Tag Archives: active learning

Embracing the Instability of Positive Feedback Loops

Feedback loops are a physiology professor’s bread and butter.  From blood sugar to body temperature, negative feedback ensures that no physiological variable strays from its set point (or range) and that homeostasis is maintained.  Positive feedback loops, on the other hand, are inherently unstable.  In these loops, the response elicited by a stimulus drives the variable further from its set point, reinforcing the stimulus rather than reducing it, and continuing until some outside influence intervenes1.  The classic physiological example of positive feedback is childbirth – pressure from the baby on the mother’s uterus and cervix triggers the release of the hormone oxytocin, which triggers uterine muscle contractions that further push the baby toward the cervix.  This loop of pressure, oxytocin release, and contractions continues until an intervening event occurs – the delivery of the baby.

While physiological positive feedback loops are fascinating, they are greatly outnumbered by negative feedback loops; thus, they don’t usually get much attention in our physiology classrooms.  We usually tell students that the instability of positive feedback loops is what makes them so uncommon.  However, I’d like to use my platform here to argue for a larger place for positive feedback loops in not just our physiology courses, but all of our courses.

 

Positive Feedback Loop Learning

I mentioned above that positive feedback loops are inherently unstable because they drive variables further from their set points, so you may be thinking, “why would I ever want my classroom to be unstable?”  Imagine it this way:  in this feedback loop, the stimulus is an idea, concept, or problem posed by the instructor.  The response is the student’s own investigation of the stimulus, which hopefully sparks further curiosity in the student about the topic at hand, and drives him or her toward more investigation and questioning.  Granted, this system of learning could certainly introduce some instability and uncertainty to the classroom.  Once sparked, the instructor does not have control over the student’s curiosity, which may take the student outside of the instructor’s area of expertise.  However, I maintain that this instability actually enriches our classroom by giving students the space to think critically.

 

Why Encourage Positive Feedback Loops?

Though often misattributed (or even misquoted), Oliver Wendell Holmes, Sr. (poet, essayist, physician, and father of US Supreme Court Justice Oliver Wendell Holmes, Jr.) once wrote “Every now and then a man’s mind is stretched by a new idea or sensation, and never shrinks back to its former dimensions.”2 Neuroscience research supports this assertion.  In rodents, exposure to novel stimuli in enriched environments enhances neuronal long-term potentiation, the cellular correlate of learning and memory in the brain3.  Human brains both functionally and structurally reorganize upon learning new information.  A magnetic resonance imaging study examined gray matter volume in the brains of German medical students who were studying for their “Physikum,” an extensive exam covering biology, chemistry, biochemistry, physics, human anatomy, and physiology4.  Brain scans taken 1-2 days after the Physikum demonstrated significantly increased gray matter volume in the parietal cortex and hippocampus compared to baseline scans taken 3 months prior to the exam (and prior to extensive exposure to new information during the study period)4.  Thus, while the brain may not literally be “stretched” by new ideas, as Holmes proposed, the process of learning (acquisition, encoding, and retrieval of new information) certainly reshapes the brain.

In the model I’ve presented above, new ideas, concepts, and questions are the stimuli in our positive feedback loop.  These stimuli promote changes in our student’s brains.  And, if these stimuli spark curiosity, these brain changes (and thus learning) will be amplified as students respond – meaning, as they construct new ideas, concepts, and questions based on their own interests.  Thus, the loop feeds into itself.

 

Designing Stimuli That Elicit Positive Feedback

How can we structure our teaching so that the stimulus we present to our students is strong enough to elicit a response?  First, it is crucial that our stimuli elicit curiosity in our students. In his essay surveying recent research on the role of curiosity in academic success, David Barry Kaufman wrote, “Stimulating classroom activities are those that offer novelty, surprise, and complexity, allowing greater autonomy and student choice; they also encourage students to ask questions, question assumptions, and achieve mastery through revision rather than judgment-day-style testing.”5  Project-based learning, a teaching technique focused on extended engagement with a problem or task as a means of constructing knowledge, checks many of Kaufman’s boxes6.  As an example, in the past two iterations of my Physiology course, my students have participated in the “Superhero Physiology Project” in which they develop interactive lesson plans for middle school students.  Based on the work of E. Paul Zehr, Ph.D. (author of Becoming Batman: The Possibility of Superhero7 and multiple APS Advances in Physiology Education articles), my students choose a superhero to base their lesson upon, and work over the course of several weeks to create interactive, hands-on activities to teach kids about a physiological system.  While I give my students feedback on the plausibility of their ideas (within our time and budgetary constraints), I leave much of the structure of their lessons open so that they have the opportunity to work through the complexities that come with keeping 20 or more middle schoolers engaged.  Often, my students tell me that figuring out the best way to communicate physiological concepts for a young audience encouraged them to go beyond our textbook to search for new analogies and real-life examples of physiology to which middle schoolers could relate.

Another way to design stimuli that elicit curiosity and positive feedback learning is by capitalizing on a student’s naiveté.  In this approach, described by education expert Kimberly Van Orman of the University of Albany in The Chronicle of Higher Education8, “students don’t need to know everything before they can do anything” – meaning, curiosity is most easily sparked when possibilities aren’t limited by your existing knowledge, because you don’t have any!  For me, this approach is somewhat difficult.  Like all instructors, I regularly feel the pressure to ensure we “get through the material” and often plow through concepts too quickly.  However, my physiology students last fall showed me the power of the “naïve task” firsthand when I observed the Superhero Physiology lesson9 they gave at the middle school.  They decided that before teaching the middle schoolers any physiological terms or concepts didactically, they would present them with a hands-on experiment to introduce the concepts of stroke volume and vasoconstriction.  Their rationale and approach (below) illustrate their mastery of using naiveté to spark curiosity.

Rationale:

The students should be provided with very little, if any, background information on the heart models and the reasoning behind the varying sizes of the materials. By providing little information up front, we hope to intrigue their curiosity regarding the lesson and its significance. Students will be told what to do with the instruments; however, they will not receive any advice on which instruments to use.

The Experiment:

  1. Divide the class into two groups (within each group there should be 4-5 “holders” for the tubes and 4-5 “pumpers” managing water and pipets). Group 1 will be given large diameter tubing, a large funnel as well as 3 large volume pipettes. Group 2 will receive smaller tubing, a smaller funnel and only one smaller volume pipet.
  2. Instruct the students that they will be transporting the water from a large bucket into another bucket 8-10 feet across the room without moving the bucket.
  3. The groups will have 10 minutes to construct their apparatus, and 5 minutes for the actual head-to-head “race” in which the winner is determined by who moves the most amount of water in the allotted time.
  4. After the students have completed the first experiment they will return to their seats for the lecture portion of the lesson which will connect the different parts of the build to different portions of the cardiovascular system.

 

Not only did the middle school students have a fantastic time building their apparatus (and accidentally on purpose getting each other wet!), but as the experiment progressed, they began to get curious about why the other team was so behind or ahead.  Soon after, discussions between groups about tubing diameter and pipet size emerged organically among the middle schoolers, and they were able to easily apply these concepts to later discussions of blood flow and cardiac output.

 

Embracing Instability

While I think most educators aspire to elicit positive feedback learning in their students, there can be barriers to putting it into practice.  As I mentioned above, pressure to cover content results in some of us shying away from open-ended activities and projects.  Not all students in a given class will come in with the same motivations for learning (as discussed in Dr. Ryan Downey’s December 2018 PECOP Blog post10), nor will they all respond to the same stimuli with curiosity.  However, it just takes one stimulus to put a positive feedback loop into action – and once it gets going, it’s hard to stop.  Once a student’s curiosity is piqued, the classroom may feel a bit unstable as their interests move out of the realm of your expertise as an instructor.  But ultimately, we all as educators live for that moment when a connection crystallizes in a student’s mind and they discover a new question they can’t wait to answer.

 

Acknowledgements

The author is grateful to Wabash students James Eaton, Sam Hayes, Cheng Ge, and Hunter Jones for sharing an excerpt of their middle school lesson.

 

References

1 Silverthorn DU. (2013).  Human physiology, an integrated approach (6th Ed.). Pearson.

2 Holmes OW. (1858). The autocrat of the breakfast-table. Boston:  Phillips, Sampson and Company.

3 Hullinger R, O’Riordan K, Burger C.  (2015).  Environmental enrichment improves learning and memory and long-term potentiation in young adult rats through a mechanism requiring mGluR5 signaling and sustained activation of p70s6k.  Neurobiol Learn Mem 125:126-34.

4 Draganski B, Gaser C, Kempermann G, Kuhn HG, Winkler J, Büchel C, May A. (2006).  Temporal and spatial dynamics of brain structure changes during extensive learning.  J Neurosci 26(23):6314-17.

Kaufman,SB. (2017, July 24).  Schools are missing what matters about learning.  The Atlantic.  Retrieved from https://www.theatlantic.com/education/archive/2017/07/the-underrated-gift-of-curiosity/534573/

6 What is PBL? (n.d.) Retrieved from https://www.pblworks.org/what-is-pbl

7 Zehr, EP. (2008).  Becoming Batman: the possibility of a superhero.  Baltimore: Johns Hopkins University Press.

8 Supiano, B. (2018, June 7). How one teaching expert activates students’ curiosity. Retrieved from https://www.chronicle.com/article/How-One-Teaching-Expert/243609

9 Eaton J, Hayes S, Ge C, Jones H. (2018).  Superhero cardio: the effects of blood vessel diameter, stroke volume, and heart rate on cardiac output. Unpublished work, Wabash College, Crawfordsville, IN.

10 Downey, R.  (2018, December 13).  Affective teaching and motivational instruction: becoming more effective educators of science. [Blog post]. Retrieved from https://blog.lifescitrc.org/pecop/2018/12/13/affective-teaching-and-motivational-instruction-becoming-more-effective-educators-of-science/

 

Heidi Walsh has been an Assistant Professor of Biology at Wabash College since 2014. She received a B.S. in Neuroscience from Allegheny College, a Ph.D. in Neuroscience from the University of Virginia, and completed post-doctoral work in the Department of Metabolism & Aging at The Scripps Research Institute’s Florida campus.  Heidi’s research lab studies the impact of obesity-related stressors, including endoplasmic reticulum stress, on gonadotropin-releasing hormone (GnRH) neurons. She teaches courses in Cell Biology, Physiology, and Molecular Endocrinology, and enjoys collaborating with students on science outreach projects.
Engaging students in active learning via protocol development

Physiology, particularly metabolic physiology, covers the fundamentals of biophysics and biochemistry for nutrient absorption, transport, and metabolism. Engaging pre-health students in experimentation may facilitate students’ learning and their in-depth understanding of the mechanisms coordinating homeostatic control. In addition, it may promote critical thinking and problem-solving ability if students are engaged in active learning.

Traditionally, students are provided instructions that detail the stepwise procedures before an experiment or demonstration. Although students are encouraged to ask questions before and during the experiments, an in-depth discussion would not be possible until they understand each step and the underlying principles. This is particularly true nowadays when commercial kits come with stepwise instructions where no explanation can be found of principles behind the procedure. The outcomes may contrast in three ways: (1) students are happy with the perfect data they acquire by following the instructions provided by the manufacturer, but they miss the opportunity to chew on the key principles that are critical for students to develop creative thinking; (2) students are frustrated as they follow the instruction but fail the experiments, without knowing what is wrong and where to start for trouble shooting; and (3) driven by self-motivation, students dig into the details and interact intensively with the instructor to grasp the principles of the procedure. As such, the students can produce reliable data and interpret the procedure and data with confidence, and in addition, they may effectively diagnose operational errors for trouble shooting. Evidently, the 3rd scenario demonstrates an example of active learning, which is desirable but not common in a traditional model of experimentation.

To engage students in active learning, one of the strategies is to remove the ready-to-go procedure from the curricular setting but request the students to submit a working protocol of their own version at the end of an experiment. Instead of a stepwise procedure (i.e., a “recipe”), the students are provided with reading materials that discuss the key principles of the analytical procedures. When students show the competency in the understanding of the principles in a formative assessment (e.g., a 30-min quiz), they are ready to observe the demonstrations step by step, taking notes and asking questions. Based on their notes and inspiration from discussion, each student is requested to develop a protocol of their own version. Depending on how detail-oriented the protocols are, the instructor may approve it or ask students to recall the details and revise their protocols before moving forward. Once students show competency in the protocol development, they are ready to conduct the steps in groups under the instructor’s (or teaching assistant, TA’s) supervision. Assessment on precision and accuracy is the key to examine the competency of students’ operation, which also provides opportunities for students to go back to improve or update their protocols. In the case of unexpected results, the students are encouraged to interpret and justify their results in a physiological setting (e.g., fasting vs. feeding states) unless they choose not to. Regardless, students are asked to go back to recall and review their operation for trouble shooting under the instructor’s (or TA’s) supervision, till they show competency in the experiment with reproducible and biologically meaningful data. Trouble shooting under instructor’s or TA’s supervision and inspiration serves as an efficient platform for students to take the lead in critical thinking and problem solving, which prompts students to go back to improve or update their protocols showing special and practical notes about potential pitfalls and success tips.

Often with delight, students realize how much they have grown at the end of experimentation. However, frustration is not uncommon during the troubleshooting and learning, which has to be overcome through students’ persistence and instructor’s encouragement. Some students might feel like “jumping off a cliff” in the early stage of an experiment where a ready-to follow instruction is not available. Growing in experience and persistence, they become more confident and open to pursue “why” in addition to “what”.

Of note, logistic consideration is critical to ensure active learning by this strategy. A single experiment would take up to 3-fold more time for the instructor and students to work together to reach competency. To this end, the instructor needs to reduce the number of experiments for a semester, and carefully select and design the key experiments to maximally benefit students in terms of skill learning, critical thinking, and problem solving. Furthermore, group size should be kept small (e.g., less than 3 students per group) to maximize interactive learning if independent experimentation by individuals is not an option. Such a requirement can be met either by increasing TA support or reducing class size.

 

 

Zhiyong Cheng is an Assistant Professor of Nutritional Science at the Food Science and Human Nutrition Department, University of Florida’s Institute of Food and Agricultural Sciences (UF/IFAS). Dr. Cheng received his PhD in Analytical Biochemistry from Peking University. After completing his postdoctoral training at the University of Michigan (Ann Arbor) and Harvard Medical School, Dr. Cheng joined Virginia Tech as a faculty member, and recently he relocated to the University of Florida. Dr. Cheng has taught Nutrition and Metabolism, with a focus on substrate absorption, transport, and metabolism. As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively participating in undergraduate and graduate research training.
Mentoring Mindsets and Student Success

There are numerous studies showing that STEM persistence rates are poor (especially amongst under-represented minority, first-generation, and female students) (1-2). It is also fairly broadly accepted that introductory science and math courses act as a primary barrier to this persistence, with their large class size. There is extensive evidence that first-year seminar courses help improve student outcomes and success, and many of our institutions offer those kinds of opportunities for students (3). Part of the purpose of these courses is to help students develop the skills that they need to succeed in college while also cultivating their sense of community at the university.  In my teaching career, I have primarily been involved in courses taken by first-year college students, including mentoring others while they teach first-year courses (4). To help starting to build that sense of community and express the importance of building those college success skills, I like to tell them about how I ended up standing in front of them as Dr. Trimby.

I wasn’t interested in Biology as a field when I started college. I was going to be an Aerospace Engineer and design spaceships or jets, and I went to a very good school with a very good program for doing exactly this. But, college didn’t get off to the best start for me, I wasn’t motivated and didn’t know how to be a successful college student, so my second year of college found me now at my local community college (Joliet Junior College) taking some gen ed courses and trying to figure out what next. I happened to take a Human Genetics course taught by Dr. Polly Lavery. At the time, I didn’t know anything about Genetics or have a particular interest, I just needed the Natural Science credit. Dr. Lavery’s course was active and engaged, and even though it didn’t have a lab associated with it we transformed some E. coli with a plasmid containing GFP and got to see it glow in the dark (which, when it happened almost 20 years ago was pretty freaking cool!). This was done in conjunction with our discussions of Alba the glow-in-the-dark rabbit (5). The course hooked me! I was going to study gene therapy and cure cancer! After that semester, I transferred to Northern Illinois University and changed my major to Biology.

So, why do I bring this up here? When I have this conversation with my undergraduate students, my goal is to remind them that there will be bumps in the road. When we mentor our students, whether it be advisees or students in our classes, it is important to remind them that failure happens. What matters is what you do when things do go sideways. That is really scary for students. Many of our science majors have been extremely successful in the lead up to college, and may have never really failed or even been challenged. What can we do to help our students with this?

First of all, we can build a framework into our courses that supports and encourages students to still strive to improve even if they don’t do well on the first exam. This can include things like having exam wrappers (6)  and/or reflective writing assignments that can help students assess their learning process and make plans for future assessments. Helping students develop self-regulated learning strategies will have impacts that semester (7) and likely beyond. In order for students to persevere in the face of this adversity (exhibit grit), there has to be some sort of hope for the future – i.e. there needs to be a reasonable chance for a student to still have a positive outcome in the course. (8) This can include having a lower-stakes exam early in the semester to act as a learning opportunity, or a course grading scale that encourages and rewards improvement over the length of the semester.

Secondly, we can help them to build a growth mindset (9), where challenges are looked forward to and not knowing something or not doing well does not chip away at someone’s self-worth. Unfortunately, you cannot just tell someone that they should have a growth mindset, but there are ways of thinking that can be encouraged in students (10).

Something that is closely tied to having a growth mindset is opening yourself up to new experiences and the potential for failure. In other words being vulnerable (11). Many of us (and our students) choose courses and experiences that we know that we can succeed at, and have little chance of failure. This has the side effect of limiting our experiences. Being vulnerable, and opening up to new experiences is something important to remind students of. This leads to the next goal of reminding students that one of the purposes of college is to gain a broad set of experiences and that for many of us, that will ultimately shape what we want to do, so it is okay if the plan changes – but that requires exploration.

As an educator who was primarily trained in discipline-specific content addressing some of these changes to teaching can be daunting. Fortunately there are many resources available out there. Some of them I cited previously, but additional valuable resources that have been helpful to me include the following:

  • Teaching and Learning STEM: A Practical Guide. Felder & Brent Eds.
    • Covers a lot of material, including more information of exam wrappers and other methods for developing metacognitive and self-directed learning skills.
  • Cheating Lessons: Learning from Academic Dishonesty by Lang
    • Covers a lot relating to student motivation and approaches that can encourage students to take a more intrinsically motivated attitude about their learning.
  • Rising to the Challenge: Examining the Effects of a Growth Mindset – STIRS Student Case Study by Meyers (https://www.aacu.org/stirs/casestudies/meyers)
    • A case study on growth mindset that also asks students to analyze data and design experiments, which can allow it to address additional course goals.

 

  1. President’s Council of Advisors on Science and Technology. (2012). Engage to excel: Producing one million additional college graduates with degrees in science, technology, engineering and mathematics. Washington, DC: U.S. Government Office of Science and Technology.
  2. Shaw, E., & Barbuti, S. (2010). Patterns of persistence in intended college major with a focus on STEM majors. NACADA Journal, 30(2), 19–34.
  3. Tobolowsky, B. F., & Associates. (2008). 2006 National survey of first-year seminars: Continuing innovations in the collegiate curriculum (Monograph No. 51). Columbia: National Resource Center for the First-Year Experience and Students in Transition, University of South Carolina.
  4. Wienhold, C. J., & Branchaw, J. (2018). Exploring Biology: A Vision and Change Disciplinary First-Year Seminar Improves Academic Performance in Introductory Biology. CBE—Life Sciences Education, 17(2), ar22.
  5. Philipkoski, P. RIP: Alba, The Glowing Bunny. https://www.wired.com/2002/08/rip-alba-the-glowing-bunny/. Accessed January 23, 2019.
  6. Exam Wrappers. Carnegie Mellon – Eberly Center for Teaching Excellence. https://www.cmu.edu/teaching/designteach/teach/examwrappers/ Accessed January 23, 2019
  7. Sebesta, A. and Speth, E. (2017). How Should I Study for the Exam? Self-Regulated Learning Strategies and Achievement in Introductory Biology. CBE – Life Sciences Education. Vol. 16, No. 2.
  8. Duckworth, A. (2016). Grit: The Power of Passion and Perseverance. Scribner.
  9. Dweck, C. (2014). The Power of Believing that you can Improve. https://www.ted.com/talks/carol_dweck_the_power_of_believing_that_you_can_improve?utm_campaign=tedspread&utm_medium=referral&utm_source=tedcomshare
  10. Briggs, S. (2015). 25 Ways to Develop a Growth Mindset. https://www.opencolleges.edu.au/informed/features/develop-a-growth-mindset/. Accessed January 23, 2019.
  11. Brown, B. (2010). The Power of Vulnerability. https://www.ted.com/talks/brene_brown_on_vulnerability?language=en&utm_campaign=tedspread&utm_medium=referral&utm_source=tedcomshare
Christopher Trimby is an Assistant Professor of Biology at the University of Delaware in Newark, DE. He received his PhD in Physiology from the University of Kentucky in 2011. During graduate school he helped out with teaching an undergraduate course, and discovered teaching was the career path for him. After graduate school, Chris spent four years teaching a range of Biology courses at New Jersey Institute of Technology (NJIT), after which he moved to University of Wisconsin-Madison and the Wisconsin Institute for Science Education and Community Engagement (WISCIENCE – https://wiscience.wisc.edu/) to direct the Teaching Fellows Program. At University of Delaware, Chris primarily teaches a version of the Introductory Biology sequence that is integrated with General Chemistry and taught in the Interdisciplinary Science Learning Laboratories (ISLL – https://www.isll.udel.edu/). Despite leaving WISCIENCE, Chris continues to work on developing mentorship programs for both undergraduates interested in science and graduate students/post-docs who are interested in science education. Chris enjoys building things in his workshop and hopes to get back into hiking more so he can update his profile pic. .
How to motivate students to come prepared for class?

The flipped classroom is a teaching method where the first exposure to the subject occurs in an individual learning space and time and the application of content is practiced in an interactive guided group space. Freeing up class time by shifting traditional lecture outside of class allows the instructor more time for student-centered activities and formative assessments which are beneficial to students. The flipped teaching model has been shown to benefit students as it allows self-pacing, encourages students to become independent learners, and assists them to remain engaged in the classroom. In addition, students can access content anytime and from anywhere. Furthermore, collaborative learning and peer tutoring can be integrated due to freed-up class time with this student-centered approach. Given these benefits, the flipped teaching method has been shown to improve student performance compared to traditional lecture-based teaching. Compared to the flipped classroom, the traditional didactic lecture is considered a passive type of delivery where students may be hesitant to ask questions and may omit key points while trying to write or type notes.

There are two key components in the flipped teaching model: pre-class preparation by students and in-class student-centered activities. Both steps involve formative assessments to hold students accountable. The importance of the pre-class assessment is mainly to encourage students to complete their assignments and therefore, they are better prepared for the in-class application of knowledge. In-class activities involve application of knowledge in a collaborative space with the guidance of the instructor. Although the flipped teaching method is highly structured, students still come to class unprepared.

Retrieval practice is yet another powerful learning tool where learners are expected to recall information after being exposed to the content. Recalling information from memory strengthens information and forgetting is less likely to occur. Retrieval of information strengthens skills through long-term meaningful learning. Repeated retrieval through exercises involving inquiry of information is shown to improve learning.

The use of retrieval strategy in pre-class assessments is expected to increase the chance of students completing their pre-class assignment, which is often a challenge. Students attending class without having any exposure to the pre-class assignment in the flipped classroom will drastically affect their performance in the classroom. In my flipped classroom, a quiz consisting of lower level of Bloom’s taxonomy questions is given over the pre-class assignment where the students are not expected to utilize any resources or notes but to answer questions from their own knowledge. Once this exercise is completed, a review of the quiz and the active learning portion of the class occurs. I use a modified team-based learning activity where the groups begin answering higher order application questions. Again, no resources are accessible during this activity to promote their preparation beforehand. Since it is a group activity, if one student is not prepared, other students may fill this gap. The group typically engages every student and there is a rich conversation of the topic being discussed in class. The classroom becomes a perfect place for collaborative learning and peer tutoring. For rapid feedback to the students, the group answers to application questions are discussed with the instructor prior to the end of the class session.

Student preparation has improved since the incorporation of the flipped teaching model along with retrieval exercises in my teaching, but there are always some students who are not motivated to come prepared to class. It is possible that there are other constraints students may have that we will not be able to fix but will continue to be searching for and developing newer strategies for helping these students maximize their learning.

Dr. Gopalan received her PhD in Physiology from the University of Glasgow, Scotland. After completing two years of postdoctoral training at Michigan State University, she began her teaching endeavor at Maryville University where she taught Advanced Physiology and Pathophysiology courses in the Physical Therapy and Occupational Therapy programs as well as the two-semester sequence of Human Anatomy and Physiology (A&P) courses to Nursing students. She later joined St. Louis Community College where she continued to teach A&P courses. Dr. Gopalan also taught at St. Louis College of Pharmacy prior to her current faculty position at Southern Illinois University Edwardsville where she teaches Advanced Human Physiology and Pathophysiology for the doctoral degrees in the Nurse Anesthetist and Nurse Practitioner programs. Besides teaching, she has an active research agenda in teaching as well as in the endocrine physiology field she was trained in.
Likely or unlikely to be true? I like to have students hypothesize

Throughout my science education career, if I was asked what I do, I responded “I write standardized tests.” Let me assure you, this doesn’t win you too many fans outside of science education assessment circles. But in my opinion, there is nothing better to help one develop an understanding and intuition about how students learn than interviewing hundreds of students, listening to their thinking as they reason through questions.

 

When I listen to students think aloud as they answer questions, I learn a lot about what they know and about their exam-taking processes too. For example, while interviewing a student on a multiple true-false format physiology question, the student answered all the true-false statements then said “Wait, let me go back. There’s always some exception I might be missing.” For this student, physiology always broke the rules and the exams they typically took tried to test whether they knew the exceptions. Although my intention for the question was to have the students apply general conceptual knowledge, the student, like most others I interviewed, was instead spending a lot of time making sure they had recalled all the right information. Eventually, moments like this led to a simple change in question format that created an interesting shift in the way questions elicited thinking from faculty and students alike.

 

The interview mentioned above occurred during the process of writing a programmatic physiology assessment, Phys-MAPS.2 The goal of this assessment and the others in a suite of Bio-MAPS assessments was to build tools that could measure student learning across biology majors. Our working team3 and I chose to build all the assessments using a multiple true-false format, where for each question, a short scenario is described, followed by several (often 4-6) statements about the scenario that students identify as either true or false. We chose this format for its high utility assessing how students can hold both correct and incorrect ideas about a topic simultaneously,4 highly pertinent to learning across a major. In addition, the multiple true-false format has the benefit of facilitating easy and quick grading for a large number of students while still allowing for a rich understanding of student thinking comparable to essay assessments.5

Example of Modified Multiple True-False Design (from a question similar to but not on the Phys-MAPS)

However, as I was creating the physiology-specific assessment and Dr. Mindi Summers was creating the ecology-evolution-specific assessment, we ran into challenges when writing statements that needed to be absolutely “true” or “false.” Sometimes we had to write overly complex scenarios for the questions because too many constraints were needed for a “true” or “false” answer. In addition, discipline experts were refusing to ever say something was “true” or “false” (especially, but not solely, the evolutionary biologists). Thus, many of our statements had to be re-written as something that was “likely to be true” or “unlikely to be true”, making the statements bulky and long.

 

Dr. Summers was the first to bring up in our working group meeting the idea of modifying the true-false format. She suggested changing the prompt. What initially read “Based on this information and your knowledge of biology, evaluate each statement as true or false,” became “Based on this information and your knowledge of biology, evaluate each statement as likely or unlikely to be true.” I was instantly sold. I thought back to the student who had spent so much extra time trying to search her brain for the exceptions to the general rules. Surely, this was going to help!

 

It did. For starters, the discipline experts we were consulting were much more inclined to agree the answers were scientifically accurate. And for good reason! We science experts do not often work in the absolutes of “true” and “false”. In fact, I’m pretty sure a whole field of math was created for exactly this reason. I also saw a difference in how students responded to the new language. In my interviews, I noticed students took considerably less time on the assessment and I never again heard a student stop to try to remember all the exceptions they might know. Better yet, I started hearing language that reflected students were applying knowledge rather than trying to remember facts. For example, in the previous true-false format, I often heard “Oh, I just learned this,” and then I would watch the student close their eyes and agonize trying to remember a piece of information, when all the information they needed to answer the question was right in front of them. With the new “likely or unlikely to be true” format, I was hearing more “well that’s generally true, so I think it would work here too.” It appeared that students had shifted to a more conceptual rather than factual mindset.

 

But what really convinced me that we were on to something worthwhile was the awareness of some students of what they were truly being asked to do. “Wait, so basically what you want me to do is hypothesize whether this would be true [in this new scenario] based on what I already know?” YES!!! (I do my inner happy dance every time.)

 

We educators hear the message from a million places that we should teach science as we do science. I maintain that this should count towards how we assess science knowledge and skills too, asking students to apply their knowledge in new contexts where there is no known answer. But when science explores the unknown, how do you ask about the unknown and still have a right answer to grade? (Easily, on a scantron, that is.) As scientists, we use our knowledge to make predictions all the time, not thinking that our hypotheses will absolutely be true, but that they are the mostly likely outcome given what we already know. Why not show our students how much we value that skill by asking them to do the same?

 

1 Answer: Likely to be true.

2 More information about the Phys-MAPS and all of the Bio-MAPS programmatic assessments can be found on: http://cperl.lassp.cornell.edu/bio-maps

3 The Bio-MAPS working group includes: Drs. Michelle Smith, Jennifer Knight, Alison Crowe, Sara Brownell, Brian Couch, Mindi Summers, Scott Freeman, Christian Wright and myself.

4 Couch, B. A., Hubbard, J. K., and Brassil, C. E. (2018). Multiple–true–false questions reveal the limits of the multiple–choice format for detecting students with incomplete understandings. BioScience 68, 455–463.

5 Hubbard, J. K., Potts, M. A., and Couch, B. A. (2017). How question types reveal student thinking: An experimental comparison of multiple-true-false and free-response formats. CBE Life Sci. Educ.

Dr. Katharine (Kate) Semsar finally found a job that uses all her diverse training across ecology, physiology, genetics, behavioral biology, neuroscience, science education, and community building. Kate is the Assistant Director of STEM Programming for the Miramontes Arts & Sciences Program (MASP), an academic community for underrepresented students in the College of Arts & Sciences at the University of Colorado Boulder.

She received her PhD from North Carolina State University and continued her training at University of Pennsylvania. She then became a science education specialist with the Science Education Initiative in the Integrative Physiology department at the University of Colorado Boulder, studying how students learn and collaborating with faculty to incorporate fundamental principles of learning in their courses. She continued her science education research with the Bio-MAPS team before finally landing in her dream career, teaching and mentoring students in MASP. Despite the career shift, she still loves watching people’s reactions when she tells them she used to write standardized assessments.

Teaching for Learning: The Evolution of a Teaching Assistant

An average medical student, like myself, would agree that our first year in medical school is fundamentally different from our last, but not in the ways most of us would expect. Most of us find out that medical school not only teaches us about medicine but it also indirectly teaches us how to learn. But what did it take? What is different now that we didn’t do back in the first year? If it comes to choosing one step of the road, being a teaching assistant could be a turning point for the perception of medical education in the long run, as it offers a glimpse into teaching for someone who is still a student.

At first, tutoring a group of students might seem like a simple task if it is only understood as a role for giving advice about how to get good grades or how to not fail. However, having the opportunity to grade students’ activities and even listen to their questions provides a second chance at trying to solve one’s own obstacles as a medical student. A very interesting element is that most students refuse to utilize innovative ways of teaching or any method that doesn’t involve the passive transmission of content from speaker to audience. There could be many reasons, including insecurity, for this feeling of superficial review of content or laziness, as it happened for me.

There are, in fact, many educational models that attempt to objectively describe the effects of educating and being educated as active processes. Kirkpatrick’s model is a four-stage approach which proposes the evaluation of specific aspects in the general learning outcome instead of the process as a whole (1). It was initially developed for business training and each level addresses elements of the educational outcome, as follows:

  • Level 1- Reaction: How did learners feel about the learning experience? Did they enjoy it?
  • Level 2- Learning: Did learners improve their knowledge and skills?
  • Level 3- Behavior: Are learners doing anything different as a result of training?
  • Level 4- Results: What was the result of training on the business as a whole?

Later, subtypes for level 2 and 4 were added for inter-professional use, allowing its application in broader contexts like medicine, and different versions of it have been endorsed by the Best Evidence in Medical Education Group and the Royal College of Physicians and Surgeons of Canada (1) (2).  A modified model for medical students who have become teachers has also been adapted (3), grading outcomes in phases that very closely reflect the experience of being a teaching assistant. The main difference is the inclusion of attitude changes towards the learning process and the effect on patients as a final outcome for medical education. The need for integration, association and good problem-solving skills are more likely to correspond to levels 3 and 4 of Kirkpatrick’s model because they overcome traditional study methods and call for better ways of approaching and organizing knowledge.

Diagram 1- Modified Kirkpatrick’s model for grading educational outcomes of medical student teachers, adapted from (3)

These modifications at multiple levels allow for personal learning to become a tool for supporting another student’s process. By working as a teaching assistant, I have learned to use other ways of studying and understanding complex topics, as well as strategies to deal with a great amount of information. These methods include active and regular training in memorization, deep analysis of performance in exams and schematization for subjects like Pharmacology, for which I have received some training, too.

I am now aware of the complexity of education based on the little but valuable experience I have acquired until now as a teacher in progress. I have had the privilege to help teach other students based on my own experiences. Therefore, the role of a teaching assistant should be understood as a feedback process for both students and student-teachers with a high impact on educational outcomes, providing a new approach for training with student-teaching as a mainstay in medical curricula.

References

  1. Roland D. Proposal of a linear rather than hierarchical evaluation of educational initiatives: the 7Is framework. Journal of Educational Evaluation for Health Professions. 2015;12:35.
  2. Steinert Y, Mann K, Anderson B, Barnett B, Centeno A, Naismith L et al. A systematic review of faculty development initiatives designed to enhance teaching effectiveness: A 10-year update: BEME Guide No. 40. Medical Teacher. 2016;38(8):769-786.
  3. Hill A, Yu, Wilson, Hawken, Singh, Lemanu. Medical students-as-teachers: a systematic review of peer-assisted teaching during medical school. Advances in Medical Education and Practice. 2011;:157.

The idea for this blog was suggested by Ricardo A. Pena Silva M.D., Ph.D. who provided guidance to Maria Alejandra on the writing of this entry.

María Alejandra is a last year medical student at the Universidad de Los Andes, School of Medicine in Bogota, Colombia, where she is has been a teaching assistant for the physiology and pharmacology courses for second-year medical students. Her academic interests are in medical education, particularly in biomedical sciences.  She is interested in pursuing a medical residency in Anesthesiology. Outside medical school, she likes running and enjoys literature as well as writing on multiple topics of personal interest.
Paradigm Shifts in Teaching Graduate Physiology

From years of experience teaching physiology to graduate students, I found students learn best when they have a good grasp of basic concepts and mechanisms. As we are well aware, the lecture format was used to disseminate knowledge on various topics.  Students took notes and were expected to reinforce their knowledge by reading recommended texts and solving related questions that were assigned.  Some courses had accompanying laboratories and discussion sessions where students learned about applications and gained practical experience.  The term “active learning” was not in vogue, even though it was taking place in a variety of ways!  Successful teachers realized that when students were able to identify the learning issues and followed through by searching for what they needed to understand, this process enhanced learning.  The idea of a “flipped” classroom had not been described as such, but was occurring de facto in rudimentary ways with the ancillary activities that were associated with some courses.  As you are reading this, you are incorrect if you think it is an appeal to go back to the way things were.

 

By coincidence, one evening after work, I was listening to the radio about the story of a professor at an elite college.  My colleagues and I had just been discussing new teaching ideas and technologies!  As an acclaimed and accomplished educator he was surprised to learn that his students did not do as well as he expected on a national exam in comparison to other students being tested on the same subject. I was mesmerized and had to stop and listen to this teacher’s thoughts about how he changed his methods to improve student learning and their ability to apply knowledge.  This is also when I heard the expression, “if it was good enough for Galileo, it is good enough for me.”  This humorously illustrates an extreme case of someone who doesn’t want to incorporate new ideas, different knowledge and new developments.  As you are reading this, you are incorrect if you think it is an appeal to go back to the way things were.  Obviously, we can and do find new ways to teach, but this doesn’t mean abandoning methods that work.  In listening to debates on topics such as integrating the curriculum, we acknowledge that other systems also work if used properly.  However, they should be well thought-out and appropriate for the group of students you are teaching.  So, how does this apply to teaching graduate physiology to today’s students?

 

Creative teachers have always found a way to engage their students. From what I have come to understand, today’s students seem to prefer a classroom environment that combines lectures with some form of a multimedia presentation and exercises such as team-based learning, where they can interact with fellow students and instructors.  This keeps their attention and works well with students who grew up with technology.  While technology also makes it easier for instructors to make slides and use multimedia, care must be taken to avoid oversimplifying.  A tendency of modern media is to compress information into sound-bytes and that is a dangerous mindset for a graduate level course.

 

Instead of just acquiring knowledge for its own sake, today’s students want to learn what is relevant for their future endeavors.  In my opinion, it is very important to show them how and why what they are learning relates to practical “real world” applications.  I like to develop concepts, discuss mechanisms whenever possible, and show examples of how the knowledge is applied and useful.  A plus is that these students like to work cooperatively and enjoy problem solving as a group exercise with a common goal in mind.  However, in-class activities sometimes become too social and groups have to be kept on track.  Another pitfall stems from the fact that in many courses, lectures are recorded and notes are distributed in the form of a syllabus that student’s rely on as their sole source of material.  Too often, students copiously read the prepared notes and listen to the recorded lectures instead of more actively reviewing and connecting with the material that was presented.

 

The internet is a useful resource where information can easily be looked up.  While this is helpful, I find that they may miss the larger context even though it was presented in class.  This is where another comprehensive source of information such as a textbook (on-line or in print) can be used to reiterate material and reinforce what was discussed in class. Students would benefit more by using other resources to accompany notes and lectures. The “flipped” classroom works well if students come to class having prepared by reading, reviewing and analyzing the subject matter.  This type of preparation also makes lectures more interactive and enjoyable by fostering class discussion.  Therefore, I would conclude by stating it is the preparation by student and teacher that makes even the traditional lecture format more engaging and effective.

Andrew M. Roberts, MS, PhD is an Associate Professor in the Department of Physiology at the University of Louisville School of Medicine in Louisville, Kentucky.  He received his PhD in Physiology at New York Medical College and completed a postdoctoral training program in heart and vascular diseases and a Parker B. Francis Fellowship in Pulmonary Research at the University of California, San Francisco in the Cardiovascular Research Institute. His research focuses on cardiopulmonary regulatory mechanisms with an emphasis on neural control, microcirculation, and effects of local endogenous factors.  He teaches physiology to graduate, medical, and dental students and has had experience serving as a course director as well as teaching allied health students.
Why do you teach the way that you do?

Have you ever stopped to think about why you do something the way that you do it? We educators are often very good at describing what we do or have done. I was recently reviewing some CVs for a teaching position; all the CVs were replete with descriptions of what content was taught in which course at which institution. However, I feel that we educators often fail to capture why we teach in a certain way.

 

 

In my extra-curricular life, I am an educator on the soccer field in the form of a coach. Through coaching education, I have been encouraged to develop a philosophy of coaching. This is a description of why I coach the way I do. To develop a coaching philosophy, coaches should think about three central aspects (see: https://www.coach.ca/develop-a-coaching-philosophy-in-3-easy-steps-p159158 for more details):

 

  1. Purpose: why do you coach?

  2. Leadership style – what methods do you use to coach? Are you more ‘coach-centered’ or more ‘player-centered’ in your approach? Or somewhere in between? Why?

  3. Values: what is most important to you? How does it affect the way you coach?

 

If ‘coach’ is replaced by ‘teach’ or ‘teacher’ in the above list, and ‘player’ is replaced by ‘student’, we can use this framework to develop a philosophy of teaching. I have found that putting ‘pen to paper’ in forming a philosophy helps to crystallize your beliefs about teaching that may have been seemingly random, disparate thoughts previously. It can be insightful to synthesize your beliefs about teaching, as it provides some structure and guidance when planning future teaching.

 

It is time to nail my colors to the mast. I teach because I want to help my students be successful diagnosticians in their profession (medicine) and understand why their patient’s bodies are responding in the way that they do in order to help them treat them effectively. I do believe in the benefit of having an expert instructor, especially when you have novice students, so I am probably more teacher-centric than is the current fad. However, I don’t like lectures for the most part, because from my perspective, lectures principally focus on information transfer rather than using and applying the important information. This is not to say that lectures are all bad, but I prefer ‘flipped classroom’ methods that require students to gather the necessary knowledge before class, and then during class, demonstrate mastery of material and apply it to clinical scenarios (with the aid of the instructor). But, that’s me. What about you?

 

If you are applying for positions that will require teaching, having both a teaching philosophy and a teaching portfolio will provide the appropriate evidence to the search committee about how you plan to teach.  The following resources might be useful to you:

Preparing a Teaching Portfolio http://www.unco.edu/graduate-school/pdf/campus-resources/Teaching-Portfolio-Karron-Lewis.pdf

Writing Your Teaching Philosophy https://cei.umn.edu/writing-your-teaching-philosophy

  Hugh Clements-Jewery, PhD is currently Visiting Research Associate Professor at the University of Illinois College of Medicine in Rockford, Illinois. He teaches medical physiology in the integrated Phase 1 undergraduate medical curriculum at the University of Illinois College of Medicine. He is the College-wide leader for the Circulation-Respiration course. He has also recently taken on the role of Director of Phase 1 curriculum at the Rockford campus.
Why I’m a Clicker Convert

Recently I was faced with a teaching challenge: how to incorporate active learning in a huge Introductory Biology lecture of 400+ students. After searching for methods that would be feasible, cost effective, and reasonably simple to implement in the auditorium in which I was teaching, I came up with clickers. Our university has a site license for Reef Polling Software which means I wouldn’t add to the cost for my students—they could use any WiFi enabled device or borrow a handset at no cost. I incorporated at least 4 clicker questions into every class and gave students points for completing the questions. 10% of their grade came from clicker questions and students could get full credit for the day if they answered at least 75% of the questions. I did not give them points for correct answers because I wanted to see what they were struggling to understand.

I’m now a clicker convert for the following 3 reasons:

  • Clickers Increase Student Engagement and Attendance

In a class of 400+, it is easy to feel like there is no downside to skipping class since the teacher won’t realize you are gone. By attaching points to completing in-class clicker questions, about 80% of the class attended each day. While I would like perfect attendance, anecdotally this is much better than what my colleagues report for similar classes that don’t use clickers. Students still surfed the internet and slept through class, but there was now more incentive to pay a bit of attention so you didn’t miss the clicker questions. In my opinion, getting to class can be half the battle so the incentive is worth it. In my small classes I like to ask a lot of questions and have students either shout out answers or vote by raising their hands. Often, students won’t all vote or seem to be too embarrassed to choose an answer. I tested out clickers in my small class and found an increased response rate to my questions and that I was more likely to see the full range of student understanding.

  • Clickers Help Identify Student Misconceptions in Real Time

Probably the biggest benefit of clickers to my teaching is getting a better sense of what the students are understanding in real time. Many times I put in questions that I thought were ‘gimmes’ and was surprised to see half the class or more getting them wrong. When that happens, I can try giving them a hint or explaining the problem in a different way, having them talk with their group, and then asking them to re-vote. Since I don’t give points for correctness, students don’t feel as pressured and can focus on trying to understand the question. I’m often surprised that students struggle with certain questions. For instance, when asked whether the inner membrane of the mitochondria increases surface area, volume, or both, only half of the students got the correct answer the first time (picture). Since this is a fundamental concept in many areas of biology, seeing their responses made me take time to really explain the right answer and come up with better ways of explaining and visualizing the concept for future semesters.

  • Clickers Increase Student Learning (I hope)

At the end of the day, what I really hope any active learning strategy I use is doing is helping students better understand the material. To try to facilitate this, I ask students to work in groups to solve the problems. I walk around the class and listen while they solve the problem. This can help me get an idea of their misconceptions, encourage participation, and provide a less scary way for students to ask questions and interact with me. While working in groups they are explaining their reasoning and learning from each other. Interspersing clicker questions also helps to reinforce the material and make sure students stay engaged.

I’m convinced that clickers are helping to improve my teaching and students seem to agree. Of the 320 students who filled out course evaluations one semester, 76 included positive comments about clicker questions. Here are two of my favorites:

“I like how we had the in-class clicker questions because it made me think harder about the material we were learning about in that moment.”

“I enjoyed doing the clicker questions. If the class disagreed with something she would stop and reteach the main point and hope we would understand. That was really helpful on her part.”

I would be remiss if I didn’t end by thanking the many researchers who have studied how to incorporate clickers into your class to maximize learning. I decided to try them after hearing Michelle Smith talk at the first APS Institute on Teaching and Learning and highly recommend seeing her speak if you have the chance. If you only want to read one paper, I suggest the following:

Smith, Michelle K., et al. “Why peer discussion improves student performance on in-class concept questions.” Science 323.5910 (2009): 122-124.

I hope you will comment with how you use clickers or other strategies to engage large lecture classes. For more resources I’ve found helpful designing my classes click here.

Katie Wilkinson, PhD is a newly minted Associate Professor of Biological Sciences at San Jose State University. She completed her undergraduate work in Neuroscience at the University of Pittsburgh and her PhD in Biomedical Sciences at the University of California, San Diego. She was an NIH IRACDA Postdoctoral Fellow in Research and Scientific Teaching at Emory University. At SJSU her lab studies the function of stretch sensitive muscle proprioceptors. She teaches Introductory Biology, Vertebrate Neurophysiology, Integrative Physiology, Pain Physiology, and Cardiorespiratory Physiology to undergraduate and masters students.
An Academic Performance Enrichment Program for Struggling Students

Pharmacy schools nationwide are currently experiencing a decline in admission applications and an increase in the number of academically struggling students in their programs. Thus, schools of pharmacy are not only searching for effective ways to increase enrollment of qualified candidates but are also focusing on the development of programs to improve academic performance and retention of enrolled students.

 

Our students struggle academically for a number of reasons:

  1. personal issues such as those involving jobs or family,
  2. mental disorders or conditions such as attention deficit disorder, anxiety, or depression,
  3. lack of academic skills,
  4. deficiencies in prerequisite knowledge, and/or
  5. lack of motivation and discipline to meet the requirements necessary to succeed in a rigorous professional degree program.

Some students may be helped by resolving the underlying personal or medical issues.  For the others, we have developed an academic performance enrichment program (APEP) aimed to improve academic skills (e.g. study skills, time management skills), comprehension of course material, metacognition, discipline and accountability with the overall goal to decrease course failures and to improve retention.

During the first year of our Pharm.D. curriculum, students complete a two-semester (10-unit) integrated biological sciences course sequence (BSI I & II) which integrates biochemistry, cell biology, physiology, and pathophysiology.  The summative assessments include 4 exams and a comprehensive final in each semester. Formative assessments include worksheets and assignments, which are not submitted to the instructor, and various in-class active learning activities. BSI is the course in which the first year pharmacy students struggle the most. BSI is a prerequisite for most other advanced courses, so it is required to pass in order to complete the program in 4 years. Furthermore, a failure in BSI I is highly predictive of a student struggling throughout the program. Thus, developing a means to improve academic performance is imperative to facilitate success. Historically, we have found that traditional one-on-one or small-group peer-tutoring did not lead to significant improvements in academic performance or course failure rates. Feedback from the peer-tutors revealed that tutees did not adequately prepare for the tutoring sessions and were passive participants in the tutoring process.  We have also observed that most of the students struggle in BSI and the first year pharmacy curriculum due to lack of academic skills and/or lack of motivation and discipline to implement the skills rather than difficulty in understanding course content. Therefore, the APEP includes academic skills training and student accountability to be active participants in the tutoring process.

The APEP is comprised of structured group tutoring sessions which are 1.0-1.5 hours twice per week, led by graduate assistants (2nd year pharmacy students).  At the beginning of each week, the students are emailed instructions as to what to prepare and expect for the sessions that week.  They are asked to develop a 15-question multiple choice quiz from the specified BSI material and to complete worksheets or assignments that coincide with each BSI course lecture note set. At each session, the students exchange and complete the quizzes followed by discussion of wrong answers among each other.  The students then complete various activities which may include drawing specific diagrams, flowcharts, or pathways that were assigned to learn for the session. The students are expected to complete the drawings from memory and then work together to fill in any missing information. The graduate assistants discuss active study methods most effective for learning the particular course content, along with the importance of continuous self-testing. We have observed that linking the discussion of study methods to specific material is more effective than giving general study skills advice, which low performing students often ignore and/or do not know when or how to apply.  Each session also includes a question and answer period where the students can ask questions for clarification and the graduate assistants ask higher order questions to probe their level of understanding. The students submit their quiz grades, completed worksheets, and drawings to the graduate assistants in order to track attendance and preparedness for the sessions.  Procrastination and the underutilization of active studying techniques are common among our low performing students; the completion of the assignments in preparation for and during each session is aimed to prevent these unfavorable habits.  To improve metacognition we have incorporated two activities. Before each BSI exam, the APEP students predict the grade they will receive based on their self-perceived preparedness and understanding of the material.  After each exam, they are required to meet with the course instructor to review the questions that they missed and then to write a paragraph with their insights as to why they earned the grade and what they plan to do differently to improve on the next exam. In the BSI course, all students are encouraged to meet with the professor to review their exam; however, the lower performing students often do not follow through. Thus, we have made it a required piece of the APEP.

Students with an average BSI course grade below 73% at any point during the semester are required to attend the APEP sessions until their course grade exceeds 73% (<69.5% is a failing grade). Most of the students attend the sessions and complete the required tasks without being pressed. However, a small percentage require further enforcement which includes a meeting with the Director of the APEP and the Assistant Dean of Academic Affairs. Typically, such a meeting leads to improved engagement in the APEP. So far, only 1 student out of 35 who have participated in the APEP has continued to skip required sessions.

The APEP was implemented in the fall semester of 2017. Preliminary data indicate that the program is effective for improving academic skills and performance. The failure rate in BSI I decreased by 36% compared to the previous two years. For those who entered the program after performing poorly on an exam, the APEP was deemed effective to improve performance on the following exam.  For example, 80% of the students who were required to join the APEP after Exam 1 improved on Exam 2, while only 29% of the students who scored between 74-79% on Exam 1 (and not required to attend the APEP) improved on Exam 2.  86% of the students in the APEP after Exam 2 improved on Exam 3, compared to 54% of the comparative group who did not attend the APEP. 65% of the students in the APEP after Exam 3 improved on Exam 4, compared to 38% in the comparative group. 78% of the students in the APEP after Exam 4 improved on Exam 5 (comprehensive final exam), compared to 36% in the comparative group.  We do not know yet if the APEP was effective at reducing the failure rate in BSI II, since the semester is still in progress.

According to a survey, the majority of APEP attendees believed that the program helped:

  1. to improve study skills by incorporating more active studying techniques,
  2. to prevent procrastination of studying,
  3. to study with more intent by having quizzes and assignments to complete for each APEP session,
  4. to improve understanding of the course material and
  5. to identify course content that they did not fully understand.

A program such as this requires active engagement to be effective; what you put into it, you get out of it. 68% of the APEP students believed that they came to each session as prepared as they should have been.  The biggest struggle has been to find an effective means to increase this number to closer to 100%.  The APEP will continue to evolve as we strive to meet the 100% mark and to reduce the failure rate even further.

Amie Dirks-Naylor is Professor and a member of the founding faculty at Wingate University School of Pharmacy in North Carolina where she teaches the basic sciences to the first-year pharmacy students. She earned her Ph.D. in Exercise Physiology (minor in Biochemistry and Molecular Biology) from the University of Florida, her M.S. from San Diego State University, and B.S. from the University of California, Davis.  She completed her post-doctoral research at Stanford University School of Medicine in the department of Radiation Oncology.  Her current research interests include mechanisms of adverse drug effects involving oxidative stress and apoptosis, physiological effects of lifestyle modifications, and the scholarship of teaching and learning.