Tag Archives: assessment

Questioning How I Question

For some, “assessment” is sometimes a dirty word, with visions of rubrics, accreditation reports, and piles of data.  Readers of this blog hopefully do not have this vantage point, thanks in part to some great previous posts on this topic and an overall understanding of how assessment is a critical component of best practices in teaching and learning.  Yet, even as a new(ish) faculty member who values assessment, I still struggle with trying to best determine whether my students are learning and to employ effective and efficient (who has time to spare?!) assessment strategies.  Thus, when a professional development opportunity on campus was offered to do a book read of “Fast and Effective Assessment: How to Reduce Your Workload and Improve Student Learning” by Glen Pearsall I quickly said “Yes! Send me my copy!”

 

Prior to the first meeting of my reading group, I dutifully did my homework of reading the first chapter (much like our students often do, the night before…).  Somewhat to my surprise, the book doesn’t start by discussing creating formal assessments or how to effectively grade and provide feedback.  Rather, as Pearsall points out “a lot of the work associated with correction is actually generated long before students put pen to paper. The way you set up and run a learning activity can have a profound effect on how much correction you have to do at the end of it.” The foundation of assessment, according to Pearsall is then questioning technique. 

 

Using questions to promote learning is not a new concept and most, even non-educators, are somewhat familiar with the Socratic Method.  While the simplified version of the Socratic Method is thought of as using pointed questions to elicit greater understanding, more formally, this technique encourages the student to acknowledge their own fallacies and then realize true knowledge through logical deduction[1],[2].  Compared to the conversations of Socrates and Plato 2+ millennia ago, modern classrooms not only include this dialectic discourse but also other instructional methods such as didactic, inquiry, and discovery-based learning (or some version of these strategies that bears a synonymous name).  My classroom is no different — I ask questions all class long, to begin a session (which students answer in writing to prime them into thinking about the material they experienced in preparation for class), to work through material I am presenting (in order to encourage engagement), and in self-directed class activities (both on worksheets and as I roam the room).  However, it was not until reading Pearsall’s first chapter that I stopped to question my questions and reflect on how they contribute to my overall assessment strategy.

 

Considering my questioning technique in the context of assessment was a bit of a reversal in thinking.  Rather than asking my questions to facilitate learning (wouldn’t Socrates be proud!), I could consider my questions providing important feedback on whether students were learning (AKA…Assessment!).  Accordingly, the most effective and efficient questions would be ones that gather more feedback in less time.  Despite more focus on the K-12 classroom, I think many of Pearsall’s suggestions[3] apply to my undergraduate physiology classes too.  A brief summary of some strategies for improving questioning technique, separated by different fundamental questions:

 

 

How do I get more students to participate?

  • We can “warm up” cold calling to encourage participation through activities like think-pair-share, question relays, scaffolding answers, and framing speculation.
  • It is important to give students sufficient thinking time through fostering longer wait and pause times. Pre-cueing and using placeholder or reflective statements can help with this.

How do I elicit evidentiary reasoning from students?

  • “What makes you say that?” and “Why is _____ correct?” encourages students to articulate their reasoning.
  • Checking with others and providing “second drafts” to responses emphasizes the importance of justifying a response.

How do I sequence questions?

  • The right question doesn’t necessarily lead to better learning if it’s asked at the wrong time.
  • Questions should be scaffolded so depth and complexity develops (i.e. detail, category, elaboration, evidence).

How do I best respond to student responses?

  • Pivoting, re-voicing, and cueing students can help unpack incorrect and incomplete answers as well as build and explore correct ones.

How do I deal with addressing interruptions?

  • Celebrating good practices, establishing rules for discussion, making it safe to answer and addressing domineering students can facilitate productive questioning sessions.

 

After reviewing these strategies, I’ve realized a few things.  First, I was already utilizing some of these techniques, perhaps unconsciously, or as a testament to the many effective educators I’ve learned from over the years.  Second, I fall victim to some questioning pitfalls such as not providing enough cueing information and leaving students to try their hand at mind-reading what I’m trying to ask more than I would like.  Third, the benefits of better questioning are real.  Although only anecdotal and over a small sampling period, I have observed that by reframing certain questions, I am better able to determine if students have learned and identify what they may be missing.  As I work to clean up my assessment strategies, I will continue to question my questions, and encourage it in my colleagues as well.

 

1Stoddard, H.A. and O’Dell, D.A. Would Socrates Have Actually Used the Socratic Method for Clinical Teaching? J Gen Intern Med 31(9):1092–6. 2016.

2Oyler, D.R. and Romanelli, F. The Fact of Ignorance Revisiting the Socratic Method as a Tool for Teaching Critical Thinking. Am J of Pharm Ed; 78 (7) Article 144. 2014.

3A free preview of the first chapter of Pearsall’s book is available here.

Anne Crecelius (@DaytonDrC) is an Assistant Professor in the Department of Health and Sport Science at the University of Dayton where she won the Faculty Award in Teaching in 2018.  She teaches Human Physiology, Introduction to Health Professions, and Research in Sport and Health Science. She returned to her undergraduate alma mater to join the faculty after completing her M.S. and Ph.D. studying Cardiovascular Physiology at Colorado State University.  Her research interest is in the integrative control of muscle blood flow.  She is a member of the American Physiological Society (APS), serving on the Teaching Section Steering Committee and will chair the Communications Committee beginning in 2019.  In 2018, she was awarded the ADInstruments Macknight Early Career Innovative Educator Award.
Likely or unlikely to be true? I like to have students hypothesize

Throughout my science education career, if I was asked what I do, I responded “I write standardized tests.” Let me assure you, this doesn’t win you too many fans outside of science education assessment circles. But in my opinion, there is nothing better to help one develop an understanding and intuition about how students learn than interviewing hundreds of students, listening to their thinking as they reason through questions.

 

When I listen to students think aloud as they answer questions, I learn a lot about what they know and about their exam-taking processes too. For example, while interviewing a student on a multiple true-false format physiology question, the student answered all the true-false statements then said “Wait, let me go back. There’s always some exception I might be missing.” For this student, physiology always broke the rules and the exams they typically took tried to test whether they knew the exceptions. Although my intention for the question was to have the students apply general conceptual knowledge, the student, like most others I interviewed, was instead spending a lot of time making sure they had recalled all the right information. Eventually, moments like this led to a simple change in question format that created an interesting shift in the way questions elicited thinking from faculty and students alike.

 

The interview mentioned above occurred during the process of writing a programmatic physiology assessment, Phys-MAPS.2 The goal of this assessment and the others in a suite of Bio-MAPS assessments was to build tools that could measure student learning across biology majors. Our working team3 and I chose to build all the assessments using a multiple true-false format, where for each question, a short scenario is described, followed by several (often 4-6) statements about the scenario that students identify as either true or false. We chose this format for its high utility assessing how students can hold both correct and incorrect ideas about a topic simultaneously,4 highly pertinent to learning across a major. In addition, the multiple true-false format has the benefit of facilitating easy and quick grading for a large number of students while still allowing for a rich understanding of student thinking comparable to essay assessments.5

Example of Modified Multiple True-False Design (from a question similar to but not on the Phys-MAPS)

However, as I was creating the physiology-specific assessment and Dr. Mindi Summers was creating the ecology-evolution-specific assessment, we ran into challenges when writing statements that needed to be absolutely “true” or “false.” Sometimes we had to write overly complex scenarios for the questions because too many constraints were needed for a “true” or “false” answer. In addition, discipline experts were refusing to ever say something was “true” or “false” (especially, but not solely, the evolutionary biologists). Thus, many of our statements had to be re-written as something that was “likely to be true” or “unlikely to be true”, making the statements bulky and long.

 

Dr. Summers was the first to bring up in our working group meeting the idea of modifying the true-false format. She suggested changing the prompt. What initially read “Based on this information and your knowledge of biology, evaluate each statement as true or false,” became “Based on this information and your knowledge of biology, evaluate each statement as likely or unlikely to be true.” I was instantly sold. I thought back to the student who had spent so much extra time trying to search her brain for the exceptions to the general rules. Surely, this was going to help!

 

It did. For starters, the discipline experts we were consulting were much more inclined to agree the answers were scientifically accurate. And for good reason! We science experts do not often work in the absolutes of “true” and “false”. In fact, I’m pretty sure a whole field of math was created for exactly this reason. I also saw a difference in how students responded to the new language. In my interviews, I noticed students took considerably less time on the assessment and I never again heard a student stop to try to remember all the exceptions they might know. Better yet, I started hearing language that reflected students were applying knowledge rather than trying to remember facts. For example, in the previous true-false format, I often heard “Oh, I just learned this,” and then I would watch the student close their eyes and agonize trying to remember a piece of information, when all the information they needed to answer the question was right in front of them. With the new “likely or unlikely to be true” format, I was hearing more “well that’s generally true, so I think it would work here too.” It appeared that students had shifted to a more conceptual rather than factual mindset.

 

But what really convinced me that we were on to something worthwhile was the awareness of some students of what they were truly being asked to do. “Wait, so basically what you want me to do is hypothesize whether this would be true [in this new scenario] based on what I already know?” YES!!! (I do my inner happy dance every time.)

 

We educators hear the message from a million places that we should teach science as we do science. I maintain that this should count towards how we assess science knowledge and skills too, asking students to apply their knowledge in new contexts where there is no known answer. But when science explores the unknown, how do you ask about the unknown and still have a right answer to grade? (Easily, on a scantron, that is.) As scientists, we use our knowledge to make predictions all the time, not thinking that our hypotheses will absolutely be true, but that they are the mostly likely outcome given what we already know. Why not show our students how much we value that skill by asking them to do the same?

 

1 Answer: Likely to be true.

2 More information about the Phys-MAPS and all of the Bio-MAPS programmatic assessments can be found on: http://cperl.lassp.cornell.edu/bio-maps

3 The Bio-MAPS working group includes: Drs. Michelle Smith, Jennifer Knight, Alison Crowe, Sara Brownell, Brian Couch, Mindi Summers, Scott Freeman, Christian Wright and myself.

4 Couch, B. A., Hubbard, J. K., and Brassil, C. E. (2018). Multiple–true–false questions reveal the limits of the multiple–choice format for detecting students with incomplete understandings. BioScience 68, 455–463.

5 Hubbard, J. K., Potts, M. A., and Couch, B. A. (2017). How question types reveal student thinking: An experimental comparison of multiple-true-false and free-response formats. CBE Life Sci. Educ.

Dr. Katharine (Kate) Semsar finally found a job that uses all her diverse training across ecology, physiology, genetics, behavioral biology, neuroscience, science education, and community building. Kate is the Assistant Director of STEM Programming for the Miramontes Arts & Sciences Program (MASP), an academic community for underrepresented students in the College of Arts & Sciences at the University of Colorado Boulder.

She received her PhD from North Carolina State University and continued her training at University of Pennsylvania. She then became a science education specialist with the Science Education Initiative in the Integrative Physiology department at the University of Colorado Boulder, studying how students learn and collaborating with faculty to incorporate fundamental principles of learning in their courses. She continued her science education research with the Bio-MAPS team before finally landing in her dream career, teaching and mentoring students in MASP. Despite the career shift, she still loves watching people’s reactions when she tells them she used to write standardized assessments.

Thinking Critically About Critical Thinking

 

A few mornings ago, I was listening to a television commercial as I got ready for work.  “What is critical thinking worth?” said a very important announcer.  “A whole lot” I thought to myself.

But what exactly is critical thinking?  A Google search brings up a dictionary definition.  Critical thinking is “the objective analysis and evaluation of an issue to form a judgement.”  The example sentence accompanying this definition is “professors often find it difficult to encourage critical thinking among their students.” WOW, took the words right out of my mouth!

Have any of you had the following conversation? “Dr. A, I studied and studied for this exam and I still got a bad grade.  I know the material, I just can’t take your tests!”  The student in question has worked hard. He or she has read the course notes over and over, an activity that has perhaps been rewarded with success in the past.  Unfortunately re-reading notes and textbooks over and over is the most common and least successful strategy for studying (4).

In my opinion, as someone who has been teaching physiology for over 20 years, physiology is not a discipline that can be memorized.  Instead, it is a way of thinking and a discipline that has to be understood.

Over the years, my teaching colleague of many years, Sue Keirstead, and I found ourselves during office hours trying repeatedly to explain to students what we meant by thinking critically about physiology.  We asked the same probing questions and drew the same diagrams over and over.  We had the opportunity to formalize our approach in a workbook called Cells to Systems Physiology: Critical Thinking Exercises in Physiology (2).  We took the tough concepts students brought to office hours and crafted questions to help the students work their way through these concepts.

Students who perform well in our courses make use of the workbook and report in student evaluations that they find the exercises helpful. But we still have students who struggle with the critical thinking exercises and the course exams.  According to the comments from student evaluations, students who struggled with the exercises report they found the questions too open ended.  Furthermore, many of the answers cannot be pulled directly from their textbook, or at least not in the format they expect the answer to be in, and students report finding this frustrating.  For example, the text may discuss renal absorption and renal secretion in general and then the critical thinking exercises asks the student to synthesize all the processes occurring in the proximal tubule.  The information is the same but the organization is different.  Turns out, this is a difficult process for our students to work through.

We use our critical thinking exercise as a type of formative assessment, a low stakes assignment that evaluates the learning process as it is occurring.  We also use multiple choice exams as summative assessments, high stakes assessments that evaluate learning after it has occurred.  We use this format because our physiology course enrollment averages about 300 students and multiple choice exams are the most efficient way to assess the class.  We allow students to keep the exam questions and we provide a key a couple of days after the exam is given.

When a student comes to see me after having “blown” an exam, I typically ask him or her to go through the exam, question by question.  I encourage them to try to identify how they were thinking when they worked through the question.  This can be a very useful diagnostic.  Ambrose and colleagues have formalized this process as a handout called an exam wrapper (1).  Hopefully, by analyzing their exam performance, the student may discover a pattern of errors that they can address before the next exam.  Consider some of the following scenarios:

Zach discovers that he was so worried about running out of time that he did not read the questions carefully.  Some of the questions reminded him of questions from the online quizzes.  He did know the material but he wasn’t clear on what the question was asking.

This is a testing issue. Zach, of course, should slow down.  He should underline key words in the question stem or draw a diagram to make sure he is clear on what the question is asking.

Sarah discovers that she didn’t know the material as well as she thought she did, a problem that is called the illusion of knowing (3). Sarah needs to re-evaluate the way she is studying.  If Sarah is cramming right before the exam, she should spread out her studying along with her other subjects, a strategy called interleaving (3).  If she is repeatedly reading her notes, she should put her notes away, get out a blank piece of paper and write down what she remembers to get a gauge of her knowledge, a process called retrieval (3).  If she is using flash cards for vocabulary, she should write out learning objectives in her own words, a process called elaboration (3).

Terry looks over the exam and says, “I don’t know what I was thinking.  I saw something about troponin and I picked it.  This really frustrates me. I study and study and don’t get the grade I want.  I come to lecture and do all the exercises. I don’t know what else to do.” It is a challenge to help this student.  She is not engaging in any metacognition and I don’t claim to have any magic answers to help this student.  I still want to try to help her.

I feel very strongly that students need to reflect on what they are learning in class, on what they read in their texts, and on the activities performed in lab (3).  I have been working on a project in one of my physiology courses in which I have students take quizzes and exams as a group and discuss the answers collaboratively.  Then I have them write about what they were thinking as they approached the question individually and what they discussed in their group.  I am hoping to learn some things about how students develop critical thinking skills.  I hope I can share what I learn in a future blog posting.

  1. Ambrose SA, Bridges MW, DiPietro M, Lovett M, Norman MK. How Learning Works: 7 Research Based Points for Teaching. San Francisco CA: Jossey-Bass, 2010.
  2. Anderson LC, Keirstead SA. Cells to Systems: Critical Thinking Exercises in Physiology (3rd ed). Dubuque, IA: Kendall Hunt Press, 2011.
  3. Brown PC, Roediger HL, McDaniel MA. Make it Stick: The Science of Successful Learning. Cambridge MA: The Belknap Press of Harvard University Press, 2014
  4. Callender AA, McDaniel, MA. The limited benefits of rereading educational text, Contemporary Educational Psychology 34:30-41, 2009. Retrieved from http://ac.els-cdn.com/S0361476X08000477/1-s2.0-S0361476X08000477-main.pdf?_tid=22610e88-61b4-11e7-8e86-00000aacb35e&acdnat=1499281376_e000fa54fe77e7d1a1d24715be4bbf50 , June 22, 2016.

 

 Lisa Carney Anderson, PhD is an Assistant Professor in the Department of Integrative Biology and Physiology at the University of Minnesota. She completed training in muscle physiology at the University of Minnesota. She collaborates with colleagues in the School of Nursing on clinical research projects such as the perioperative care of patients with Parkinson’s disease and assessment of patients with spasticity. She directs a large undergraduate physiology course for pre-allied health students.  She also teaches nurse anesthesia students, dental students and medical students.  She is the 2012 recipient of the Didactic Instructor of the Year Award from the American Association of Nurse Anesthesia.  She is a co-author of a physiology workbook called Cells to Systems: Critical thinking exercises in Physiology, Kendall Hunt Press. Dr. Anderson’s teaching interests include teaching with technology, encouraging active learning and assessment of student reflection.
Good Teaching: What’s Your Perspective?

Are you a good teacher? 

What qualities surround “good teachers? 

What do good teachers do to deliver a good class?

The end of the semester is a great time to critically reflect on your teaching.

For some, critical reflection on teaching is prompted by the results of student course evaluations. For others, reflection occurs as part of updating their teaching philosophy or portfolio.  Others use critical reflection on teaching out of a genuine interest to become a better teacher.  Critical reflection is important in the context of being a “good teacher.”

Critical reflection on teaching is an opportunity to be curious about your “good teaching.”  If you are curious about your approach to teaching I encourage you to ponder and critically reflect on one aspect of teaching – perspective.

Teaching perspectives, not to be confused with teaching approach or styles, is an important aspect on the beliefs you hold about teaching and learning.  Your teaching perspectives underlie the values and assumptions you hold in your approach to teaching.

How do I get started?

Start by taking the Teaching Perspectives Inventory (TPI).  The TPI is a free online assessment of the way you conceptualize teaching and look into your related actions, intentions, and beliefs about learning, teaching, and knowledge.  The TPI will help you examine your views about and within one of five perspectives:  Transmission, Apprenticeship, Developmental, Nurturing, and Social Reform.

What is your dominant perspective?

The TPI is not new.  It’s been around for over 15 years and is the work of Pratt and Collins from the University of British Columbia (Daniel D. Pratt and John B. Collins, 2001)(Daniel D. Pratt, 2001).  Though the TPI has been around for a while, it is worth bringing it up once more.   Whether you are a new or experienced teacher, the TPI is a useful instrument for critical reflection on teaching especially now during your semester break!  Don’t delay.  Take the free TPI to help you clarify your views on teaching and be curious.

 

Resources

Teaching Perspectives Inventory – http://www.teachingperspectives.com

How to interpret a teaching perspective profile – https://youtu.be/9GN7nN6YnXg

Daniel D. Pratt and John B. Collins. (2001). Teaching Perspectives Inventory. Retrieved December 01, 2016, from Take the TPI: www.teachingperspectives.com/tpi/

Daniel D. Pratt, J. B. (2001). Development and Use of The Teaching Perspectives Inventory (TPI). American Education Research Association.

 

 

 

Jessica M. Ibarra, is an Assistant Professor of Applied Biomedical Sciences in the School of Osteopathic Medicine at the University of the Incarnate Word. She is currently teaching in the Master of Biomedical Sciences Program and helping with curriculum development in preparation for the inaugural class of osteopathic medicine in July 2017. As a scientist, she studied inflammatory factors involved in chronic diseases such as heart failure, arthritis, and diabetes. When Dr. Ibarra is not conducting research or teaching, she is mentoring students, involved in community service, and science outreach. She is an active member of the American Physiological Society and helps promote physiology education and science outreach at the national level. She is currently a member of the Porter Physiology and Minority Affairs Committee; a past fellow of the Life Science Teaching Resource Community Vision & Change Scholars Program and Physiology Education Community of Practice; and Secretary of the History of Physiology Interest Group.

 

More detail = More complex = Less clear

The question that I’m going to tip-toe around could be expressed thus:

“More detail does not clarity make. Discuss.”

37194627bI’m not going to write an essay but I am going to offer a few different perspectives on the question in the hope that you realise that there might be a problem hiding a little further down the path we’re all walking.  In doing so I’m going to scratch an itch that I’ve had for a while now.  I have entertained a rather ill-defined worry for some time and this post provides an opportunity to try pull my concerns into focus and articulate them as best I can.

One of the first things I remember reading that muddied the water for me was ‘Making Learning Whole’ by David Perkins (Perkins, 2009).  He argues that in education we have tended to break down something complex and teach it in parts with the expectation that having mastered the parts our students would have learned how to do the complex thing – playing baseball, in his example.  The problem is that baseball as a game is engaging but when broken down into little bits of theory and skill it becomes dull – a drudge.  So, do we teach science as the whole game of structured inquiry, or do we break it down into smaller chunks that are not always well connected (think lecture and practical)?  That was worry number one.

Let me broaden this out.  I see a direct link between the risks of breaking down a complex intellectual challenge into smaller activities that don’t appear to have intrinsic value and  ‘painting-by-numbers’ – as a process, it might create something that resembles art but the producer is not working as an artist.  If you indulge me a little, I’ll offer an example from education; learning outcomes.   In his 2012 article, The Unhappiness Principle’, in the UK’s Times Higher Education magazine, Frank Furedi argues that learning outcomes distort the education process in a number of ways.  He worries that learning outcomes provide a structure that learners would otherwise construct for themselves and the adopted construct is rarely as robust as a fully-owned one.  He also worries that learning outcomes by their nature attempt to reduce a complex system in a series of statements that are both simple and precise.  Their seeming simplicity of expression gives students no insight into the true nature of the problems to be tackled.  I don’t imagine that Socrates would have set out learning outcomes for his students.

I see similar issues in the specification of the assessment process; the detailed mark scheme.  Sue Bloxham and colleagues recently published the findings of a study of the use of marking scheme, entitling it ‘Let’s stop the pretence of consistent marking: exploring the multiple limitations of assessment criteria’.  The article is scholarly and it contains some uncomfortable truths for those who feel it should be possible to make the grading of assessments ‘transparent’.  In their recommendations they say, ‘The real challenge emerging from this paper is that, even with more effective community processes, assessment decisions are so complex, intuitive and tacit that variability is inevitable. Short of turning our assessment methods into standardised tests, we have to live with a large element of unreliability and a recognition that grading is judgement and not measurement [my emphasis] (Bloxham et al., 2016).

The idea that outcomes can be assured by instructions that are sufficiently detailed (complex) is flawed but it appears to have been adopted outside education as much as within.  The political historian, Niall Fergusson, makes this point well in one of his BBC Reith Lectures of 2012. In relation to the Dodd-Frank Act, he says, ‘Today, it seems to me, the balance of opinion favours complexity over simplicity; rules over discretion; codes of compliance over individual and corporate responsibility. I believe this approach is based on a flawed understanding of how financial markets work. It puts me in mind of the great Viennese satirist Karl Kraus’s famous quip about psychoanalysis, that it was “the disease of which it purported to be the cure” I believe excessively complex regulation is the disease of which it purports to be the cure.”  Niall Ferguson: The Darwinian Economy (BBC Reith lecture, 2012).

One of the problems is that detail looks so helpful.  It’s hard to imagine how too much detail could be bad.  There is are examples of where increasing detail led to adverse and unintended outcomes.  I have two examples, one from university management and another from education and training.  A colleague recently retold a story of a Dean who was shocked that, should a situation arise in an examination room, staff would themselves often decide on an effective course of action.  It turned out that the Dean had thought it more proper for the staff to be poring through university regulations.  He was also shocked to discover that the regulations did not contain solutions to all possible problems.  The example from education and training can be found in article by Barry Scwartz, published in 2011.   The article, called ‘Practical wisdom and organizations’, describes what happened when the training of wildland firefighters was augmented from just four ‘survival guidelines’ to a mental manual of very nearly 50 items.  He writes. ‘….teaching the firefighters these detailed lists was a factor in decreasing the survival rates. The original short list was a general guide. The firefighters could easily remember it, but they knew it needed to be interpreted, modified, and embellished based on circumstance. And they knew that experience would teach them how to do the modifying and embellishing. As a result, they were open to being taught by experience. The very shortness of the list gave the firefighters tacit permission—even encouragement—to improvise in the face of unexpected events. Weick found that the longer the checklists for the wildland firefighters became, the more improvisation was shut down.’  (Schwartz, 2011).  Detail in the wrong place or at the wrong level flatters to deceive.

By writing this piece I hoped to pull together my own thoughts and, speaking personally, it worked.  I now have a much clearer view of what concerns me about how we’ve been pushing education but that clarity has made my worries all the more acute.  Nevertheless, in order to round on a positive note I’ve tried to think of some positive movements.  I have always found John Dewey’s writing on education and reasoning to be full of promise (Findlay, 1910).  Active learning, authentic inquiry,  mastery learning and peer-learning seem to me to be close cousins and a sound approach for growing a real capacity to conceive of science as a way of looking to understand the unknown (Freeman et al., 2014) seem to me to have Dewey’s unspoken blessing.  I also think that Dewey would approve of Edgar Morin and his Seven complex lessons in education for the future (Morin, 2002). There is a video of Morin explaining some aspects of the seven complex lessons that I would recommend.

I’m off to share an hour with a glass of whisky in a dark room.

References

Bloxham S, den-Outer B, Hudson J & Price M. (2016). Let’s stop the pretence of consistent marking: exploring the multiple limitations of assessment criteria. Assess Eval High Edu 41, 466-481.

Findlay JJ, ed. (1910). Educational Essays By John Dewey. Blackie & Sons, London.

Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H & Wenderoth MP. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences 111, 8410-8415.

Morin E. (2002). Seven complex lessons in education for the future. Unesco.

Perkins DN. (2009). Making learning whole : how seven principles of teaching can transform education. Jossey-Bass ; Chichester : John Wiley [distributor], San Francisco, CA.

Schwartz B. (2011). Practical wisdom and organizations. Research in Organizational Behavior 31, 3-23.

langton

 

 

 

 

 

Phil Langton is a senior teaching fellow in the School of Physiology, Pharmacology and Neuroscience, University of Bristol, UK.  A biologist turned physiologist, he worked with Kent Sanders in Reno (NV) and then with Nick Standen in Leicester (UK) before moving to Bristol in 1995.  Phil has been teaching GI physiology for vets, nerve and muscle physiology for medics and cardiovascular physiology for physiologists. He also runs a series of units in the second and third (final) years that are focused on the development of soft (but not easy) skills.  He has been interested for years in the development of new approaches to old problems in education and is currently chasing his tail around trying to work out how fewer staff can mentor and educate more students.

 

Course Preparation for a First Timer – Tips and Example Steps to Take

 


idea
This summer has been a uniquely exciting time for me as I prepare to teach my very first course, Human Physiology! What are the steps you take for preparing your courses? If it is your first time teaching, preparation seems overwhelming, and a challenge to figure out where to even begin. In this blog, I will be describing the steps I’ve taken to get ready for teaching my first course at our nearby minority-serving community college this fall. Full disclosure — I am definitely not an expert in course preparation, but I’ve included some tips and resources for what has worked for me.

Step 1: Reflection and determining my teaching philosophy

Reflecting on my time as an undergraduate student, I realize that learning how to learn did not come easy. It took me more than half way through my undergraduate years to figure out how to do it, and it was not until I was a graduate student that I mastered that skill. Thinking about my future students, I sought training opportunities to aid me in becoming a teacher who effectively facilitates student learning. I especially am interested in teaching practices that foster learning in first-generation college students who are not yet experienced with knowing how to learn and study. I want to make sure that my teaching style is inclusive of as many diverse student populations as possible. To do this, I have to educate myself on learning theories and effective teaching methods.

Early this summer, I attended the West Coast National Academies’ Summer Institute on Scientific Teaching to educate myself on teaching methods, and went home with understanding of the practices that fit my style and my philosophy. I highly recommend others to take advantage of these types of events or workshops (such as those offered by CIRTL) to familiarize yourself with various techniques. Aside from formal workshops, informal meetings with teaching mentors or experienced teachers gives valuable insight into the kinds of things to expect, things to avoid, suggestions and tips, teaching experiences, and inspirational words of wisdom. Use your network of mentors! Overall, inward reflection, formal workshops, and informal conversations with experienced mentors are ways that have helped me formulate the teaching practices that I will use for the course.

Step 2: Book and technology selection for the course

This sounds like an easy task, however, it can be a challenge if it is the first time you learn how to deal with choosing a book and the technology for your course. Luckily, one of my teaching mentors introduced me to the publisher’s local representative who met with me for several hours to discuss various book options and the technological tools that could be combined with my order. The rep helped me register my course in their online tool (Mastering A&P) and trained me to use this technology for creating homework, quizzes, interactive activities, rosters and grading. Thus far, I’ve spent countless hours exploring and learning how to use this technology before class starts. After all, I can’t expect my students to maneuver it if I can’t do it myself!

Step 3: Creating a syllabus, alignment table, and rubrics

The most important, hence time-consuming, task thus far is selecting the major topics and level of depth for the course while deciding the most important concepts, ideas, and skills for students to take away from the course. In order for students to meet expectations and become successful learners in the course, both the instructor and students should have this information clearly written out and understood at the very start of the course. The course syllabus is the first place where overall learning goals, outcomes, and expectations for the students for this course is presented. Furthermore, the syllabus should include information about grading, and any institutional policies on attendance, add/drop deadlines, and disability services.

Fortunately, the course that I am preparing has been offered multiple times previously, and thus I do not need to completely design a new course from scratch. However, I am re-designing and modifying sections of the course to include active and interactive teaching techniques. To guide this process during the semester, creating an alignment table for the course is beneficial to effectively execute learning activities and teach key concepts, ideas and skills. The components included in this table are: course learning goals, daily learning objectives, assignments, summary of activities, and assessments for each class period.

Take note that assessments should be determined first in order to prepare the content and activities for the class period accordingly (backwards design). Assessments could include an in-class activity, post-class assignments, exam and quiz questions. Rubrics of assessments should be made without ambiguity to formally assess students and to make sure the class period addresses the major points that students will be expected to learn. Preparing each class period, with flexibility for modifications based on gauging student grasp of the material, will help the semester run more smoothly and with less difficulties.

Step 4: Preparing content presentation and materials for activities

The last step I will take for course preparation is making and uploading any PowerPoint slides, handout materials, assignments, quizzes and exams, and any other material required for activities. With an alignment table already made, this portion of preparation should be relatively easy, but it will still take a significant amount of time.

Final Tips

Overall advice, plan ahead!! At minimum, it should take an entire summer to successfully prepare for a new course. With a well-planned course ahead of time, the hope is to be able to spend more energy throughout the semester to transfer and translate faculty enthusiasm for teaching into student enthusiasm for learning physiology!

Additional resource: Course Preparation Handbook by Stanford Teaching Commons

HernandezCarretero_9231

 

 

 

Angelina Hernández-Carretero is an IRACDA Postdoctoral Fellow at UC San Diego and is an adjunct faculty member at San Diego City College. She earned her Ph.D. in Cellular & Integrative Physiology from Indiana University School of Medicine. Her research interests involve diabetes, obesity, and metabolism. Angelina has a passion for mentoring, increasing diversity in STEM education and workforce, and inspiring the next generation through outreach.