Tag Archives: active learning

How to motivate students to come prepared for class?

The flipped classroom is a teaching method where the first exposure to the subject occurs in an individual learning space and time and the application of content is practiced in an interactive guided group space. Freeing up class time by shifting traditional lecture outside of class allows the instructor more time for student-centered activities and formative assessments which are beneficial to students. The flipped teaching model has been shown to benefit students as it allows self-pacing, encourages students to become independent learners, and assists them to remain engaged in the classroom. In addition, students can access content anytime and from anywhere. Furthermore, collaborative learning and peer tutoring can be integrated due to freed-up class time with this student-centered approach. Given these benefits, the flipped teaching method has been shown to improve student performance compared to traditional lecture-based teaching. Compared to the flipped classroom, the traditional didactic lecture is considered a passive type of delivery where students may be hesitant to ask questions and may omit key points while trying to write or type notes.

There are two key components in the flipped teaching model: pre-class preparation by students and in-class student-centered activities. Both steps involve formative assessments to hold students accountable. The importance of the pre-class assessment is mainly to encourage students to complete their assignments and therefore, they are better prepared for the in-class application of knowledge. In-class activities involve application of knowledge in a collaborative space with the guidance of the instructor. Although the flipped teaching method is highly structured, students still come to class unprepared.

Retrieval practice is yet another powerful learning tool where learners are expected to recall information after being exposed to the content. Recalling information from memory strengthens information and forgetting is less likely to occur. Retrieval of information strengthens skills through long-term meaningful learning. Repeated retrieval through exercises involving inquiry of information is shown to improve learning.

The use of retrieval strategy in pre-class assessments is expected to increase the chance of students completing their pre-class assignment, which is often a challenge. Students attending class without having any exposure to the pre-class assignment in the flipped classroom will drastically affect their performance in the classroom. In my flipped classroom, a quiz consisting of lower level of Bloom’s taxonomy questions is given over the pre-class assignment where the students are not expected to utilize any resources or notes but to answer questions from their own knowledge. Once this exercise is completed, a review of the quiz and the active learning portion of the class occurs. I use a modified team-based learning activity where the groups begin answering higher order application questions. Again, no resources are accessible during this activity to promote their preparation beforehand. Since it is a group activity, if one student is not prepared, other students may fill this gap. The group typically engages every student and there is a rich conversation of the topic being discussed in class. The classroom becomes a perfect place for collaborative learning and peer tutoring. For rapid feedback to the students, the group answers to application questions are discussed with the instructor prior to the end of the class session.

Student preparation has improved since the incorporation of the flipped teaching model along with retrieval exercises in my teaching, but there are always some students who are not motivated to come prepared to class. It is possible that there are other constraints students may have that we will not be able to fix but will continue to be searching for and developing newer strategies for helping these students maximize their learning.

Dr. Gopalan received her PhD in Physiology from the University of Glasgow, Scotland. After completing two years of postdoctoral training at Michigan State University, she began her teaching endeavor at Maryville University where she taught Advanced Physiology and Pathophysiology courses in the Physical Therapy and Occupational Therapy programs as well as the two-semester sequence of Human Anatomy and Physiology (A&P) courses to Nursing students. She later joined St. Louis Community College where she continued to teach A&P courses. Dr. Gopalan also taught at St. Louis College of Pharmacy prior to her current faculty position at Southern Illinois University Edwardsville where she teaches Advanced Human Physiology and Pathophysiology for the doctoral degrees in the Nurse Anesthetist and Nurse Practitioner programs. Besides teaching, she has an active research agenda in teaching as well as in the endocrine physiology field she was trained in.
Likely or unlikely to be true? I like to have students hypothesize

Throughout my science education career, if I was asked what I do, I responded “I write standardized tests.” Let me assure you, this doesn’t win you too many fans outside of science education assessment circles. But in my opinion, there is nothing better to help one develop an understanding and intuition about how students learn than interviewing hundreds of students, listening to their thinking as they reason through questions.

 

When I listen to students think aloud as they answer questions, I learn a lot about what they know and about their exam-taking processes too. For example, while interviewing a student on a multiple true-false format physiology question, the student answered all the true-false statements then said “Wait, let me go back. There’s always some exception I might be missing.” For this student, physiology always broke the rules and the exams they typically took tried to test whether they knew the exceptions. Although my intention for the question was to have the students apply general conceptual knowledge, the student, like most others I interviewed, was instead spending a lot of time making sure they had recalled all the right information. Eventually, moments like this led to a simple change in question format that created an interesting shift in the way questions elicited thinking from faculty and students alike.

 

The interview mentioned above occurred during the process of writing a programmatic physiology assessment, Phys-MAPS.2 The goal of this assessment and the others in a suite of Bio-MAPS assessments was to build tools that could measure student learning across biology majors. Our working team3 and I chose to build all the assessments using a multiple true-false format, where for each question, a short scenario is described, followed by several (often 4-6) statements about the scenario that students identify as either true or false. We chose this format for its high utility assessing how students can hold both correct and incorrect ideas about a topic simultaneously,4 highly pertinent to learning across a major. In addition, the multiple true-false format has the benefit of facilitating easy and quick grading for a large number of students while still allowing for a rich understanding of student thinking comparable to essay assessments.5

Example of Modified Multiple True-False Design (from a question similar to but not on the Phys-MAPS)

However, as I was creating the physiology-specific assessment and Dr. Mindi Summers was creating the ecology-evolution-specific assessment, we ran into challenges when writing statements that needed to be absolutely “true” or “false.” Sometimes we had to write overly complex scenarios for the questions because too many constraints were needed for a “true” or “false” answer. In addition, discipline experts were refusing to ever say something was “true” or “false” (especially, but not solely, the evolutionary biologists). Thus, many of our statements had to be re-written as something that was “likely to be true” or “unlikely to be true”, making the statements bulky and long.

 

Dr. Summers was the first to bring up in our working group meeting the idea of modifying the true-false format. She suggested changing the prompt. What initially read “Based on this information and your knowledge of biology, evaluate each statement as true or false,” became “Based on this information and your knowledge of biology, evaluate each statement as likely or unlikely to be true.” I was instantly sold. I thought back to the student who had spent so much extra time trying to search her brain for the exceptions to the general rules. Surely, this was going to help!

 

It did. For starters, the discipline experts we were consulting were much more inclined to agree the answers were scientifically accurate. And for good reason! We science experts do not often work in the absolutes of “true” and “false”. In fact, I’m pretty sure a whole field of math was created for exactly this reason. I also saw a difference in how students responded to the new language. In my interviews, I noticed students took considerably less time on the assessment and I never again heard a student stop to try to remember all the exceptions they might know. Better yet, I started hearing language that reflected students were applying knowledge rather than trying to remember facts. For example, in the previous true-false format, I often heard “Oh, I just learned this,” and then I would watch the student close their eyes and agonize trying to remember a piece of information, when all the information they needed to answer the question was right in front of them. With the new “likely or unlikely to be true” format, I was hearing more “well that’s generally true, so I think it would work here too.” It appeared that students had shifted to a more conceptual rather than factual mindset.

 

But what really convinced me that we were on to something worthwhile was the awareness of some students of what they were truly being asked to do. “Wait, so basically what you want me to do is hypothesize whether this would be true [in this new scenario] based on what I already know?” YES!!! (I do my inner happy dance every time.)

 

We educators hear the message from a million places that we should teach science as we do science. I maintain that this should count towards how we assess science knowledge and skills too, asking students to apply their knowledge in new contexts where there is no known answer. But when science explores the unknown, how do you ask about the unknown and still have a right answer to grade? (Easily, on a scantron, that is.) As scientists, we use our knowledge to make predictions all the time, not thinking that our hypotheses will absolutely be true, but that they are the mostly likely outcome given what we already know. Why not show our students how much we value that skill by asking them to do the same?

 

1 Answer: Likely to be true.

2 More information about the Phys-MAPS and all of the Bio-MAPS programmatic assessments can be found on: http://cperl.lassp.cornell.edu/bio-maps

3 The Bio-MAPS working group includes: Drs. Michelle Smith, Jennifer Knight, Alison Crowe, Sara Brownell, Brian Couch, Mindi Summers, Scott Freeman, Christian Wright and myself.

4 Couch, B. A., Hubbard, J. K., and Brassil, C. E. (2018). Multiple–true–false questions reveal the limits of the multiple–choice format for detecting students with incomplete understandings. BioScience 68, 455–463.

5 Hubbard, J. K., Potts, M. A., and Couch, B. A. (2017). How question types reveal student thinking: An experimental comparison of multiple-true-false and free-response formats. CBE Life Sci. Educ.

Dr. Katharine (Kate) Semsar finally found a job that uses all her diverse training across ecology, physiology, genetics, behavioral biology, neuroscience, science education, and community building. Kate is the Assistant Director of STEM Programming for the Miramontes Arts & Sciences Program (MASP), an academic community for underrepresented students in the College of Arts & Sciences at the University of Colorado Boulder.

She received her PhD from North Carolina State University and continued her training at University of Pennsylvania. She then became a science education specialist with the Science Education Initiative in the Integrative Physiology department at the University of Colorado Boulder, studying how students learn and collaborating with faculty to incorporate fundamental principles of learning in their courses. She continued her science education research with the Bio-MAPS team before finally landing in her dream career, teaching and mentoring students in MASP. Despite the career shift, she still loves watching people’s reactions when she tells them she used to write standardized assessments.

Teaching for Learning: The Evolution of a Teaching Assistant

An average medical student, like myself, would agree that our first year in medical school is fundamentally different from our last, but not in the ways most of us would expect. Most of us find out that medical school not only teaches us about medicine but it also indirectly teaches us how to learn. But what did it take? What is different now that we didn’t do back in the first year? If it comes to choosing one step of the road, being a teaching assistant could be a turning point for the perception of medical education in the long run, as it offers a glimpse into teaching for someone who is still a student.

At first, tutoring a group of students might seem like a simple task if it is only understood as a role for giving advice about how to get good grades or how to not fail. However, having the opportunity to grade students’ activities and even listen to their questions provides a second chance at trying to solve one’s own obstacles as a medical student. A very interesting element is that most students refuse to utilize innovative ways of teaching or any method that doesn’t involve the passive transmission of content from speaker to audience. There could be many reasons, including insecurity, for this feeling of superficial review of content or laziness, as it happened for me.

There are, in fact, many educational models that attempt to objectively describe the effects of educating and being educated as active processes. Kirkpatrick’s model is a four-stage approach which proposes the evaluation of specific aspects in the general learning outcome instead of the process as a whole (1). It was initially developed for business training and each level addresses elements of the educational outcome, as follows:

  • Level 1- Reaction: How did learners feel about the learning experience? Did they enjoy it?
  • Level 2- Learning: Did learners improve their knowledge and skills?
  • Level 3- Behavior: Are learners doing anything different as a result of training?
  • Level 4- Results: What was the result of training on the business as a whole?

Later, subtypes for level 2 and 4 were added for inter-professional use, allowing its application in broader contexts like medicine, and different versions of it have been endorsed by the Best Evidence in Medical Education Group and the Royal College of Physicians and Surgeons of Canada (1) (2).  A modified model for medical students who have become teachers has also been adapted (3), grading outcomes in phases that very closely reflect the experience of being a teaching assistant. The main difference is the inclusion of attitude changes towards the learning process and the effect on patients as a final outcome for medical education. The need for integration, association and good problem-solving skills are more likely to correspond to levels 3 and 4 of Kirkpatrick’s model because they overcome traditional study methods and call for better ways of approaching and organizing knowledge.

Diagram 1- Modified Kirkpatrick’s model for grading educational outcomes of medical student teachers, adapted from (3)

These modifications at multiple levels allow for personal learning to become a tool for supporting another student’s process. By working as a teaching assistant, I have learned to use other ways of studying and understanding complex topics, as well as strategies to deal with a great amount of information. These methods include active and regular training in memorization, deep analysis of performance in exams and schematization for subjects like Pharmacology, for which I have received some training, too.

I am now aware of the complexity of education based on the little but valuable experience I have acquired until now as a teacher in progress. I have had the privilege to help teach other students based on my own experiences. Therefore, the role of a teaching assistant should be understood as a feedback process for both students and student-teachers with a high impact on educational outcomes, providing a new approach for training with student-teaching as a mainstay in medical curricula.

References

  1. Roland D. Proposal of a linear rather than hierarchical evaluation of educational initiatives: the 7Is framework. Journal of Educational Evaluation for Health Professions. 2015;12:35.
  2. Steinert Y, Mann K, Anderson B, Barnett B, Centeno A, Naismith L et al. A systematic review of faculty development initiatives designed to enhance teaching effectiveness: A 10-year update: BEME Guide No. 40. Medical Teacher. 2016;38(8):769-786.
  3. Hill A, Yu, Wilson, Hawken, Singh, Lemanu. Medical students-as-teachers: a systematic review of peer-assisted teaching during medical school. Advances in Medical Education and Practice. 2011;:157.

The idea for this blog was suggested by Ricardo A. Pena Silva M.D., Ph.D. who provided guidance to Maria Alejandra on the writing of this entry.

María Alejandra is a last year medical student at the Universidad de Los Andes, School of Medicine in Bogota, Colombia, where she is has been a teaching assistant for the physiology and pharmacology courses for second-year medical students. Her academic interests are in medical education, particularly in biomedical sciences.  She is interested in pursuing a medical residency in Anesthesiology. Outside medical school, she likes running and enjoys literature as well as writing on multiple topics of personal interest.
Paradigm Shifts in Teaching Graduate Physiology

From years of experience teaching physiology to graduate students, I found students learn best when they have a good grasp of basic concepts and mechanisms. As we are well aware, the lecture format was used to disseminate knowledge on various topics.  Students took notes and were expected to reinforce their knowledge by reading recommended texts and solving related questions that were assigned.  Some courses had accompanying laboratories and discussion sessions where students learned about applications and gained practical experience.  The term “active learning” was not in vogue, even though it was taking place in a variety of ways!  Successful teachers realized that when students were able to identify the learning issues and followed through by searching for what they needed to understand, this process enhanced learning.  The idea of a “flipped” classroom had not been described as such, but was occurring de facto in rudimentary ways with the ancillary activities that were associated with some courses.  As you are reading this, you are incorrect if you think it is an appeal to go back to the way things were.

 

By coincidence, one evening after work, I was listening to the radio about the story of a professor at an elite college.  My colleagues and I had just been discussing new teaching ideas and technologies!  As an acclaimed and accomplished educator he was surprised to learn that his students did not do as well as he expected on a national exam in comparison to other students being tested on the same subject. I was mesmerized and had to stop and listen to this teacher’s thoughts about how he changed his methods to improve student learning and their ability to apply knowledge.  This is also when I heard the expression, “if it was good enough for Galileo, it is good enough for me.”  This humorously illustrates an extreme case of someone who doesn’t want to incorporate new ideas, different knowledge and new developments.  As you are reading this, you are incorrect if you think it is an appeal to go back to the way things were.  Obviously, we can and do find new ways to teach, but this doesn’t mean abandoning methods that work.  In listening to debates on topics such as integrating the curriculum, we acknowledge that other systems also work if used properly.  However, they should be well thought-out and appropriate for the group of students you are teaching.  So, how does this apply to teaching graduate physiology to today’s students?

 

Creative teachers have always found a way to engage their students. From what I have come to understand, today’s students seem to prefer a classroom environment that combines lectures with some form of a multimedia presentation and exercises such as team-based learning, where they can interact with fellow students and instructors.  This keeps their attention and works well with students who grew up with technology.  While technology also makes it easier for instructors to make slides and use multimedia, care must be taken to avoid oversimplifying.  A tendency of modern media is to compress information into sound-bytes and that is a dangerous mindset for a graduate level course.

 

Instead of just acquiring knowledge for its own sake, today’s students want to learn what is relevant for their future endeavors.  In my opinion, it is very important to show them how and why what they are learning relates to practical “real world” applications.  I like to develop concepts, discuss mechanisms whenever possible, and show examples of how the knowledge is applied and useful.  A plus is that these students like to work cooperatively and enjoy problem solving as a group exercise with a common goal in mind.  However, in-class activities sometimes become too social and groups have to be kept on track.  Another pitfall stems from the fact that in many courses, lectures are recorded and notes are distributed in the form of a syllabus that student’s rely on as their sole source of material.  Too often, students copiously read the prepared notes and listen to the recorded lectures instead of more actively reviewing and connecting with the material that was presented.

 

The internet is a useful resource where information can easily be looked up.  While this is helpful, I find that they may miss the larger context even though it was presented in class.  This is where another comprehensive source of information such as a textbook (on-line or in print) can be used to reiterate material and reinforce what was discussed in class. Students would benefit more by using other resources to accompany notes and lectures. The “flipped” classroom works well if students come to class having prepared by reading, reviewing and analyzing the subject matter.  This type of preparation also makes lectures more interactive and enjoyable by fostering class discussion.  Therefore, I would conclude by stating it is the preparation by student and teacher that makes even the traditional lecture format more engaging and effective.

Andrew M. Roberts, MS, PhD is an Associate Professor in the Department of Physiology at the University of Louisville School of Medicine in Louisville, Kentucky.  He received his PhD in Physiology at New York Medical College and completed a postdoctoral training program in heart and vascular diseases and a Parker B. Francis Fellowship in Pulmonary Research at the University of California, San Francisco in the Cardiovascular Research Institute. His research focuses on cardiopulmonary regulatory mechanisms with an emphasis on neural control, microcirculation, and effects of local endogenous factors.  He teaches physiology to graduate, medical, and dental students and has had experience serving as a course director as well as teaching allied health students.
Why do you teach the way that you do?

Have you ever stopped to think about why you do something the way that you do it? We educators are often very good at describing what we do or have done. I was recently reviewing some CVs for a teaching position; all the CVs were replete with descriptions of what content was taught in which course at which institution. However, I feel that we educators often fail to capture why we teach in a certain way.

 

 

In my extra-curricular life, I am an educator on the soccer field in the form of a coach. Through coaching education, I have been encouraged to develop a philosophy of coaching. This is a description of why I coach the way I do. To develop a coaching philosophy, coaches should think about three central aspects (see: https://www.coach.ca/develop-a-coaching-philosophy-in-3-easy-steps-p159158 for more details):

 

  1. Purpose: why do you coach?

  2. Leadership style – what methods do you use to coach? Are you more ‘coach-centered’ or more ‘player-centered’ in your approach? Or somewhere in between? Why?

  3. Values: what is most important to you? How does it affect the way you coach?

 

If ‘coach’ is replaced by ‘teach’ or ‘teacher’ in the above list, and ‘player’ is replaced by ‘student’, we can use this framework to develop a philosophy of teaching. I have found that putting ‘pen to paper’ in forming a philosophy helps to crystallize your beliefs about teaching that may have been seemingly random, disparate thoughts previously. It can be insightful to synthesize your beliefs about teaching, as it provides some structure and guidance when planning future teaching.

 

It is time to nail my colors to the mast. I teach because I want to help my students be successful diagnosticians in their profession (medicine) and understand why their patient’s bodies are responding in the way that they do in order to help them treat them effectively. I do believe in the benefit of having an expert instructor, especially when you have novice students, so I am probably more teacher-centric than is the current fad. However, I don’t like lectures for the most part, because from my perspective, lectures principally focus on information transfer rather than using and applying the important information. This is not to say that lectures are all bad, but I prefer ‘flipped classroom’ methods that require students to gather the necessary knowledge before class, and then during class, demonstrate mastery of material and apply it to clinical scenarios (with the aid of the instructor). But, that’s me. What about you?

 

If you are applying for positions that will require teaching, having both a teaching philosophy and a teaching portfolio will provide the appropriate evidence to the search committee about how you plan to teach.  The following resources might be useful to you:

Preparing a Teaching Portfolio http://www.unco.edu/graduate-school/pdf/campus-resources/Teaching-Portfolio-Karron-Lewis.pdf

Writing Your Teaching Philosophy https://cei.umn.edu/writing-your-teaching-philosophy

  Hugh Clements-Jewery, PhD is currently Visiting Research Associate Professor at the University of Illinois College of Medicine in Rockford, Illinois. He teaches medical physiology in the integrated Phase 1 undergraduate medical curriculum at the University of Illinois College of Medicine. He is the College-wide leader for the Circulation-Respiration course. He has also recently taken on the role of Director of Phase 1 curriculum at the Rockford campus.
Why I’m a Clicker Convert

Recently I was faced with a teaching challenge: how to incorporate active learning in a huge Introductory Biology lecture of 400+ students. After searching for methods that would be feasible, cost effective, and reasonably simple to implement in the auditorium in which I was teaching, I came up with clickers. Our university has a site license for Reef Polling Software which means I wouldn’t add to the cost for my students—they could use any WiFi enabled device or borrow a handset at no cost. I incorporated at least 4 clicker questions into every class and gave students points for completing the questions. 10% of their grade came from clicker questions and students could get full credit for the day if they answered at least 75% of the questions. I did not give them points for correct answers because I wanted to see what they were struggling to understand.

I’m now a clicker convert for the following 3 reasons:

  • Clickers Increase Student Engagement and Attendance

In a class of 400+, it is easy to feel like there is no downside to skipping class since the teacher won’t realize you are gone. By attaching points to completing in-class clicker questions, about 80% of the class attended each day. While I would like perfect attendance, anecdotally this is much better than what my colleagues report for similar classes that don’t use clickers. Students still surfed the internet and slept through class, but there was now more incentive to pay a bit of attention so you didn’t miss the clicker questions. In my opinion, getting to class can be half the battle so the incentive is worth it. In my small classes I like to ask a lot of questions and have students either shout out answers or vote by raising their hands. Often, students won’t all vote or seem to be too embarrassed to choose an answer. I tested out clickers in my small class and found an increased response rate to my questions and that I was more likely to see the full range of student understanding.

  • Clickers Help Identify Student Misconceptions in Real Time

Probably the biggest benefit of clickers to my teaching is getting a better sense of what the students are understanding in real time. Many times I put in questions that I thought were ‘gimmes’ and was surprised to see half the class or more getting them wrong. When that happens, I can try giving them a hint or explaining the problem in a different way, having them talk with their group, and then asking them to re-vote. Since I don’t give points for correctness, students don’t feel as pressured and can focus on trying to understand the question. I’m often surprised that students struggle with certain questions. For instance, when asked whether the inner membrane of the mitochondria increases surface area, volume, or both, only half of the students got the correct answer the first time (picture). Since this is a fundamental concept in many areas of biology, seeing their responses made me take time to really explain the right answer and come up with better ways of explaining and visualizing the concept for future semesters.

  • Clickers Increase Student Learning (I hope)

At the end of the day, what I really hope any active learning strategy I use is doing is helping students better understand the material. To try to facilitate this, I ask students to work in groups to solve the problems. I walk around the class and listen while they solve the problem. This can help me get an idea of their misconceptions, encourage participation, and provide a less scary way for students to ask questions and interact with me. While working in groups they are explaining their reasoning and learning from each other. Interspersing clicker questions also helps to reinforce the material and make sure students stay engaged.

I’m convinced that clickers are helping to improve my teaching and students seem to agree. Of the 320 students who filled out course evaluations one semester, 76 included positive comments about clicker questions. Here are two of my favorites:

“I like how we had the in-class clicker questions because it made me think harder about the material we were learning about in that moment.”

“I enjoyed doing the clicker questions. If the class disagreed with something she would stop and reteach the main point and hope we would understand. That was really helpful on her part.”

I would be remiss if I didn’t end by thanking the many researchers who have studied how to incorporate clickers into your class to maximize learning. I decided to try them after hearing Michelle Smith talk at the first APS Institute on Teaching and Learning and highly recommend seeing her speak if you have the chance. If you only want to read one paper, I suggest the following:

Smith, Michelle K., et al. “Why peer discussion improves student performance on in-class concept questions.” Science 323.5910 (2009): 122-124.

I hope you will comment with how you use clickers or other strategies to engage large lecture classes. For more resources I’ve found helpful designing my classes click here.

Katie Wilkinson, PhD is a newly minted Associate Professor of Biological Sciences at San Jose State University. She completed her undergraduate work in Neuroscience at the University of Pittsburgh and her PhD in Biomedical Sciences at the University of California, San Diego. She was an NIH IRACDA Postdoctoral Fellow in Research and Scientific Teaching at Emory University. At SJSU her lab studies the function of stretch sensitive muscle proprioceptors. She teaches Introductory Biology, Vertebrate Neurophysiology, Integrative Physiology, Pain Physiology, and Cardiorespiratory Physiology to undergraduate and masters students.
An Academic Performance Enrichment Program for Struggling Students

Pharmacy schools nationwide are currently experiencing a decline in admission applications and an increase in the number of academically struggling students in their programs. Thus, schools of pharmacy are not only searching for effective ways to increase enrollment of qualified candidates but are also focusing on the development of programs to improve academic performance and retention of enrolled students.

 

Our students struggle academically for a number of reasons:

  1. personal issues such as those involving jobs or family,
  2. mental disorders or conditions such as attention deficit disorder, anxiety, or depression,
  3. lack of academic skills,
  4. deficiencies in prerequisite knowledge, and/or
  5. lack of motivation and discipline to meet the requirements necessary to succeed in a rigorous professional degree program.

Some students may be helped by resolving the underlying personal or medical issues.  For the others, we have developed an academic performance enrichment program (APEP) aimed to improve academic skills (e.g. study skills, time management skills), comprehension of course material, metacognition, discipline and accountability with the overall goal to decrease course failures and to improve retention.

During the first year of our Pharm.D. curriculum, students complete a two-semester (10-unit) integrated biological sciences course sequence (BSI I & II) which integrates biochemistry, cell biology, physiology, and pathophysiology.  The summative assessments include 4 exams and a comprehensive final in each semester. Formative assessments include worksheets and assignments, which are not submitted to the instructor, and various in-class active learning activities. BSI is the course in which the first year pharmacy students struggle the most. BSI is a prerequisite for most other advanced courses, so it is required to pass in order to complete the program in 4 years. Furthermore, a failure in BSI I is highly predictive of a student struggling throughout the program. Thus, developing a means to improve academic performance is imperative to facilitate success. Historically, we have found that traditional one-on-one or small-group peer-tutoring did not lead to significant improvements in academic performance or course failure rates. Feedback from the peer-tutors revealed that tutees did not adequately prepare for the tutoring sessions and were passive participants in the tutoring process.  We have also observed that most of the students struggle in BSI and the first year pharmacy curriculum due to lack of academic skills and/or lack of motivation and discipline to implement the skills rather than difficulty in understanding course content. Therefore, the APEP includes academic skills training and student accountability to be active participants in the tutoring process.

The APEP is comprised of structured group tutoring sessions which are 1.0-1.5 hours twice per week, led by graduate assistants (2nd year pharmacy students).  At the beginning of each week, the students are emailed instructions as to what to prepare and expect for the sessions that week.  They are asked to develop a 15-question multiple choice quiz from the specified BSI material and to complete worksheets or assignments that coincide with each BSI course lecture note set. At each session, the students exchange and complete the quizzes followed by discussion of wrong answers among each other.  The students then complete various activities which may include drawing specific diagrams, flowcharts, or pathways that were assigned to learn for the session. The students are expected to complete the drawings from memory and then work together to fill in any missing information. The graduate assistants discuss active study methods most effective for learning the particular course content, along with the importance of continuous self-testing. We have observed that linking the discussion of study methods to specific material is more effective than giving general study skills advice, which low performing students often ignore and/or do not know when or how to apply.  Each session also includes a question and answer period where the students can ask questions for clarification and the graduate assistants ask higher order questions to probe their level of understanding. The students submit their quiz grades, completed worksheets, and drawings to the graduate assistants in order to track attendance and preparedness for the sessions.  Procrastination and the underutilization of active studying techniques are common among our low performing students; the completion of the assignments in preparation for and during each session is aimed to prevent these unfavorable habits.  To improve metacognition we have incorporated two activities. Before each BSI exam, the APEP students predict the grade they will receive based on their self-perceived preparedness and understanding of the material.  After each exam, they are required to meet with the course instructor to review the questions that they missed and then to write a paragraph with their insights as to why they earned the grade and what they plan to do differently to improve on the next exam. In the BSI course, all students are encouraged to meet with the professor to review their exam; however, the lower performing students often do not follow through. Thus, we have made it a required piece of the APEP.

Students with an average BSI course grade below 73% at any point during the semester are required to attend the APEP sessions until their course grade exceeds 73% (<69.5% is a failing grade). Most of the students attend the sessions and complete the required tasks without being pressed. However, a small percentage require further enforcement which includes a meeting with the Director of the APEP and the Assistant Dean of Academic Affairs. Typically, such a meeting leads to improved engagement in the APEP. So far, only 1 student out of 35 who have participated in the APEP has continued to skip required sessions.

The APEP was implemented in the fall semester of 2017. Preliminary data indicate that the program is effective for improving academic skills and performance. The failure rate in BSI I decreased by 36% compared to the previous two years. For those who entered the program after performing poorly on an exam, the APEP was deemed effective to improve performance on the following exam.  For example, 80% of the students who were required to join the APEP after Exam 1 improved on Exam 2, while only 29% of the students who scored between 74-79% on Exam 1 (and not required to attend the APEP) improved on Exam 2.  86% of the students in the APEP after Exam 2 improved on Exam 3, compared to 54% of the comparative group who did not attend the APEP. 65% of the students in the APEP after Exam 3 improved on Exam 4, compared to 38% in the comparative group. 78% of the students in the APEP after Exam 4 improved on Exam 5 (comprehensive final exam), compared to 36% in the comparative group.  We do not know yet if the APEP was effective at reducing the failure rate in BSI II, since the semester is still in progress.

According to a survey, the majority of APEP attendees believed that the program helped:

  1. to improve study skills by incorporating more active studying techniques,
  2. to prevent procrastination of studying,
  3. to study with more intent by having quizzes and assignments to complete for each APEP session,
  4. to improve understanding of the course material and
  5. to identify course content that they did not fully understand.

A program such as this requires active engagement to be effective; what you put into it, you get out of it. 68% of the APEP students believed that they came to each session as prepared as they should have been.  The biggest struggle has been to find an effective means to increase this number to closer to 100%.  The APEP will continue to evolve as we strive to meet the 100% mark and to reduce the failure rate even further.

Amie Dirks-Naylor is Professor and a member of the founding faculty at Wingate University School of Pharmacy in North Carolina where she teaches the basic sciences to the first-year pharmacy students. She earned her Ph.D. in Exercise Physiology (minor in Biochemistry and Molecular Biology) from the University of Florida, her M.S. from San Diego State University, and B.S. from the University of California, Davis.  She completed her post-doctoral research at Stanford University School of Medicine in the department of Radiation Oncology.  Her current research interests include mechanisms of adverse drug effects involving oxidative stress and apoptosis, physiological effects of lifestyle modifications, and the scholarship of teaching and learning.
Student Preparation for Flipped Classroom

Flipped teaching is a hybrid educational format that shifts lectures out of the classroom to transform class time as a time for student-centered active learning. Essentially, typical classwork (the lecture) is now done elsewhere via lecture videos and other study materials, and typical homework (problem solving and practice) is done in class under the guidance of the faculty member. This new teaching strategy has gained enormous attention in recent years as it not only allows active participation of students, but also introduces concepts in a repetitive manner with both access to help and opportunities to work with peers. Flipped teaching paves the way for instructors to use classroom time to engage students in higher levels of Bloom’s taxonomy such as application, analysis, and synthesis. Students often find flipped teaching as busy work especially if they are not previously introduced to this teaching method. Pre-class preparation combined with a formative assessment can be overwhelming especially if students are not used to studying on a regular basis.

When I flipped my teaching in a large class of 241 students in an Advanced Physiology course in the professional year-1 of a pharmacy program almost a decade ago, the first two class sessions were very discouraging. The flipped teaching format was explained to students as a new, exciting, and innovative teaching method, without any boring lectures in class. Instead they would be watching lectures on video, and then working on challenging activities in class as groups. However, the majority of the students did not complete their pre-class assignment for their first class session. The number of students accessing recorded lectures was tracked where the second session was better than the first but still far from the actual class size. The unprepared students struggled to solve application questions in groups as an in-class activity and the tension it created was noticeable.  The first week went by and I began to doubt its practicality or that it would interfere with student learning, and consequently I should switch to the traditional teaching format. During this confusion, I received an email from the college’s Instructional Technology office wondering what I had done to my students as their lecture video access had broken college’s records for any one day’s access to resources. Yes, students were preparing for this class! Soon, the tension in the classroom disappeared and students started performing better and their course evaluations spoke highly of this new teaching methodology. At least two-thirds of the class agreed that flipped teaching changed the way they studied. This success could be credited to persistence with which flipped teaching was implemented despite student resistance.

I taught another course entitled Biology of Cardiovascular and Metabolic Diseases, which is required for Exercise Science majors and met three times per week. Although students in this course participated without any resistance, their unsolicited student evaluations distinctly mentioned how difficult it was to keep up with class work with this novel teaching approach. Based on this feedback, I set aside one meeting session per week as preparation time for in-class activities during the other two days. This format eased the workload and students were able to perform much better. This student buy-in has helped improve the course design significantly and to increase student engagement in learning. Flexibility in structuring flipped teaching is yet another strategy in improving student preparation.

While one of the situations required persistence to make flipped teaching work, the other situation led me to modify the design where one out of three weekly sessions was considered preparation time. In spite of these adaptations, the completion of pre-class assignment is not always 100 percent. Some students count on their group members to solve application questions. A few strategies that are expected to increase student preparation are the use of retrieval approach to flipped teaching where students will not be allowed to use any learning resources except their own knowledge from the pre-class assignments. Individual assessment such as the use of clickers instead of team-based learning is anticipated to increase student preparation as well.

Dr. Chaya Gopalan earned her Ph.D. in Physiology from the University of Glasgow. Upon her postdoctoral training at Michigan State University, she started teaching advanced physiology, pathophysiology and anatomy and physiology courses at both the undergraduate and graduate levels in a variety of allied health programs. Currently she teaches physiology and pathophysiology courses in the nurse anesthetist (CRNA), nurse practitioner, as well as in the exercise science programs. She practices team-based learning and flipped classroom in her everyday teaching.
The Undergraduate Physiology Lab – A New Shine on a Classic Course

The evolution of the workplace in the twenty-first century has created the need for a workforce with a skill set that is  unlike that needed by previous generations.  The American Physiological Society recognized this need  over a decade ago and with the assistance of  Association of Chairs of Departments of Physiology created  a set of professional skills needed by physiologists in the workplace (1).  This effort was echoed by the AAMC, the  STEM Innovation Task Force, and professional organizations  as they composed a  set of core competency or workplace  skills (2, 3).  Subsequent surveys of US employers across multiple industrial sectors indicated that students entering the technical workforce lacked these  critical skills.  Higher education has since been  tasked to provide students with training experiences in workplace skills, as well as content knowledge.

What are these workplace or employability skills?  The APS Professional Skills are a diverse set of skills, however the generally accepted workplace skills are a subset of this group and can be distilled into the list below.

Students entering the workplace should be able to:

  1. Work in a team structure
  2. Solve problems and think critically
  3. Plan, organize, and prioritize time
  4. Manage projects and resources
  5. Work with technology and software
  6. Communicate in oral or written formats
  7. Obtain and process information
  8. Pursue lifelong learning

Many of these skills have been embedded in the program objectives of the bachelor’s  degree.  Educators have found it difficult to insert skill training experiences into the traditional lecture classroom but most can be readily embedded into a lab curriculum such as the undergraduate physiology lab.

Let us consider these skills individually and examine how they can be found in a physiology  lab.

 

Students entering the workplace should be able to work in a team structure.

This skill is easily adapted to the physiology lab curriculum because lab partners are essential in most physiology lab courses.  The workload, experimental design, or timing of the protocol demands collaboration to accomplish tasks and complete the experiment.  The question that arises is, “How can we  train students to be productive team members in the workplace?”

Let’s think about the characteristics of good team work.  First and foremost good teamwork means completing assigned tasks promptly and responsibly.  It is easy to address this on an individual level in any course through graded assignments but it can be a challenge on a team level.   In labs however individual responsibility to the team can be addressed by assigning each team member a job that is essential to completion of the experiment.

There are also a set of interpersonal skills that promote good teamwork and these translate into practices that are important in any workplace.

  • Respect your team members and their opinions.
  • Contribute feedback, criticism, or advice in a constructive manner.
  • Be sensitive to the perspectives of different
  • When a conflict arises approach the dialog with restraint and respect.

These ideas  aren’t novel but when an instructor reviews them in class they not only provide students with guidelines  but they also communicate the instructor’s expectations for team behavior.

Finally, by using the common direction “Now show your partner how to do it.” or the well-known adage “see one, do one, teach one” an instructor promotes a subtle suggestion of responsibility for one’s team members.

Students entering the workplace should be able to solve problems and think critically. 

This objective has been a long-standing cornerstone of undergraduate life science education (4, 5).  Many instructors think that a bachelor’s degree in science is de facto a degree in critical thinking causing some instructors neglect this objective in curricular planning.  After all, if you are ever going to understand physiology, you have to be able to solve problems.  However in the workplace a physiologist will encounter many kinds of problems, challenges, puzzles, etc., and the well-prepared student will need experience in a variety of problem solving techniques.

Let’s review some problem solving practices and look at  how they occur  in the lab.

  • Use troubleshooting skills: Labs are a perfect place to teach this aspect of problem solving because it shows up so many times.  Consider the situation where a student asks  “Why  can’t I see my pulse, ECG, EMG, ….  recording on the screen?”  A typical instructor response might be, “Have you checked the power switch, cable connections, gain settings, display time..?”  only to find that the students has not thought to check any of these.  Ideally we want students to progress to the point where they can begin to troubleshoot their own problems so that their questions evolve to, “I have checked the power switch, cable connections, gain settings, display time and still don’t see a  recording on the screen.  Can you help me?”
  • Identify  irregular results:  This practice is similar to troubleshooting and again,  labs are a good place to learn about it.   Consider the situation where a student asks “My Q wave amplitude is 30.55 volts.  Does it look right to you?”  Be the end of the course the instructor hopes that the student will be able to reframe the question and ask “My P wave amplitude is 25.55 volts and I know that that is 10 fold higher than it should be.  Can you recheck my calculations?”
  • Use appropriate qualitative approaches to research problems: In the workplace a physiologist may be using this skill to ask a questions like “How can our lab evaluate the effect of Compound X on escape rhythm?”  but in the physiology lab students will learn a variety of experimental techniques and on the final exam must be able answer a less complex question like “How could you identify  third degree heart block?”
  • Use quantitative approaches to express a problem or solution: While physiology labs are rich in sophisticated  quantitative analyses it seems that it is simple calculational mechanics can often perplex and confound, students.  For example, students can readily calculate heart rate from an R-R interval when given an equation but without the equation some students may struggle to remember whether to divide or multiply by 60 sec.  Instructors recognize that the key is not to remember how to calculate rates but rather to understand what they are and be able to transfer that knowledge to problems in other areas of physiology  and ultimately be able to create their own equation for any rate.  The ability to use qualitative skills for problem solving in the workplace relies on making this transition.
  • Supporting a hypothesis or viewpoint with logic and data; Critically evaluating hypotheses and data:    In many ways these two problem solving skills are mirror images of each other. Physiology lab students get a lot of experience in supporting a hypothesis with logic and data, particularly as they write the discussion section of their lab reports.  However, the typical student gets little opportunity to critically evaluate untested or flawed hypotheses or data, a practice they will use frequently in their careers as they review  grants, manuscripts, or project proposals.  One solution might be engage students in peer review in the lab.

Students entering the workplace should be able to plan, organize, and prioritize time.  Students entering the workplace should be able to manage projects and resources.

These two skills representing personal organization and project organization often go together.  They are fundamental to any workplace but a lab is a special environment that has its own organizational needs and while they are idiosyncratic they provide experience that can be transferred to any workplace environment.  For a lab scientist  these skills can be characterized as being able to prioritize project tasks, identify needed resources, plan a project timeline, and track a projects progress.

Let’s consider some organizational and planning practices and examine on how they are used  in the lab.

As students read an experimental protocol they may ask themselves “What should do I do first – collect my reagents or start the water bath?” ,  “What is Type II water and where can I get it?” or “Can I finish my part of the data analysis and get it to my lab partner by Friday?”  How can instructors teach this?  As we look for an answer, let’s consider the realities of teaching a lab course.  Often in an effort to facilitate a lab session and enable students to complete the experiment on time, an instructor will complete some of the protocol like preparing buffers, pre-processing tissue, doing preliminary stages of dissection in advance  of the lab.  How can this instructional altruism help students learn about prioritizing tasks, identifying needed resources, or planning a project timeline.  There is no clear  or obvious answer.  Lab instructors routinely juggle learning objectives with time and content restraints  but  recognizing  that these skills are a fundamental part of professional practice makes us pause and think about  when and if  we can fit them in.

Students entering the workplace should be able to work with technology

This is clearly where lab courses can provide experiences and training that lecture courses cannot but it can be difficult for undergraduate institutions to equip labs with the most recent iteration in technology.   This does not diminish the significance of the course because physiology labs support an additional programmatic goal.  They train students to work with and use technology in ways that complement and extend their knowledge of physiology.

Let’s look at how these ideas show up in the lab.  Consider the situation where a student raises their hand during the lab and says,  “I can’t see anything on my recording but a wavy line.”  The instructor goes over to their experiment, surveys it and shows the student how to adjust the gain or display time.  Voila their data returns!

Or, consider the situation where a student raises their hand and says, “I know I am  recording something but it doesn’t look like my  ECG, pulse, etch”.  The instructor goes over to the experiment, surveys it and shows the student how to apply a digital filter.   Voila their data recording returns! Instructors recognize these situations as ‘aha!” moments where the lab has a tremendous impact on the student learning  but these experiences also provide students with  a long-term value – an appreciation  for knowing how to manage the technology they use.

Students entering the workplace should be able to communicate in an oral and written format

Many of the writing skills that are valued in the workplace are fundamental pieces of the physiology lab, particularly the physiology lab report.  Students are expected to organize their ideas, use graphics effectively, write clear and logical instructions in their methods, and support their position(s) with quantitative or qualitative data.

Let’s consider how writing skills are taught  in the lab report.  Instructors encourage and reinforce these skills by inserting marginal comments like “make the hypothesis more specific”,  “discuss and explain your graph”,  “discuss  how your results can be explained by homeostasis, cardiac output, etc.….” in the lab report.  Students, in the interest of  in getting a better grade on that next lab report, will ask their instructor “How can I make my hypothesis clearer?”, “I thought that I discussed that graph – what more do I need?”, or “  “I thought that I wrote about how the baroreceptor reflex explained my results – what should I have done instead?”  The typical instructor then gives their best explanation and grades the next lab report accordingly.

Some communication skills are embedded in the a lab course in a less transparent manner.  For example, one of the valued professional skills is the ability to convey complex information to an audience.  Instructors observe this in practice regularly as a student asks their lab partner “Show me how you did that?”

Finally there are some communication skills that are not so readily inserted into the lab curriculum and require a special effort on the part of the instructor.  One example of this is the ability to write/ present a persuasive argument which is a part of every  physiologists career in the preparation of  project proposals, contract bids, or project pitches.

Students entering the workplace should be able to obtain and process information

As physiologists we understand how critical it is to have these skills because much of our career is spent pursuing information or processing it.  There are however, multiple steps to becoming proficient.  One needs to be able to recognize  the what they need to know, identify resources to find it, be able to converse with experts to gain it, and finally be able to compile and process it in order to create learning or new knowledge.

The first step of this process, “knowing what you don’t know”, is the hardest for students because they often pursue and learn all the information available rather than focusing on what they don’t know or need to know.  This dilemma is faced by all undergraduate students at some point in their education and a lab course like many other courses tests them on this skill at least once or twice during the term.   The second step to proficiency is  identifying the resources needed to find information.   College libraries in collaboration with faculty inform students about institutional resources available for information gathering however they key to learning this skill is practice.  The physiology lab provides opportunities for practice each time an instructor asks a student to  “include 3 relevant  references in your lab report”, or asks a student to “describe clinical condition X in the discussion and explain how it relates to this lab, these results, etc.”.

Finally one of the objectives of most physiology labs is to teach students how to collect and process physiological information (data)  in a way that allows it to be compiled  into useable physiological information  (inferential statistics).   Students get plenty of practice with this in lab and even though it is discipline specific the general process can be applies to many other fields.

Students entering the workplace should be able to pursue lifelong learning.

Many of us teach or have taught physiology labs at one time or another  and found that not only is this an opportunity to reinforce concepts in physiology and dispel misconceptions  but also to impart to students a true appreciation for physiology and how it makes living organisms work.  Is there better way to promote lifelong learning?

This blog was not meant to be a complete presentation of professional or workplace skills nor was it intended to suggest that these skills  are the  most important in a physiologist’s career.   It was meant to reveal that fundamental professional skills are central components of most physiology lab courses and that sometimes we teach them without realizing it.

REFERENCES

  1. APS/ACDP List of Professional Skills for Physiologists and Trainees. The American Physiological Society.   http://www.the-aps.org/skillslist.aspx  accessed 10/24/2017.
  2. AAMC Core competencies for entering medical students. American Association of Medical Colleges.   accessed 10/20/2017.  https://www.careercenter.illinois.edu/sites/default/files/Core%20Competencies%20forEntering%20Medical%20Students.pdf accessed 10/25/2017.
  3. Focus on employability skills for STEM points to experiential learning. STEM Innovation Task Force.  https://www.stemconnector.com/wp-content/uploads/2016/12/Focus-on-Employability-Skills-Paper-1.pdf   accessed 10/21/2017.
  4. Vision and Change in undergraduate biology education:  A call to action.    http://visionandchange.org/files/2011/03/Revised-Vision-and-Change-Final-Report.pdf
  5. Bio 2010 Transforming undergraduate education for future research biologists. The National Academies Press.   https://www.nap.edu/login.php?record_id=10497&page=https%3A%2F%2Fwww.nap.edu%2Fdownload%2F10497
Jodie Krontiris-Litowitz is a Professor of Biological Sciences in the STEM College of Youngstown State University.  She currently teaches Human Physiology Lab, Advanced Systems Physiology and Principles of Neurobiology and has taught Human Physiology and Anatomy and Physiology.  In her classroom research Jodie investigates using active learning to engage students in the lecture classroom.  She is a long-standing member of the Teaching Section of the American Physiological Society and has served on the APS Education Committee.  Jodie is a Biology Scholars Research Fellow and a recipient of the YSU Distinguished Professor of Teaching award.
Stress and adaptation to curricular changes

 

 

 

…there was a teacher interested in enhancing the learning process of his students. He wanted to see them develop skills beyond routine memorization. With the support of colleagues and the education team at his university, he succeeded and chose a semi-flipped classroom approach that allowed him to introduce novel curricular changes that did not generate much resistance on the part of the students.

The change was made. The students apparently benefited from the course. They worked in groups and learned cooperatively and collaboratively. Students evaluated peers and learned to improve their own work in the process. They not only learned the topics of the class, but also improved their communication skills.

At some point the institution asked the teacher to teach another course. He happily did so, and based on his experience introduced some of the changes of his semi-flipped classroom into the new course. The students in this course were slightly younger and had not been exposed to education in biomedical sciences. To the teacher’s surprise, the students showed a lot of resistance to change. The sessions moved slowly, the test scores were not all that good, and students did not reach the expected outcomes. It was clear that the teacher and the students were going through a period of considerable stress, while adapting to the new model. Students and teachers worked hard but the results did not improve at the expected rate.

Some time ago this was my experience and as I wandered looking for solutions, I started to question the benefits of active learning and the role of stress in educational practice.

Advantages and challenges of active learning

Evidence says that active learning significantly improves student outcomes (higher grades and lower failure rates) and may also promote critical thinking and high level cognitive skills (1, 2). These are essential components of a curriculum that attempts to promote professionalism. However, it may be quite problematic to introduce active learning in settings in which professors and students are used to traditional/passive learning (2).

Some of the biggest challenges for teachers are the following:

  • To learn about backward design of educational activities
  • To think carefully about the expected accomplishments of students
  • To find an efficient way to evaluate student learning
  • To spend the time finding the best strategies for teaching, guiding, and evaluating students.
  • To recognize their limitations. For example, it is possible that despite their expertise, some teachers cannot answer the students’ questions. This is not necessarily bad; in fact, these circumstances should motivate teachers to seek alternatives to clarify the doubts of students. At this point, teachers become role models of professionals who seek to learn continuously.
  • To learn about innovations and disruptive technologies that can improve the teacher role.

Some of the challenges for students include:

  • Understanding their leading role in the learning process
  • Working hard but efficiently to acquire complex skills
  • Reflecting on the effectiveness of their learning methods (metacognition). Usually reading is not enough to learn, and students should look for ways to actively process the information.
  • Trusting (critically) on the methods made available by the teachers to guide their learning. For example, some tasks may seem simple or too complex, but teachers have the experience to choose the right methodology. A work from our team showed that strategies that seem very simple for the student (clay modeling) have a favorable impact on learning outcomes (3).
  • Seeking timely advice and support from teachers, tutors and mentors.

Working to overcome these challenges may generate a high level of stress on students and teachers. Without emphasizing that stress is a desirable trait, I do find that some disturbance in the traditional learning process and risk taking motivate teachers and students to improve their methods.

Intermediate disturbance hypothesis and stress in education

In the twentieth century, the work of Joseph H. Connell became famous for describing factors associated with the diversity of species in an ecosystem (4). Some of his observations were presented in Charles Duhigg’s book “Smarter Faster Better” which discusses circumstances related to effective teamwork (5). Duhigg reports that Connell, a biologist, found that in corals and forests there might be patches where species diversity increases markedly. Curiously, these patches appear after a disturbance in the ecosystem. For example, trees falling in a forest can facilitate the access of light to surface plants and allow the growth of species that otherwise could not survive (5). Connell’s work suggests that species diversity increases under circumstances that cause intermediate stress in the ecosystem. In situations of low stress, one species can become dominant and eradicate other species, whereas in situations of high stress, even the strongest species may not survive. But if, an intermediate stress where to appear, not very strong and not very weak, the diversity of species in an ecosystem could flourish.

I propose that the hypothesis of the intermediate disturbance can also be applied in education. In traditional learning, an individual (ecosystem) learns to react to the challenges presented and develops a method for passing a course. In situations of low stress, memorization (evaluated at the lower levels of Miller´s pyramid) may be enough to pass a course. In high stress level situations, students may drop out or feel inadequate. However, courses that involve active learning may include moderate challenges (intermediate disturbance). These well-managed challenges can motivate the student to develop more complex skills (diversity of species) that lead to effective learning and a broader professional development.

 

 

 

 

 

 

 

 

 

Figure 1. Intermediate disturbance hypothesis in education.

 

In the book “Problem-based learning, how to gain the most from PBL”, Donald Woods describes the challenges and stresses associated with the incorporation of active learning (PBL) in a curriculum (6). He describes the stages of grief that a student (and I add, a teacher) must go through while adapting to the new system. This adaptation can take months and generally is characterized by the following phases:

  • Shock
  • Denial
  • Strong emotion (including depression, panic and anger)
  • Resistance to change
  • Acceptance and resignation to change
  • Struggle to advance in the process
  • Perception of improvement in the expected performance
  • Incorporation of new habits and skills to professional practice

 

 

 

 

 

 

 

 

 

Figure 2. Performance adjustment after curricular changes. Adapted and modified from (6).

 

Properly managing stress and finding strategies to advance in the process are rewarded by achieving better performance once the students become familiar with the new method of active learning. However, to better adapt to curricular or pedagogical changes, it is important for all the education actors to recognize the importance of deliberate work and to have clear goals. In addition, students and teachers should have access to institutional strategies to promote effective time, and anger and frustration management.

Stress is not ideal, but some stress may motivate students and teachers to reevaluate their methods and ultimately work together for a classroom focused on professional excellence. The critical question is how big is the intermediate disturbance needed to improve learning outcomes. As is commonly concluded in papers, more research is needed to answer this question, and we can learn a lot from the theories and methods from our colleagues in Biology.

References

  1. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et al. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci U S A. 2014;111(23):8410-5.
  2. Michael J. Where’s the evidence that active learning works? Adv Physiol Educ. 2006;30(4):159-67.
  3. Akle V, Pena-Silva RA, Valencia DM, Rincon-Perez CW. Validation of clay modeling as a learning tool for the periventricular structures of the human brain. Anat Sci Educ. 2017.
  4. Connell JH. Diversity in Tropical Rain Forests and Coral Reefs. Science. 1978;199(4335):1302-10.
  5. Duhigg C. Smarter Faster Better: Random House; 2016.
  6. Woods DR. Problem Based Learning: How to gain the most from PBL. 2nd. ed1997.
Ricardo A. Peña-Silva M.D., PhD is an associate professor at the Universidad de los Andes, School of Medicine in Bogota, Colombia, where he is the coordinator of the physiology and pharmacology courses for second-year medical students. He received his doctorate in Pharmacology from The University of Iowa in Iowa City. His research interests are in aging, hypertension, cerebrovascular disease and medical education. He works in incorporation and evaluation of educational technology in biomedical education.

He enjoys spending time with his kids. Outside the office he likes running and riding his bicycle in the Colombian mountains.