Tag Archives: course design

Stress and adaptation to curricular changes

 

 

 

…there was a teacher interested in enhancing the learning process of his students. He wanted to see them develop skills beyond routine memorization. With the support of colleagues and the education team at his university, he succeeded and chose a semi-flipped classroom approach that allowed him to introduce novel curricular changes that did not generate much resistance on the part of the students.

The change was made. The students apparently benefited from the course. They worked in groups and learned cooperatively and collaboratively. Students evaluated peers and learned to improve their own work in the process. They not only learned the topics of the class, but also improved their communication skills.

At some point the institution asked the teacher to teach another course. He happily did so, and based on his experience introduced some of the changes of his semi-flipped classroom into the new course. The students in this course were slightly younger and had not been exposed to education in biomedical sciences. To the teacher’s surprise, the students showed a lot of resistance to change. The sessions moved slowly, the test scores were not all that good, and students did not reach the expected outcomes. It was clear that the teacher and the students were going through a period of considerable stress, while adapting to the new model. Students and teachers worked hard but the results did not improve at the expected rate.

Some time ago this was my experience and as I wandered looking for solutions, I started to question the benefits of active learning and the role of stress in educational practice.

Advantages and challenges of active learning

Evidence says that active learning significantly improves student outcomes (higher grades and lower failure rates) and may also promote critical thinking and high level cognitive skills (1, 2). These are essential components of a curriculum that attempts to promote professionalism. However, it may be quite problematic to introduce active learning in settings in which professors and students are used to traditional/passive learning (2).

Some of the biggest challenges for teachers are the following:

  • To learn about backward design of educational activities
  • To think carefully about the expected accomplishments of students
  • To find an efficient way to evaluate student learning
  • To spend the time finding the best strategies for teaching, guiding, and evaluating students.
  • To recognize their limitations. For example, it is possible that despite their expertise, some teachers cannot answer the students’ questions. This is not necessarily bad; in fact, these circumstances should motivate teachers to seek alternatives to clarify the doubts of students. At this point, teachers become role models of professionals who seek to learn continuously.
  • To learn about innovations and disruptive technologies that can improve the teacher role.

Some of the challenges for students include:

  • Understanding their leading role in the learning process
  • Working hard but efficiently to acquire complex skills
  • Reflecting on the effectiveness of their learning methods (metacognition). Usually reading is not enough to learn, and students should look for ways to actively process the information.
  • Trusting (critically) on the methods made available by the teachers to guide their learning. For example, some tasks may seem simple or too complex, but teachers have the experience to choose the right methodology. A work from our team showed that strategies that seem very simple for the student (clay modeling) have a favorable impact on learning outcomes (3).
  • Seeking timely advice and support from teachers, tutors and mentors.

Working to overcome these challenges may generate a high level of stress on students and teachers. Without emphasizing that stress is a desirable trait, I do find that some disturbance in the traditional learning process and risk taking motivate teachers and students to improve their methods.

Intermediate disturbance hypothesis and stress in education

In the twentieth century, the work of Joseph H. Connell became famous for describing factors associated with the diversity of species in an ecosystem (4). Some of his observations were presented in Charles Duhigg’s book “Smarter Faster Better” which discusses circumstances related to effective teamwork (5). Duhigg reports that Connell, a biologist, found that in corals and forests there might be patches where species diversity increases markedly. Curiously, these patches appear after a disturbance in the ecosystem. For example, trees falling in a forest can facilitate the access of light to surface plants and allow the growth of species that otherwise could not survive (5). Connell’s work suggests that species diversity increases under circumstances that cause intermediate stress in the ecosystem. In situations of low stress, one species can become dominant and eradicate other species, whereas in situations of high stress, even the strongest species may not survive. But if, an intermediate stress where to appear, not very strong and not very weak, the diversity of species in an ecosystem could flourish.

I propose that the hypothesis of the intermediate disturbance can also be applied in education. In traditional learning, an individual (ecosystem) learns to react to the challenges presented and develops a method for passing a course. In situations of low stress, memorization (evaluated at the lower levels of Miller´s pyramid) may be enough to pass a course. In high stress level situations, students may drop out or feel inadequate. However, courses that involve active learning may include moderate challenges (intermediate disturbance). These well-managed challenges can motivate the student to develop more complex skills (diversity of species) that lead to effective learning and a broader professional development.

 

 

 

 

 

 

 

 

 

Figure 1. Intermediate disturbance hypothesis in education.

 

In the book “Problem-based learning, how to gain the most from PBL”, Donald Woods describes the challenges and stresses associated with the incorporation of active learning (PBL) in a curriculum (6). He describes the stages of grief that a student (and I add, a teacher) must go through while adapting to the new system. This adaptation can take months and generally is characterized by the following phases:

  • Shock
  • Denial
  • Strong emotion (including depression, panic and anger)
  • Resistance to change
  • Acceptance and resignation to change
  • Struggle to advance in the process
  • Perception of improvement in the expected performance
  • Incorporation of new habits and skills to professional practice

 

 

 

 

 

 

 

 

 

Figure 2. Performance adjustment after curricular changes. Adapted and modified from (6).

 

Properly managing stress and finding strategies to advance in the process are rewarded by achieving better performance once the students become familiar with the new method of active learning. However, to better adapt to curricular or pedagogical changes, it is important for all the education actors to recognize the importance of deliberate work and to have clear goals. In addition, students and teachers should have access to institutional strategies to promote effective time, and anger and frustration management.

Stress is not ideal, but some stress may motivate students and teachers to reevaluate their methods and ultimately work together for a classroom focused on professional excellence. The critical question is how big is the intermediate disturbance needed to improve learning outcomes. As is commonly concluded in papers, more research is needed to answer this question, and we can learn a lot from the theories and methods from our colleagues in Biology.

References

  1. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et al. Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci U S A. 2014;111(23):8410-5.
  2. Michael J. Where’s the evidence that active learning works? Adv Physiol Educ. 2006;30(4):159-67.
  3. Akle V, Pena-Silva RA, Valencia DM, Rincon-Perez CW. Validation of clay modeling as a learning tool for the periventricular structures of the human brain. Anat Sci Educ. 2017.
  4. Connell JH. Diversity in Tropical Rain Forests and Coral Reefs. Science. 1978;199(4335):1302-10.
  5. Duhigg C. Smarter Faster Better: Random House; 2016.
  6. Woods DR. Problem Based Learning: How to gain the most from PBL. 2nd. ed1997.
Ricardo A. Peña-Silva M.D., PhD is an associate professor at the Universidad de los Andes, School of Medicine in Bogota, Colombia, where he is the coordinator of the physiology and pharmacology courses for second-year medical students. He received his doctorate in Pharmacology from The University of Iowa in Iowa City. His research interests are in aging, hypertension, cerebrovascular disease and medical education. He works in incorporation and evaluation of educational technology in biomedical education.

He enjoys spending time with his kids. Outside the office he likes running and riding his bicycle in the Colombian mountains.

12 years of teaching technology to physiology educators

When I was approached to write a blog for PECOP I thought I could bring a slightly different perspective on classroom technology as I am not a full-time classroom educator.  My primary role for the past dozen years with ADInstruments has been to work with educators who use our products to get the most from their investment in our technology.  This has led to thousands of conversations about use and misuse of technology in the classroom and teaching laboratories.  I would like to share some of my insights here.

Early in my academic career I was tasked with a major overhaul of the introductory Biology curriculum at Louisiana Tech, and incorporating technology was part of this mandate. I have always been a bit of a tech geek, but rarely an early adopter.  I spent quite a bit of time and effort taking a good hard look at technology before implementing it in my classrooms.  I was fortunate enough to participate in T.H.E. QUEST (Technology in Higher Education: Quality Education for Students and Teachers). Technology was just beginning to creep into the classroom in the late nineties. Most courses were traditional, chalk and talk; PowerPoint was still a new thing, and this three-week course taught us how to incorporate this emerging technology appropriately.  PowerPoint worked better for many of us than chalk and talk, but also became a crutch, and many educators failed to use the best parts of this technology and applied it as a panacea.  Now PowerPoint has fallen out of favor and has been deemed to be “Killing Education”(1).  When used improperly, rather than curing a problem, it has backfired and reduced complex concepts to lists and bullet points.

I was fortunate enough to have been on the leading edge for a number of technologies in both my graduate and academic careers.  Anybody remember when thermocyclers were rare and expensive?  Now Open PCR can deliver research quality DNA amplification for around $500.  Other technologies became quickly obsolete; anybody remember Zip drives? Picking the tech that will persist and extend is not an easy task.  Will the Microscope go the way of the zip drive?  For medical education this is already happening (2).  While ADInstruments continues to lead the way with our PowerLab hardware and software packages for education (3); there are plenty of other options available.  Racks of very specialized equipment for recording biological signals can now be replaced with very affordable Arduino based electronics (4,5). As these technologies and their supporting software gets easier to use, almost anyone can collect quality physiological data.

One of the more interesting technologies that is evolving rapidly is the area of content delivery or “teaching and learning” platforms. The most common of these for academia are the Learning Management Systems. These are generally purchased by institutions or institutional systems and “forced” upon the faculty.  I have had to use many different platforms at different institutions. Blackboard, Desire 2 Learn, Moodle, etc. are all powerful tools for managing student’s digital records, and placing content in their “virtual” hands.  Automatic grading of quiz questions, as well as built in plagiarism detection tools can assist educators with large classes and limited time, when implemented properly.  This is the part that requires buy in from the end user and resources from the institution to get the faculty up and running (6).  While powerful, these can be cumbersome and often lack the features that instructors and students who are digitally savvy expect.  Many publisher digital tools integrate with the University LMS’s and are adopted in conjunction with, or more frequently now instead of a printed textbook.  McGraw Hill’s Connect and LearnSmart platforms have been optimized for their e-textbooks and integrate with most LMS’s (7).  Other purpose-built digital tools are coming online that add features that students expect like Bring Your Own Device applications; Top Hat is one of these platforms that can be used with mobile devices in and out of the classroom (8).

 

So what has endured?

In my almost 20 years in higher education classrooms and labs, lots of tools have come and gone.  What endures are passionate educators making the most of the technology available to them.  No technology, whether digital or bench top hardware, will solve a classroom or teaching laboratory problem without the educator.  While these various technologies are powerful enhancements to the student experience, they fall flat without the educator implementing them properly.  It’s not the tech, it’s how the tech is used that makes the difference, and that boils down to the educator building out the course to match the learning objectives they set.

 

 

 

My advice to educators can be summed up in a few simple points: 

  • Leverage the technology you already have.
    • Get fully trained on your LMS and any other digital tools you may already have at your institution. The only investment you will have here is your time and effort.
    • Check the cabinets and closets, there is a lot of just out of date equipment lying around that can be repurposed. Perhaps a software update is all you need to put that old gear back in rotation.
  • Choose technology that matches your course objectives.
    • Small and inexpensive purpose-built tech is becoming readily available, and can be a good way to add some quantitative data to the laboratory experience.
    • Top of the line gear may have many advantages for ease of use and reliability, but is not necessarily the best tool to help your students accomplish the learning objectives you set.
  • Investigate online options to traditional tools.
    • eBooks, OpenStax, and publisher’s online tools can be used by students for a lot less money than traditional texts and in some cases these resources are free.

References:

1) http://pdo.ascd.org/lmscourses/pd11oc109/media/tech_m1_reading_powerpoint.pdf

2) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338491/

3) https://www.adinstruments.com/education

4) http://www.scoop.it/t/healthcare-medicine-innovation)

5) https://backyardbrains.com/

6) http://www.softwareadvice.com/hr/userview/lms-report-2015/

7) http://www.mheducation.com/highered/platforms/connect.html

8) https://tophat.com

 

Wes Colgan III is the Education Project Manager for ADInstruments North America. He works with educators from all over the world to develop laboratory exercises for the life sciences.  He conducts software and hardware workshops across North America, training educators to use the latest tools for data acquisition and analysis. He also teaches the acquisition and analysis portion of the Crawdad/CrawFly courses with the Crawdad group at Cornell. He has been a Faculty for Undergraduate Neuroscience member since 2007, and was named educator of the year for 2014.  Prior to Joining ADInstruments, he was an assistant professor at Louisiana Tech University where he was in charge of the introductory biology lab course series.
Teaching Backwards

 

Generating new ideas and cool learning experiences has always been natural and fun for me. My moments of poignant clarity often came during a swim workout or a walk with my dog as I reflect on my classes. As I visualize this activity, my students are as enthusiastic as I am and are learning. Then, reality returns as I grade the next exam and see that less than half of the class answered the question related to that activity correctly. Accounting for the students who learn despite what I do, I quickly see that I only reached a quarter of my students with this great activity. Why did this happen? What can I do about this?

Well, my life as an instructor changed the day I walked into my first session of University Center for Innovation in Teaching and Education (UCITE) Learning Fellows at Case Western Reserve University.  This program is a semester long session on how learning works where the focus is on evidence-based learning practices and provides an opportunity to discuss successes and failures in teaching with peers.  It was here that I learned about “Backwards Design”1.

What is Backwards Design?

Essentially, it is designing your course with the end in mind. I think of it as “Teaching Backwards” – that is, I visualize my students 5-10 years from now in a conversation with a friend or colleague discussing what they learned from my class. I ask myself these questions:

  1. How do I want them to describe my class? Hansen refers to this as the “Big Idea” or broad objective. An example from one of my classes is provided in Table 1.
  2. What do I want them to be able to tell their friend or colleague that they learned from the class in 5 to 10 years? Hansen has termed this as “Enduring Understanding” (see Table 1).

The next phase is to write learning objectives for each of the enduring understandings (see Table 1). We continue the journey backwards into linking learning objectives to assessment methods and developing the details of each class session. During this process, we must always take into account the student’s prior knowledge (refer to How Learning Works2).

Table 1: Example of Backwards Design Concepts for “Exercise Physiology and Macronutrient Metabolism” class.

Class: Exercise Physiology and Macronutrient Metabolism
Big Idea Enduring Understanding Learning Objective
Exercise-Body Interaction Substrate utilization during exercise depends on type, intensity, and duration of exercise. Students will be able to describe substrate utilization during exercise.
Fatigue during exercise has been associated with low glycogen levels, but scientists are not in agreement as to the underlying cause of fatigue. Students will be able to debate the theories of fatigue.

What did backwards design do for me?

Backwards design provided me focus. It allowed me to step back and ask myself: What are the key take-aways? Does that cool, creative idea I have help to achieve my end game for the course? Is there a better way to do this? Overall, the framework has helped me develop a higher quality course. With that said, I still run into exam questions where I thought I did better at teaching the material than represented by the students’ responses.  So, while there is always room for improvement, this has definitely been a step in the right direction for better learning by my students.

References:

  1. Hansen EJ. Idea Based Learning: A Course Design Process to Promote Conceptual Understanding. Sterling VA: Stylus Publishing, LLC; 2011.
  2. Ambrose SA, Bridges MW, DiPietro M, Lovett M, Norman MK.How Learning Works: 7 Research Based Points for Teaching. San Francisco CA: Jossey-Bass, 2010.

 

Lynn Cialdella-Kam, PhD, MBA, MA, RDN, LD joined CWRU as an Assistant Professor in Nutrition in 2013. At CWRU, she is engaged in undergraduate and graduate teaching, advising, and research. Her research has focused on health complications associated with energy imbalances (i.e. obesity, disordered eating, and intense exercise training). Specifically, she is in interested in understanding how to alterations in dietary intake (i.e., amount, timing, and frequency of intake) and exercise training (i.e., intensity and duration) can attenuate the health consequences of energy imbalance such as inflammation, oxidative stress, insulin resistance, alterations in macronutrient metabolism, and menstrual dysfunction.  She received her PhD in Nutrition from Oregon State University, her Masters in Exercise Physiology from The University of Texas at Austin, and her Master in Business Administration from The University of Chicago Booth School of Business.  She completed her postdoctoral research in sports nutrition at Appalachian State University and is a licensed and registered dietitian nutritionist (RDN).
Putting More Physiology into A & P

thinker-28741_640It’s tough being an undergrad student nowadays.  It’s expensive. State funding has cut into the budgets that used to go to offset tuition, and buildings for new classrooms have been on hold forever. Still they keep coming, paying higher and higher fees and tuition, crowded into larger and larger classroom sizes, getting shut out of labs: these are just the surface to larger problems in general. What kind of education are students getting now?  I ponder this as I teach A & P again after teaching physiology at a medical school for the last six years and A & P in smaller class sizes four years before that at universities and community colleges. Things have changed, and not for the better.  I’ll toss around some ideas that may or may not resonate with you, but these are things I feel we need to improve upon.

 

  1. How can we get class sizes smaller so we can teach and communicate? The depth of what students know goes not far beyond binge and purge. We can have small group discussion, more TBL and other models for active learning (if they read the pre-class material) and we’ll always have the good students, but for many lectures have become something to avoid. I get students who ask for my PPTs beforehand and use them as note templates, yet many rely on those as a sole source. The chances to integrate material become less frequent as we teach to the room and decrease the amount of material students can absorb. The long term rewards to learning are not being reinforced. I have students submit corrections for points in paragraph form, making them compose answers.

 

  1. Students need learning skills. Something I learned the hard way, but even in the prehistoric 1970’s note taking was essential. I implore students to do this as a way to create schemas even providing handouts with study skills that I have collected over the last thirty years. Of course the good students use this info, while the middle of the packers might but only after the first exam. We have more students who are being advised that health professions are good careers but not telling them how steep the competition is and how much is expected. Do I want an ED nurse who might forget that NaCl is not the same as KCl? Maybe I don’t have to weed them out, but I want their expectations to be parallel to the challenge and this should be considered the beginning of their career.

 

  1. Lastly, I propose perhaps a new approach to A & P; let’s separate the classes. Some institutions do this having advanced anatomy and general physiology classes for exercise science, why not do these for pre-health majors as well? The texts nowadays for A & P are humongous, with tons of information that skims the surface without enough integration. Let’s teach physiology with a chance to do more hands-on experiments and not have lab just being anatomy. I poll my students about whether they have seen frog muscle or heart experiments or any Mr. Wizard styled presentations. Few have, maybe from the more affluent secondary schools, therefore descriptions of diffusion or tetanus become an abstraction without the physical connection. They do ECGs and FEV1s in the second half of A & P, why not have that be the whole year?

 

Personally my career in physiology began when I walked into a behavioral neuroscience lab and ran my own independent study experiments for undergrad credit, all the while learning about the other research going on. I was happy that one of my biology students worked over the summer on an Integrative and Organismal NSF summer fellowship (that I know from my APS Porter Committee membership go underutilized) because statistics show that these students will go on in science.  I’d like to see our future caregivers have that depth as well.

 

johnson
 

 

 

William Johnson received his Master degree in Education from Johns Hopkins University in 1990. After teaching high school on the Dine reservation, he then pursued and obtained his PhD in Biology from Northern Arizonan University, studying angiotensin in desert anurans. After teaching physiology at University of South Florida Colleges of Public Health and Medicine, William has returned to his alma mater to teach anatomy and physiology and human physiology, as well as being involved in the summer program for Journey for Underrepresented in Medical Professions HRSA grant at NAU.

 

Course Preparation for a First Timer – Tips and Example Steps to Take

 


idea
This summer has been a uniquely exciting time for me as I prepare to teach my very first course, Human Physiology! What are the steps you take for preparing your courses? If it is your first time teaching, preparation seems overwhelming, and a challenge to figure out where to even begin. In this blog, I will be describing the steps I’ve taken to get ready for teaching my first course at our nearby minority-serving community college this fall. Full disclosure — I am definitely not an expert in course preparation, but I’ve included some tips and resources for what has worked for me.

Step 1: Reflection and determining my teaching philosophy

Reflecting on my time as an undergraduate student, I realize that learning how to learn did not come easy. It took me more than half way through my undergraduate years to figure out how to do it, and it was not until I was a graduate student that I mastered that skill. Thinking about my future students, I sought training opportunities to aid me in becoming a teacher who effectively facilitates student learning. I especially am interested in teaching practices that foster learning in first-generation college students who are not yet experienced with knowing how to learn and study. I want to make sure that my teaching style is inclusive of as many diverse student populations as possible. To do this, I have to educate myself on learning theories and effective teaching methods.

Early this summer, I attended the West Coast National Academies’ Summer Institute on Scientific Teaching to educate myself on teaching methods, and went home with understanding of the practices that fit my style and my philosophy. I highly recommend others to take advantage of these types of events or workshops (such as those offered by CIRTL) to familiarize yourself with various techniques. Aside from formal workshops, informal meetings with teaching mentors or experienced teachers gives valuable insight into the kinds of things to expect, things to avoid, suggestions and tips, teaching experiences, and inspirational words of wisdom. Use your network of mentors! Overall, inward reflection, formal workshops, and informal conversations with experienced mentors are ways that have helped me formulate the teaching practices that I will use for the course.

Step 2: Book and technology selection for the course

This sounds like an easy task, however, it can be a challenge if it is the first time you learn how to deal with choosing a book and the technology for your course. Luckily, one of my teaching mentors introduced me to the publisher’s local representative who met with me for several hours to discuss various book options and the technological tools that could be combined with my order. The rep helped me register my course in their online tool (Mastering A&P) and trained me to use this technology for creating homework, quizzes, interactive activities, rosters and grading. Thus far, I’ve spent countless hours exploring and learning how to use this technology before class starts. After all, I can’t expect my students to maneuver it if I can’t do it myself!

Step 3: Creating a syllabus, alignment table, and rubrics

The most important, hence time-consuming, task thus far is selecting the major topics and level of depth for the course while deciding the most important concepts, ideas, and skills for students to take away from the course. In order for students to meet expectations and become successful learners in the course, both the instructor and students should have this information clearly written out and understood at the very start of the course. The course syllabus is the first place where overall learning goals, outcomes, and expectations for the students for this course is presented. Furthermore, the syllabus should include information about grading, and any institutional policies on attendance, add/drop deadlines, and disability services.

Fortunately, the course that I am preparing has been offered multiple times previously, and thus I do not need to completely design a new course from scratch. However, I am re-designing and modifying sections of the course to include active and interactive teaching techniques. To guide this process during the semester, creating an alignment table for the course is beneficial to effectively execute learning activities and teach key concepts, ideas and skills. The components included in this table are: course learning goals, daily learning objectives, assignments, summary of activities, and assessments for each class period.

Take note that assessments should be determined first in order to prepare the content and activities for the class period accordingly (backwards design). Assessments could include an in-class activity, post-class assignments, exam and quiz questions. Rubrics of assessments should be made without ambiguity to formally assess students and to make sure the class period addresses the major points that students will be expected to learn. Preparing each class period, with flexibility for modifications based on gauging student grasp of the material, will help the semester run more smoothly and with less difficulties.

Step 4: Preparing content presentation and materials for activities

The last step I will take for course preparation is making and uploading any PowerPoint slides, handout materials, assignments, quizzes and exams, and any other material required for activities. With an alignment table already made, this portion of preparation should be relatively easy, but it will still take a significant amount of time.

Final Tips

Overall advice, plan ahead!! At minimum, it should take an entire summer to successfully prepare for a new course. With a well-planned course ahead of time, the hope is to be able to spend more energy throughout the semester to transfer and translate faculty enthusiasm for teaching into student enthusiasm for learning physiology!

Additional resource: Course Preparation Handbook by Stanford Teaching Commons

HernandezCarretero_9231

 

 

 

Angelina Hernández-Carretero is an IRACDA Postdoctoral Fellow at UC San Diego and is an adjunct faculty member at San Diego City College. She earned her Ph.D. in Cellular & Integrative Physiology from Indiana University School of Medicine. Her research interests involve diabetes, obesity, and metabolism. Angelina has a passion for mentoring, increasing diversity in STEM education and workforce, and inspiring the next generation through outreach.