taken the class or graduate students can help.

A couple of summers ago I requested the help of an extra teaching assistant in my Animal Physiology course. The role of the position I was requesting was unique as I was not seeking a student to help with grading or proctoring exams. Rather, the role of this student was to help develop in-class activities that would enhance the learning experience of students taking the course.

For each lesson, the special graduate student TA was tasked with finding an existing (ex: https://www.lifescitrc.org/) or creating a new activity that could be implemented in the classroom during the last 10-20 minutes of each session, depending on the complexity of the activity. This enabled me to begin converting the course into a flipped classroom model as students enrolled in the course were responsible for reading the material ahead of time, completing a content comprehension quiz, and coming to class prepared to discuss the content and participate in an activity and/or case study. Special TAs can also assist with developing activities for online courses.

While the benefits of having such a TA for the faculty are clear, this type of experience is also beneficial to both the TA as well as the students enrolled in the course. For the TA, this experience provides an opportunity to develop their own teaching skills through learning to develop short lesson plans and activities as well as receiving feedback from the faculty and students. For the students, this is a great way to build cultural competence into the course as TAs are often closer in age to the students and may better reflect the demographics of the classroom. Cultural competence is defined by the National Education Association as “the ability to successfully teach students who come from a culture of cultures other than our own.” Increasing our cultural competency, therefore, is critical to student success and is something that we can learn to address. Having special TAs is just one way we can build this important skill.

Karen Sweazea is an Associate Professor in the College of Heath Solutions at Arizona State University. Her research specializes in diabetes and cardiovascular disease. She received her PhD in Physiological Sciences from the University of Arizona in 2005 where her research focused on understanding glucose homeostasis and natural insulin resistance in birds. Her postdoctoral research was designed to explore how poor dietary habits promote the development of cardiovascular diseases. 

Dr. Sweazea has over 40 publication and has chaired sessions and spoken on topics related to mentoring at a variety of national and local meetings. She has additionally given over 10 guest lectures and has developed 4 graduate courses on topics related to mentoring and professional development. She has mentored or served on the committees for undergraduate, master’s, and doctoral students and earned an Outstanding Faculty Mentor Award from the Faculty Women’s Association at Arizona State University for her dedication towards mentoring.   

Using Quests to Engage and Elevate Laboratory Learning
Sarah Knight Marvar, PhD
American University

My students, like me, enjoy a challenge. Occasionally this challenge comes in the form of staying on track, using our lab time efficiently to achieve the learning outcomes and staying engaged with the material. There are specific topics that we cover in our undergraduate human anatomy and physiology course, such as the skeletal system, that had become a little dry over time. Classes occasionally included students sitting at desks looking disinterestedly at disarticulated bones glancing at their lab manual and then checking their phones. I felt that the students were not getting enough out of our laboratory time and weren’t nearly as excited as I was to be there!

With other faculty members I recently devised some new laboratory activities that include a series of quests that closely resemble a mental obstacle course, to try to encourage engagement with the material and make our learning more playful and memorable. There may also be some healthy competition along the way.

I teach an undergraduate two semester combined anatomy and physiology course, in which I lead both the lecture and laboratory portions. Students who are enrolled in this course are majoring in Biology, Neuroscience, Public Health and Health Promotions. Many of the enrolled students are destined for graduate school programs such as Medicine, Nursing, Physical Therapy, Physicians Assistant and PhD Programs. An example of the quest format we used recently in a bone laboratory is described here.

The Quests

The laboratory is set up with multiple quest stations that each represent a multi-step task on areas within the overarching laboratory topic. All of the tasks are designed to enable students to achieve the learning outcomes of the laboratory in an engaging way. The quest stations are designed to encourage the students to physically move around the laboratory in order to interact with other students, touch the exhibits, explore case studies, complete illustrations and build models. Each student begins with a quest guide which provides instructions and upon which they take notes, answer questions and complete drawings. Students move at their own pace and work in self-selected pairs or groups of three. They are able to ask for assistance at any stage of a quest from either of two faculty members present.   

Clinical case studies

Because of the students’ interest in patient care, we use clinical case studies as a major component of the obstacle course. X-ray images of a variety of pathological conditions as well as healthy individuals challenged students’ ability to identify anomalies in bone structure and surgery outcomes. The images that we used included a skull of a newborn showing clearly the fontanelles, an example of osteoporosis and joint replacement surgery. Students are required to identify anatomical location of the image as well as any anomalies, pathology or points of interest. Because of the student demographic of this class, many of them are destined to enter healthcare professions, they are particularly interested in this quest and are invested in solving the mystery diagnoses.

The Creative Part

Illustrations

An example of a student’s histological drawing.

The coloring pencils and electric pencil sharpener have come into their own in the laboratory and like Grey’s Anatomy illustrator Henry Vandyke Carter created before them, amazing anatomically accurate drawings are appearing on the page. Histology has been a particularly challenging aspect of our course for students with little previous exposure to sectioned specimens. In an attempt to allow students to really process what they are looking at and reflect on the tissue function I have asked students to draw detailed images of the histological specimens, label cell types and reflect on specific cell functions. This exercise aims to elevate the student’s ability to look closely at histological specimens and gain a better understanding of what they are observing and contemplate specific cell function.

Another quest involves categorizing bones and making illustrations of them, making note of unique identifying features and their functions.

3-D Modeling

Student synovial joint models with notes on function

Reminiscent of scenes from my three year old’s birthday party, I brought out the modeling clay and tried to stifle the reflex instruction to “don’t mix the colors”! Students were tasked with creating a 3-dimensional model of structures such as synovial joints. This is a particularly successful exercise in which students work with colored modeling clay to construct models of joints and label parts of the joint and describe the function of each part. This allows students to consider the relationship between the structure and function and move beyond looking at two-dimensional images from their textbooks and lecture slides. Students submit images of their completed models to the faculty for successful completion of the quest.

Other quest stations that were part of this particular laboratory session included Vertebrae Organizing, Mystery Bone Identification and Bone Growth Mechanisms.

One of the primary things that I learned from this exercise was that designing game-like scenarios in the classroom is far more enjoyable and entertaining for me as well as for the students, a win-win scenario. Overall from the perspective of the teaching faculty, the level of engagement was significantly increased compared with previous iterations of the class. The quality of the work submitted was high and in addition, this quest-based laboratory design is suitable for a wide range of topics and activities. I am currently designing a muscle physiology laboratory in a similar format that will include an electromyogram strength and cheering station as well as a sliding filament muscle contraction student demonstration station. In reflection I feel that my personal quest to find a novel and interesting way for the students to learn about bones was successful. Now onto the next quest……

Sarah Knight Marvar received her BSc in Medical Science and PhD in Renal Physiology from the University of Birmingham, UK. Sarah is currently a Senior Professorial Lecturer and Assistant Laboratory Director in the Biology Department at American University in Washington DC. Sarah teaches undergraduate Anatomy and Physiology, general biology classes as well as a Complex Problems class on genetic modification to non-majors as part of the AU Core program. Sarah’s research interests include using primary research literature as a teaching tool in the classroom, open educational resources and outreach activities.

Teaching Physiology with Educational Games
Fernanda Klein Marcondes
Associate Professor of Physiology
Biosciences Department
Piracicaba Dental School (FOP), University of Campinas (UNICAMP)

Educational games may help students to understand Physiology concepts and solve misconceptions. Considering the topics that have been difficult to me during my undergraduate and graduate courses, I’ve developed some educational games, as simulations and noncompetitive activities. The first one was the cardiac cycle puzzle. The puzzle presents figures of phases of the cardiac cycle and a table with five columns: phases of cardiac cycle, atrial state, ventricular state, state of atrioventricular valves, and state of pulmonary and aortic valves. Chips are provided for use to complete the table. Students are requested to discuss which is the correct sequence of figures indicating the phases of cardiac cycle, complete the table with the chips and answer questions in groups. This activity is performed after a short lecture on the characteristics of cardiac cells, pacemaker and plato action potentials and reading in the textbook. It replaces the oral explanation from the professor to teach the physiology of the cardiac cycle.

I also developed an educational game to help students to understand the mechanisms of action potentials in cell membranes. This game is composed of pieces representing the intracellular and extracellular environments, ions, ion channels, and the Na+-K+-ATPase pumps. After a short lecture about resting membrane potential, and textbook reading, there is the game activity. The students must arrange the pieces to demonstrate how the ions move through the membrane in a resting state and during an action potential, linking the ion movements with a graph of the action potential.  In these activities the students learn by doing.

According to their opinions, the educational games make the concepts more concrete, facilitate their understanding, and make the environment in class more relaxed and enjoyable. Our first studies also showed that the educational games increased the scores and reduced the number of wrong answers in learning assessments. We continue to develop and apply new educational games that we can share with interested professors, with pleasure.

Contact: ferklein@unicamp.br

Luchi KCG, Montrezor LH, Marcondes FK. Effect of an educational game on university students´ learning about action potentials. Adv Physiol Educ., 41 (2): 222-230, 2017.

Cardozo LT, Miranda AS, Moura MJCS, Marcondes FK. Effect of a puzzle on the process of students’ learning about cardiac physiology. Adv Physiol Educ., 40(3): 425-431, 2016.

Marcondes FK, Moura MJCS, Sanches A, Costa R, Lima PO, Groppo FC, Amaral MEC, Zeni P, Gaviao KC, Montrezor LH. A puzzle used to teach the cardiac cycle. Adv Physiol Educ., 39(1):27-31, 2015.

Fernanda Klein Marcondes received her Bachelor’s Degree in Biological Sciences at University of Campinas (UNICAMP), Campinas – SP, Brazil in 1992. She received her Master in Biological Sciences (1993) and PhD in Sciences (1998). In 1995 she began a position at Piracicaba Dental School, UNICAMP, where she is an Associate Professor of Physiology and coordinates studies of the Laboratory of Stress. She coordinates the subjects Biosciences I and II, with integration of Biochemistry, Anatomy, Histology, Physiology and Pharmacology content in the Dentistry course. In order to increase the interest, engagement and learning of students in Physiology classes, she combines lectures with educational games, quizzes, dramatization, discussion of scientific articles and group activities. Recently she started to investigate the perception of students considering the different teaching methodologies and the effects of these methodologies on student learning.