Tag Archives: course redesign

The Large Lecture: Minor Adjustments, Major Impacts

Large lecture courses are hard, for both students and faculty alike, and while an exhaustive body of Scholarship of Teaching & Learning (SOTL) research boasts benefits of smaller classes (Cuseo, 2007), budgetary and a myriad of other restrictions leave many higher education institutions with few options for reducing class sizes.  Accordingly, many instructors are forced to figure out a way to best serve our students in this unideal setting.

Three years ago, in my first year as a full time faculty member, I found myself teaching one of these large lecture classes.  There were ~250 students, split across two sections, piled into an outdated auditorium.   The setting was intimidating for me, and if one thing was certain, it was that however intimidated I felt, my students felt it even harder (and as an aside, three years later, I still find myself, at times, intimidated by this space).  So, in a high-stakes, pre-requisite course like Anatomy & Physiology that is content-heavy and, by nature, inherently intense, what can be done in a large lecture hall to ease the tension and improve student learning?

When looking to the SOTL research for evidence-based recommendations on student engagement and active learning ideas in high-enrollment courses such as mine, I quickly became overwhelmed with possibilities (not unlike a kid in a candy store).  Before I knew it, finding meaningful ways to reshape my class in the best interest of the student became defeating – how was I supposed to overhaul my course to integrate best-practice pedagogy while still juggling the rest of my faculty responsibilities?

Thankfully, last year a colleague introduced me to a book, Small Teaching: Everyday Lessons from the Science of Learning, by James Lang.  Admittedly – I still have not finished this book (rest assured – I am currently in a book club studying this book, so I WILL finish it!); that being said, Lang’s powerful message about the significance of small changes resonated with me pretty early on in the text.  Minor, thoughtful adjustments to the daily classroom routine are capable of eliciting substantial impacts on student learning.  In other words, I did not need to reinvent the wheel to better serve my students; instead, I set a goal for myself to try out one or two small, reasonable adjustments per semester.  While I am still navigating best-practice teaching and experience a healthy dose of trial-and-error, here is what I have found useful thus far:

 

1. Learning names. This is perhaps the most straightforward, obvious classroom goal, but when you have a large number of students, something as simple as learning student names can quickly slip through the cracks.  Now, I appreciate that implementing this goal takes considerable time and intention, and depending on the structure of your high-enrollment course, it may or may not be feasible.  In my course, for example, it is a two-part series, which means I have the same students for an entire academic year rather than one semester.  Moreover, in addition to lecture, I have all of my students in smaller lab sections.  Accordingly, I have plenty of opportunity to interact with students and pay attention to names.

From a purely anecdotal observation, if and when a student musters up the courage to ask a question in the large auditorium, addressing them by name appears to increase the likelihood of the student asking again.  Moreover, it seems to have an impact on other students in the classroom, too; anecdotally, I have noticed in lectures where I address student questions using student names, the number of different students asking questions appears to increase.  Overall, addressing students by name seems to communicate a message that students in our classrooms are not simply a body in a seat or a number in the system, but they are a member of a learning community.

2. Finding an inclusive platform for voicing questions. Despite reaching a point in the academic year where everyone knows each other by name, some students will never feel comfortable enough raising their hand to ask questions in the big lecture hall. Knowing this, along with the notion that student confusion rarely exist in isolation, this semester I made it a point to explore alternative platforms for asking questions during lecture.  Cue in the Google Doc: this handy, online word-processing tool gave me a platform for monitoring student questions in real time during lecture.  On the logistical end, it is worth noting that I have a TA monitoring our Google Doc during lecture, so that when a stream of questions comes through, common themes in questions are consolidated into one or two questions.  A few times during the lecture, I will check in with our TA and address questions.  It is also worth mentioning that the document has been set up such that student names are linked to their comments; this was implemented as a measure to keep comments appropriate and on track.  So far, this has turned out to be a great platform, not only for students asking lecture questions in real time, but also for facilitating some really great discussion amongst students.

 

3. Holding students accountable for in-class activities.  I quickly realized in my large lecture class that students were generally unmotivated to participate in any in-class activity unless I collected it and assigned points (which, by the way, can be a logistical nightmare with 250 students).  Yet, as I learned in Making it Stick: The Successful Science of Learning, by Brown, Roediger, and McDaniel (a previous book club endeavor of mine), engaging students in activities like 5 minute recall exercises is widely supported as an effective tool for long-term learning and retention.  So, I decided to piggy back off my previous idea of the Q&A Google Doc, and open up an entire classroom folder where, in addition to our Q&A doc, students had daily folders for submitting in-class activities (again, in real time).  As of now, the way that it works is as follows: upon completing the short recall exercise, or other in-class activity, students will snap a photo of their work and upload it to our Google drive.  Then, I choose a piece of student work to display as we review the activity prompt, which has proven to be a great method for maintaining student accountability (I disclosed to the students that I will randomly choose a few days in the semester to award extra credit for those who submitted during class).  Additionally, this provides quick feedback to me (in real time) regarding student comprehension and common misunderstandings; in fact, I will occasionally choose to review a student submission that represents a common mistake to highlight and address a common problem area.

In summary, implementing these small changes has offered realistic approaches to improving my students’ experience and creating community in an otherwise challenging setting: the large lecture.  While I retain other long-term teaching goals that require more of a time commitment, Lang’s sentiment that small ≠ insignificant provides a solid ground for improvement in the present.

References:

Brown, PC, Roediger, HL, and McDaniel, MA (2014). Making it Stick: The Successful Science of Learning.  Cambridge, MA: Harvard University Press.

Cuseo, Joe. (2007). The empirical case against large class size: Adverse effects on the teaching, learning, and retention of first-year students. Journal of Faculty Development: 21.

Lang, James (2016).  Small Teaching: Everyday Lessons from the Science of Learning. San Francisco, CA: Jossey-Bass.

 

Amber Schlater earned her B.S. from the University of Pittsburgh in Biological Sciences, and her M.S. and Ph.D. from Colorado State University in Zoology; she also completed a two-year post-doctoral fellowship at McMaster University.  Currently, Amber is an Assistant Professor in the Biology Department at The College of Saint Scholastica in beautiful Duluth, MN, where she teaches Human Anatomy & Physiology, Super Physiology (a comparative physiology course), and mentors undergraduate research students.  Outside of work, Amber enjoys hiking, biking, camping, canoeing, and doing just about anything she can outside with her family.
My First Run at Teaching an Integrated Physiology Course: Lessons Learned

One of the primary factors that attracted me to my current position, a tenure-track Assistant Professor of Biology at a small teaching-intensive liberal arts college, was the fact that my new department gave me the freedom to update and, in the end, completely overhaul the existing Anatomy and Physiology (A&P) curriculum. This position allowed great academic freedom, especially to a new professor, and department support for trying new teaching strategies and activities was, and still is, very high. So as a new entrant into the field of physiology education, and as someone who is interested in pedagogical research, this opportunity and level of freedom excited me.

My predecessor, while a fantastic educator, had built the year-long A&P sequence in the traditional form of one to two weeks on a specific topic (e.g. histology, the skeletal system, or the respiratory system) and an exam every so often that combined the previously covered topics. Both the topics covered and the exams could very much stand on their own, and were more like separate units. This course design was exactly the way I took the A&P course, longer ago than I care to admit, although at a different institution. In fact, most of my college courses were taught this way. And while that may be appropriate for some fields, the more I was reading and learning about teaching A&P the more I was starting to convince myself that I wanted teach A&P in an integrated fashion as soon as I got the chance.

So here I was, the bright-eyed and bushy-tailed newly minted Assistant Professor of Biology, with the academic freedom to teach A&P in the best way that I saw fit. One important thing to note: this course sequence (A&P I and II) is an upper-division junior and senior level course at my college, and class sizes are very small (20-24 students) allowing for maximum time for interaction, questions, and instructor guidance both in lecture and lab. (That latter point is key, but we’ll talk more about that in a minute.)

I entered the 2017-2018 academic year with a brand-new, shiny, exciting, and most importantly, integrated A&P course plan and a lot of enthusiasm. Along the way I took meticulous notes on what worked, what didn’t work, and the areas that needed improvement. Now in the 2018-2019 academic year I’m teaching this integrated course sequence for the second time, all while taking those same meticulous notes and comparing student feedback. Below I’ve compiled what I deem (so far) to be some of the most important lessons that I learned along the way:

 1) Use an integrative textbook.

This I was fortunate to do from the start. While this is an A&P course (not just P), I decided to use Physiology: An Integrated Approach by Dee U. Silverthorn as my primary text. Not only is the book already designed to be used in an integrative fashion, but there is ample introductory material which can be used to remind students of previous course material that they need to know (see lesson #2 below) and there are entire chapters dedicated to the integration of multiple systems (e.g. exercise). The assessment questions in the text are also well organized and progressive in nature and can be assigned as homework for practice or pre-reading assignments. Anatomy information, such as the specifics of the skeletal system and joints, muscles, histology, etc., was supplemented through the use of models and other reference material in hands-on lab activities.

2) Start building and assessing students’ A&P knowledge from the ground up, and build incrementally.

There are two important parts to this lesson: A) previous course knowledge that is applicable to this upper-division A&P course, and B) the new A&P material itself.

In my initial run of the course I made the mistake of starting out at a bit too advanced of a content level. I assumed more knowledge was retained from previous courses by the students than actually was. I learned very quickly that I needed to take a step back, but not too far. Instead of re-teaching introductory chemistry, biology, and physics, I took the opportunity to remind them of the relevant key principles (e.g. law of mass action) and then pointed them to pages in the text or provide additional material where they could review.

I applied this same philosophy as we progressed through new material. Lower-order Bloom’s principles should be assessed and mastered first, before progressing to the higher-order skills for each new section. In my second iteration of the course I implemented low-stakes (completion-based grade) homework assignments to be completed before the class or lab period, which were aimed to get a head-start on the lower-order skills. Then in class we reviewed these questions within the lecture or lab and added on with more advanced questions and/or activities. This format of pre-class homework was very well received by the students, and even though it is more work for them, they said that it encouraged them to keep up with the reading and stay-on track in the class. As the class progressed, I added in more advanced homework problems that integrated material from previous chapters. Obviously, if you are going to teach in an integrated fashion then you will need to assess the students in the same way, but a slow-build up to that level and ample low-stakes practice is key.

3) Create a detailed course outline, and then be prepared to change it.

This lesson holds true for just about any course, but I found it especially true for an integrated A&P course. As an instructor, not only did I need to be well versed in A&P, but I also needed to see the big picture and connect concepts and ideas both during the initial course construction and as the course progressed. I went into the course with an idea of what I wanted (and needed) to cover and during the course students helped guide what topics they struggled with and/or what they wanted to learn more about. So while still sticking to covering the basics of a course, I was still able to dive a bit deeper into other topics (such as exercise) per student interest. This also helped boost motivation for student learning when they feel they have some agency in the material.

Another aspect of the lesson is the addition of what I call “flex days”. Students will find this style of teaching and learning challenging and some will need more time and practice with the material. I found it very helpful to add in a “flex day” within each unit where no new material was covered, but instead time was dedicated to answering questions and additional practice with the concepts. If a full class day can’t be dedicated, even 30 minutes can be put to great use and the students really appreciate the extra time and practice.

 

4) Constantly remind your students of the new course format.

Students will want to revert back to what they are comfortable with and what has worked for them in the past. They will forget that information needs to be retained and applied later in the course. I found that I needed to constantly remind students that their “cram and forget” method will not serve them well in this course. But, simply telling them is not enough, so I allowed for practice problems both in and outside of class that revisited “older” material and prepared them for the unit exams with integrative questions which combined information from different chapters. I even listed the textbook chapters at the end of the question so that they would know where to find the material if needed.

Along with this, I found that tying material back to central themes in physiology (e.g. structure-function, homeostasis, etc.) also helped the students connect material. I am fortunate that the entry level biology courses at this college teach using the Vision and Change terminology, so the basic themes are not new to them, making integration at least on that level a bit more approachable.

 

5) Solicit student feedback.

Students love to be heard and they love to know that their input matters. And in the design of a new course I want to know what is working and what is not. I may think something is working, but the students may think otherwise. Blank notecards are my best friend in this instance. I simply have a stack at the side of the room and students can or cannot fill them out and drop them in a box. I often ask a specific question and solicit their input after an activity or particularly challenging topic. Of course, the second part of this step is actually reading and taking their input seriously. I’ve often made some last minute changes or revisited some material based on anonymous student feedback, which also ties back to lesson #3.

 

6) Be prepared to spend a lot of time with students outside of the classroom.

Some students are great about speaking up in class and asking questions. Other students are more comfortable asking questions outside of class time. And of course, I found that students of both flavors will think that they know a particular concept, and then find out, usually on an exam, that they do not (but that is probably not unique to an integrative course). So, after the first exam I reached out to every student inviting them to meet with me one-on-one. In these meetings we went through not only the details of the exam, but study skills. Every student needed to be reminded and encouraged to study a little bit every day or at least every other day to maximize retention and success. This also helped create an open-door policy with students who needed and wanted more assistance, increasing their comfort level with coming to office hours and asking for help.

 

As you may have inferred, teaching this type of course takes a lot of time. I’ll be honest and say that I wasn’t necessarily mentally or physically prepared for the amount of time it took to design and run this course, especially in my first year of teaching, but I made it work and I learned a lot. During this process I often discussed course ideas with department colleagues and A&P instructors at other universities. I perused valuable online resources (such as LifeSciTRC.org and the PECOP Blog) for inspiration and guidance. I also found that I spent a lot of time reflecting on just about every lecture, activity, and lab to ensure that the content connections were accurate, applicable, and obtainable by the students. And while I know that the course still has a ways to go, I am confident in the solid foundation I have laid for a real integrative A&P course. And, just as I am doing now with its second iteration, each run will be modified and improved as needed to maximize student learning and success, and that is what makes me even more excited!

Now I turn the conversation over to the MANY seasoned educators that read this blog. Do you have experience designing and teaching an integrated A&P course? What advice do you have for those, like me, that are just starting this journey? Please share!

Jennifer Ann Stokes is an Assistant Professor of Biology at Centenary College in Shreveport, LA. She received her PhD in Biomedical Sciences from the University of California, San Diego (UCSD). Following a Postdoctoral Fellowship in respiratory physiology at UCSD, Jennifer spent a year at Beloit College (Beloit, WI) as a Visiting Assistant Professor of Biology to expand her teaching background and pursue a teaching career at a primarily undergraduate university. Now at Centenary College, Jennifer teaches Human Anatomy and Physiology I and II (using an integrative approach), Nutritional Physiology, Medical Terminology, and Psychopharmacology. Jennifer is also actively engaged with undergraduates in basic science research (www.stokeslab.com) and in her free time enjoys cycling, hiking, and yoga.
Why I’m a Clicker Convert

Recently I was faced with a teaching challenge: how to incorporate active learning in a huge Introductory Biology lecture of 400+ students. After searching for methods that would be feasible, cost effective, and reasonably simple to implement in the auditorium in which I was teaching, I came up with clickers. Our university has a site license for Reef Polling Software which means I wouldn’t add to the cost for my students—they could use any WiFi enabled device or borrow a handset at no cost. I incorporated at least 4 clicker questions into every class and gave students points for completing the questions. 10% of their grade came from clicker questions and students could get full credit for the day if they answered at least 75% of the questions. I did not give them points for correct answers because I wanted to see what they were struggling to understand.

I’m now a clicker convert for the following 3 reasons:

  • Clickers Increase Student Engagement and Attendance

In a class of 400+, it is easy to feel like there is no downside to skipping class since the teacher won’t realize you are gone. By attaching points to completing in-class clicker questions, about 80% of the class attended each day. While I would like perfect attendance, anecdotally this is much better than what my colleagues report for similar classes that don’t use clickers. Students still surfed the internet and slept through class, but there was now more incentive to pay a bit of attention so you didn’t miss the clicker questions. In my opinion, getting to class can be half the battle so the incentive is worth it. In my small classes I like to ask a lot of questions and have students either shout out answers or vote by raising their hands. Often, students won’t all vote or seem to be too embarrassed to choose an answer. I tested out clickers in my small class and found an increased response rate to my questions and that I was more likely to see the full range of student understanding.

  • Clickers Help Identify Student Misconceptions in Real Time

Probably the biggest benefit of clickers to my teaching is getting a better sense of what the students are understanding in real time. Many times I put in questions that I thought were ‘gimmes’ and was surprised to see half the class or more getting them wrong. When that happens, I can try giving them a hint or explaining the problem in a different way, having them talk with their group, and then asking them to re-vote. Since I don’t give points for correctness, students don’t feel as pressured and can focus on trying to understand the question. I’m often surprised that students struggle with certain questions. For instance, when asked whether the inner membrane of the mitochondria increases surface area, volume, or both, only half of the students got the correct answer the first time (picture). Since this is a fundamental concept in many areas of biology, seeing their responses made me take time to really explain the right answer and come up with better ways of explaining and visualizing the concept for future semesters.

  • Clickers Increase Student Learning (I hope)

At the end of the day, what I really hope any active learning strategy I use is doing is helping students better understand the material. To try to facilitate this, I ask students to work in groups to solve the problems. I walk around the class and listen while they solve the problem. This can help me get an idea of their misconceptions, encourage participation, and provide a less scary way for students to ask questions and interact with me. While working in groups they are explaining their reasoning and learning from each other. Interspersing clicker questions also helps to reinforce the material and make sure students stay engaged.

I’m convinced that clickers are helping to improve my teaching and students seem to agree. Of the 320 students who filled out course evaluations one semester, 76 included positive comments about clicker questions. Here are two of my favorites:

“I like how we had the in-class clicker questions because it made me think harder about the material we were learning about in that moment.”

“I enjoyed doing the clicker questions. If the class disagreed with something she would stop and reteach the main point and hope we would understand. That was really helpful on her part.”

I would be remiss if I didn’t end by thanking the many researchers who have studied how to incorporate clickers into your class to maximize learning. I decided to try them after hearing Michelle Smith talk at the first APS Institute on Teaching and Learning and highly recommend seeing her speak if you have the chance. If you only want to read one paper, I suggest the following:

Smith, Michelle K., et al. “Why peer discussion improves student performance on in-class concept questions.” Science 323.5910 (2009): 122-124.

I hope you will comment with how you use clickers or other strategies to engage large lecture classes. For more resources I’ve found helpful designing my classes click here.

Katie Wilkinson, PhD is a newly minted Associate Professor of Biological Sciences at San Jose State University. She completed her undergraduate work in Neuroscience at the University of Pittsburgh and her PhD in Biomedical Sciences at the University of California, San Diego. She was an NIH IRACDA Postdoctoral Fellow in Research and Scientific Teaching at Emory University. At SJSU her lab studies the function of stretch sensitive muscle proprioceptors. She teaches Introductory Biology, Vertebrate Neurophysiology, Integrative Physiology, Pain Physiology, and Cardiorespiratory Physiology to undergraduate and masters students.
The art of revamping an Introductory Biology course (and curriculum) around Vision & Change

blue cycling arrowsWhen Vision & Change: A Call to Action was published and distributed, University of Alaska Anchorage (UAA) Biology department (like many other departments across the country) answered the call. The rubrics for Vision and Change gave people a means to evaluate one’s department and how student instruction occurred. This led to great discussions on what needed to be remodeled within our courses and curriculum. This was good. The previous UAA Introductory Biology course had a 20% withdrawal rate and (by estimates only) an additional 20% of students who would not succeed in the course (D or F grade). If we wanted to increase retention in the major and increase the diversity of people pursuing a biological sciences undergraduate education, something needed to be done.

I want to take this opportunity to spend a bit of time on our process; not simply because I am excited about the positive changes that are happening at our biology department, but to share our brief story in hopes to hear from others.

The problem – UAA had a 2 semester introductory biology (survey based) course that had, in some instances, 40% reduction of students for each semester.

Our solution – Create a 1 semester laboratory/experiential learning introductory biology course (Principles and Methods of Biology; BIOL A108) that is founded on the principles laid forth in Vision and Change.

What does this really look like, other than a lot of work?

The basic flow is to have 3, 5-week (10 sessions) modules within the semester, which focus on three core concepts: evolution, information flow, and structure and function. These modules are tied together by principles of the scientific method and student led experiments. Each module has a different content lead instructor. The unifying instruction is led by a lab coordinator that follows the theme of scientific method to ensure students are practicing and utilizing each part of the scientific method throughout the duration of the course.

  • Module 1 focuses heavily on observation, creating and testing hypotheses, finding and using credible sources, and creating basic graphs for communication purposes.
  • Module 2 continues to build on observation, creating and testing hypotheses, creating graphs, and adds the component of applying the collected data into a greater context using credible sources.
  • Module 3 takes the components of modules 1 and 2 and asks the students to interpret their data using credible sources.

These modules culminate at the end of the course by having the students present a hypothetical experiment based on a current biologically relevant observation.

This course set up requires a large amount of group work and coordination among the students. We encourage discussions through specific assignment prompts and ask the students to present their data (6 times) as a group (they switch group members for each module). Presentations are assessed on flow of information, clarity of information, and accuracy of information. We include concept quizzes (3 per module), but no high stakes exams. There are a series of assignments that are formative to allow instructor feedback to be incorporated into summative assignments (presentations and experimental write ups).

Is it working? – We’ve tracked these changes with pre/post tests and student retention rates. Initial data show 96% of students passed (defined as a C or better grade) with a withdrawal rate of 2% in the first semester (Fall 2015). Data from the current semester (Spring 2016) suggest a similar trend. A second goal of the program revision was to increase student learning and engagement about the process of the scientific method; in this our data suggest we were successful. Within one month of BIOL A108, students have improved their use of the scientific method to tackle challenging biological questions and core concepts. Preliminary assessment data show 96% of BIOL A108 students can create and use hypothesis statements correctly. Additionally, BIOL A108 student pre/post data indicate a 25% improvement in their comprehension of Mendel’s principles.

These changes have required a lot of work by many people; including learners from all levels. Transparent communication between instructors and students have been paramount to our initial success. This communication includes informing the students that the changes within the course structure are based on discipline based educational research and is founded by using current data from evidence-based teaching to shape the course.

Additional data that we are collecting include student demographics and end of semester student perception surveys. I hope to gather information regarding how this course is perceived by students and their personal successes as scientists. Why would we care about our student demographics? Anchorage, Alaska has three high schools in the top ten diversity ranking of high schools. A majority of our students enrolled in UAA’s biological science degree program are from the Anchorage and greater Alaska area. Collectively, if we want to increase the diversity of people trained in the biological sciences; UAA’s biological sciences program is one place to start. Maybe our course redesign will help others with their curricular transformations.

I am really interested in learning about how other departments and programs have remodeled their courses following the guidelines of Vision and Change, and what outcomes they are tracking. Let’s share ideas and materials within the LifeSciTRC and PECOP resources!

 

References:

Aguirre, K. M., Balser, T. C., Jack, T., Marley, K. E., Miller, K. G., Osgood, M. P., & Romano, S. L. (2013). PULSE Vision & Change Rubrics. CBE-Life Sciences Education, 12(4), 579-581.

Brewer, C. A., & Smith, D. (2011). Vision and change in undergraduate biology education: a call to action. American Association for the Advancement of Science, Washington, DC.

Brownell, S. E., & Kloser, M. J. (2015). Toward a conceptual framework for measuring the effectiveness of course-based undergraduate research experiences in undergraduate biology. Studies in Higher Education, 40(3), 525-544.

Farrell, Chad R. (2016). “The Anchorage Mosaic: Racial and Ethnic Diversity in the Urban North.” Forthcoming chapter in Imagining Anchorage: The Making of America’s Northernmost Metropolis, edited by James K. Barnett and Ian C. Hartman. Fairbanks, AK: University of Alaska Press

Hanauer, D. I., & Dolan, E. L. (2014). The project ownership survey: measuring differences in scientific inquiry experiences. CBE-Life Sciences Education13(1), 149-158.
PECOP rachael hannah

 

Rachel Hannah is an Assistant Professor of Biological Sciences at University of Alaska, Anchorage. Helping people become scientifically literate citizens has become her major career focus as a science educator. As a classroom and outreach educator, Rachel works to help people explore science so they can apply and evaluate scientific information to determine its impact on one’s daily life. She is trained as a Neurophysiologist and her graduate degree is in Anatomy and Neurobiology from the University of Vermont College of Medicine. Recently, Rachel’s research interests have migrated to science education and how students build critical thinking skills.