Tag Archives: diversity

Physiology Educators Community of Practice (PECOP) Webinar Series

The American Physiological Society (APS) is pleased to announce a new webinar series focused on our educator community. The monthly series includes live webinars focused on education best practices, synchronous and/or asynchronous teaching, establishing inclusive classrooms and publishing. Educator town halls will also be featured as we strive to support and engage the educator community throughout the year.

Starting this month, take advantage of the educator webinar series by visiting the events webpage on the APS website. Register for each webinar, learn about speakers and their talks today!

What to do on the First Day of Class: Insights From Physiology Educators?
July 23, 2020
12 p.m. EDT

Join in the discussion about how to greet students on the first day of class and set the tone for the rest of the course.

Speakers:

  • Barbara E. Goodman, PhD from the Sandford School of Medicine, University of South Dakota (Vermillion)
  • Dee Silverthorn, PhD from the University of Texas at Austin

A successful semester: Applying resilient and inclusive pedagogy to mitigate faculty and student stress
August 20, 2020
2 p.m. EDT

As we head into an uncertain academic year, spend an hour with us to consider strategies which will help you and your students navigate our changing academic, professional, and personal lives. Participants will work through pragmatic and concrete strategies they can transition into their own work to promote student learning and minimize stress.

Speakers:

  • Josef Brandauer, PhD from Gettysburg College (Penn.)
  • Katie Johnson, PhD from Trail Build, LLC (East Troy, Wisc.)

Writing & Reviewing for Advances
September 17, 2020
12 p.m. EDT

This session will be a chance to encourage all who have adapted their teaching during the COVID-19 pandemic to share their work. This topic also ties in to the Teaching Section featured topic for EB 2021.

Speaker:

  • Doug Everett, PhD from National Jewish Health (Denver, Colo.)

A Framework of College Student Buy-in to Evidence-Based Teaching Practices in STEM: The Roles of Trust and Growth Mindset
October 22, 2020
12 p.m. EST

This topic is relevant to building trust, which goes hand-in-hand with inclusion and diversity. Trust is essential for the different modalities of teaching which educators and students will experience in the fall.

 

Educators Town Hall
November 19, 2020
12 p.m. EST

A chance to talk about what happened during the fall semester and also plan for the upcoming year

Cultivating a growth mindset for the work of diversity and inclusion
Lisa Carney Anderson, PhD
Associate Professor
Department of Integrative Biology and Physiology
University of Minnesota
Minneapolis, MN

I live in Minnesota and work at the University of Minnesota.

I’m sure you have read and heard about the Twin Cities in the news.  George Floyd was murdered by a police officer in Minneapolis. In addition, in the past few years, members of the Minneapolis Police have killed other Black citizens.  Consequently, a large number of people of all ages, colors and creeds poured into the streets to protest police brutality.  I am a White cis woman with privilege. Though I feel confident about my abilities as a physiologist and an educator, I’m not confident about the work of diversity and inclusion. Nonetheless, I am trying to figure out how I can use my privilege to provide a better learning and life experience for my students of color.

In 2018, at the Institute on Teaching and Learning, Katie Johnson of Trail Build, gave a powerful presentation on diversity and inclusion (2).  In her talk, she met us where we all lived.  She started by saying that she was a scientist and teacher.  If it was her job to be objective, what could she possibly do to promote diversity and inclusion?  Then she said something amazing.

We as physiologists ask our students to think in new ways.  We ask them to learn a lot of new terms: homeostasis, contractility, permeability, peristalsis and clearance.  Then we ask them to learn a lot of concepts.  Negative feedback mechanisms can maintain the cellular environment. Increased intracellular calcium increases the strength of a cardiac contraction.  Permeability is related to the number of open ion channels in a membrane. Peristalsis is a wave like contraction that moves contents along the gut lumen. Clearance is defined in terms how much plasma per unit of time is cleaned of a given substance.  Then we ask our student to put the terms and concepts into a framework that explains how the body works.  And we don’t ask students to do this sequentially, we ask them to accomplish this simultaneously.  Holy Smokes. That is hard work.  We ask our students to struggle with physiology.

So here is the amazing part.  If we ask our students to think in new ways to learn physiology, then we, as faculty, should be willing to think in new ways to address racism and equity in science and education. 

Dr. Johnson also gave us insight into the student experience.  For example, cold calling students is not a fair classroom practice.  I’ve learned that this is where small group discussion or Think-Pair-Share exercises (3) can be very helpful. If students have a chance to try out their ideas on a peer, then they may gain confidence to share an idea with the whole class. 

For example, I’ve also learned to be intentional when I set up student groups.  Here in very White Minnesota, I might have a few students of color.  I look at my class list and I look at the students’ pictures and try to make sure there are at least two students of color in a group even if that means some groups are all White. My process for assigning groups is far from perfect because, I may not recognize that a student identifies as non-white.  I don’t assume to know the comfort level of my students but my sense is that this practice addresses at least some of the stress of being the only person of color in a small group.  I have a colleague that calls imperfect classroom interventions like this, “filling in the gaps when a systemic solution is not available to address stereotype threats.”

So, what is a stereotype threat?

Before Mr. Floyd was murdered, I read the book, Whistling Vivaldi: how stereotypes affect us and what we can do, by Claude M. Steele (4).  From his work I have learned universities are power structures that can be very intimidating for students.  Through rigorous experimentation, Dr. Steele demonstrated how stereotype threat, or the stress of feeling marginalized interferes with a student’s performance. The burden of constantly feeling like you don’t belong is exhausting.  As I read this book, I thought back on my own experience as an undergraduate, first-generation, female. I was the only female in physics lab.  I felt like no one wanted to be my lab partner and no one wanted me there.  The lab teacher made jokes at my expense. I got Cs in physics.  Was it because I’m bad at physics?  Was it because I felt marginalized?  Is this how my students of color feel?

First of all, I’ve learned from Dr. Steele in Whistling Vivaldi and Dr. Johnson from Trail Build that there are things I can do to help my students with stereotype threats.  I can help them practice affirmation.  I’ll share with you how I do this in my Clinical Physiology Class.  This is a two-course series in which students from nursing anesthesia, biomedical engineering, physiology, kinesiology and other biological sciences come together to learn about pathophysiology and clinical physiology.  I assign the students to interdisciplinary groups such that representatives from all majors are distributed as evenly as possible throughout the groups.  I try to balance genders and make sure that no student of color is alone in a group of White students.  Then I encourage them in their discussions to think about the assets they bring to the conversation: leadership, math ability, problem solving, biochemistry knowledge, clinical experience, research experience, practicality, being a peacemaker and so on.  Because, as the American humorist, Will Rogers, is reported to have said, “We are all ignorant, only on different subjects.” I try to get them to see that they have knowledge their peers don’t have and that is why it is important for them to be present.

Second, I try to help my students have an incremental mindset rather than a fixed mindset.  This comes from the work of Carol Dweck (1) also described in Whistling Vivaldi. An incremental mindset is one in which a student might think “today, not possible but tomorrow, POSSIBLE.”  I tell my students that physiology is a way of thinking and you have to practice it.  No one is born knowing physiology and just because physiology is hard does not mean it is the wrong field for them. I want my students to realize I have had failures but they don’t define me. For example, I tell my students about the first time I took biochemistry when I was a senior in college.  I got a D and not because I didn’t work hard. I spent many lonely hours going over my notes but when it came time for the test, and I just couldn’t remember a single glucose molecule.  Then in graduate school, I took biochemistry again.  I got some large pieces of butcher paper.  I drew molecules and pathways and enzymes.  I drew them over and over from memory.  While I rode the bus, I reflected on how the pathways were related.  For fun I would predict what would happen if a particular enzyme did not work.  I used retrieval, mental models and reflection (though at the time I did not realize that’s what they were called).  I learned a lot of biochemistry, I earned a lot of confidence, and I got a good grade.  Now people call me Dr. Anderson.  Not because I’m a genius but because I know it is possible to grow into goals and aspirations.

Leading a classroom with an incremental mindset (also called a growth) mindset, in my opinion, is a powerful way for me to promote equity in my educational mission.  If I am honest with them about the struggles I’ve had, they might be willing to come into office hours and get some help. If students know that I went from a D to an A, they might think that they can do it too. Instead of seeing a poor grade on a test as the limit of their knowledge, they might see it as room to grow and work they need to do.  If they stay in the class, they can realize that improvement; if they drop the class, they are behind in completing their program and behind financially. If I can keep a student of color from dropping the class and help them with study skills, then that is one small step for equity.

Finally, as we make our way towards the fall, it is important to acknowledge that some of our students, especially our students of color and our Black students may have experienced trauma in their lifetimes.  They are traumatized by the isolating effects of the pandemic. They are traumatized by seeing repeated airings of the murder of George Floyd in Minneapolis and Rayshard Brooks in Atlanta. They are traumatized due to societal inequities that value their lives and bodies and education less than others. We must acknowledge their experience.

Two weeks ago, one of my medical physiology students invited me to a rally at the St. Paul State Capitol as part of “White Coats for Black Lives.”  At first, I didn’t want to go. I was scared of getting exposed to the Covid-19 virus.  But nonetheless I found myself typing in an email, “How can I participate?” My student invited me so I had to be part of the solution. So, I put on my black mask and my white coat and I headed to the State Capital.  I spoke to my students, and they offered me a sign. “SILENCE IS COMPLICITY.”  I found my spot on the lawn and I held up my sign. The lawn was full of health care providers and educators from all over the Twin Cities.   I listened to an inspiring student-led protest in favor of providing health care access for all, increasing the diversity of student and faculty bodies and ending race-based medicine.  I was deeply moved by the experience and I was glad I came.  Our students of color and their allies are demanding more of us as faculty, departments and institutions.

I’m getting comfortable with being uncomfortable. I’m ready to listen because I am not an expert in anti-racism and I’m ready to work even though I might make some mistakes along the way.  I’m hoping to cultivate a growth mindset around issues of racism and spending my time listening to experts, reading on my own and learning. We ask this of our students every day and we as faculty can do no less.

References:

  1. Claro S, Paunesku D, Dweck CS. Growth mindset tempers the effects of poverty on academic achievement. Proc Natl Acad Sci U S A. 2016;113(31):8664-8668.
  2. Johnson, K.M.SInclusive Practices for Diverse Student Populations. Plenary. APS Institute on Teaching and Learning, Madison, WI, June 18-22, 2018.
  3. Lyman, F. “The responsive classroom discussion.” In Anderson, A. S. (Ed.), Mainstreaming Digest. College Park, MD: University of Maryland College of Education, 1981.
  4. Steele, C.S. Whistling Vivaldi: how stereotypes affect us and what we can do, W.W Norton & Company: New York, 2010.

Lisa Carney Anderson is an Associate Professor and Director of Education in the Department of Integrative Biology and Physiology at the University of Minnesota. She completed her doctoral training in muscle physiology at the University of Minnesota. She directs the first-year medical physiology course. She also teaches nurse anesthesia students, dental students and undergraduates. She is the 2012 recipient of the Didactic Instructor of the Year Award from the American Association of Nurse Anesthesia.  She co-authored a physiology workbook called Cells to Systems: Critical thinking exercises in Physiology, Kendall Hunt Press. Dr. Anderson’s teaching interests include encouraging active learning through retrieval and assessment of student reflection.  She has joined the APS Teaching Section Steering Committee as Secretary.

Challenges of migrating online amid the COVID-19 pandemic
Ida T. Fonkoue, Ph.D.
Post-Doctoral Fellow, Renal Division
Emory University School of Medicine

Ramon A. Fonkoue, Ph.D.
Associate Professor, French and Cultural Studies
Michigan Technological University

The COVID-19 pandemic has led to a total and sudden reshaping of the academic landscape across the country, with hundreds of institutions moving administration entirely online and shifting to online instruction for the remainder of the spring semester or for both spring and summer. This sudden transition with practically no time to prepare has major implications for students and faculty alike, and poses serious challenges to a smooth transition as well as effective online teaching on such a large scale. Out of these challenges, two issues in particular are examined here: 

By Phil Hill, licensed under CC-BY. See URL in references.
  • the disparity in resources and preparedness for effective online teaching 
  • the implications of the migration to virtual classrooms for diversity and inclusion

Disparity in resources and preparedness for effective online teaching

Teaching an online course requires just as much, if not more, time and energy as traditional classroom courses. It also requires specific IT skills to be effective. Some teachers have managed to achieve great success engaging students online. However, many challenges remain for the average teacher. While online teaching has now been embraced by all higher education institutions and the number of classes offered online has seen a steady growth over the years, it should be noted that until now, instructors and students had the choice between brick and mortar classes and virtual ones. Each could then choose based on their personal preferences and/or circumstances. What makes the recent changes so impactful and consequential is that no choice is left to instructors or students, as the move to online classes is a mandate from the higher administration. Whether one is willing, prepared or ready is irrelevant. It is from this perspective that the question of the preparedness to migrate online is worth examining. 

With academic units ordered to move classes online, instructors who had remained indifferent to the growing trend of online teaching have had a difficult reckoning. They have had to hastily move to online delivery, often with a steep learning curve. This challenge has been compounded in some cases by the technology gap for instructors who haven’t kept their IT skills up to date as well as the school’s preparedness to support online teaching. But even instructors who had some familiarity with learning management systems (LMS) and online delivery have faced their share of challenges. We will only mention two sources of these difficulties: 

  • First, students’ expectations in a context of exclusive online teaching are different from when most online classes took place in the summer, and were attractive to students because of convenience and flexibility. With online classes becoming the norm, students in some universities are taking steps to demand that school administrators pay more attention to quality of instruction and maintain high standards to preserve teaching effectiveness. 
  • Second, instructors can no longer use LMS resources just for the flexibility and benefits they afforded, such as in blended classes or flipped classes. Moving everything online thus requires extra work even for LMS enthusiasts.

For students, there have been some interesting lessons. Until now, it was assumed that Generation Z students (raised in the boom of the internet and social media) we have in our classes have tech skills in their DNA and would be well equipped and ready to migrate online. Surprisingly, this hasn’t been the case across the board, and these first weeks have revealed real discrepancies in student IT equipment with varying consequences for online classes. Equipment failure and problems with access to high speed internet emerge as the most serious difficulties on the students’ side. Furthermore, online learning requires independence and often more self-discipline and self-motivation. Most online courses are not taught in real time, and there are often no set times for classes. While this flexibility makes online classes attractive, it can also be a drawback for students who procrastinate and are unable to follow the course pace. If left to themselves, only the most responsible students will preserve their chances of performing well. On this last point, one unexpected issue has been students who have virtually disappeared from their classes since the migration of courses online amid the COVID-19 pandemic. The current transition has thus presented major challenges for teachers and students alike. 

Implications of the migration to virtual classrooms for diversity and inclusion

The second issue we think deserves attention is the way in which educational institutions’ commitment to diversity and inclusion would play out in virtual classes. While they are now among the professed core values of all colleges and universities across the country, implementing diversity and inclusion in an online environment presents a different set of challenges for both instructors and students. In traditional classrooms, the commitment to diversity and inclusion typically translates into the following:

  • A diversity and inclusion statement from the school must be included in the course syllabus.
  • Instructors must remind students a few rules at the beginning of the course, including: recognition that the classroom is an environment where diversity is acknowledged and valued; tolerance of and respect for diversity of views in the classroom.
  • Sensitivity to and respect for diversity (gender, age, sexual orientation, etc.).
  • Students are asked to be courteous and respectful of different opinions.

In moving into a virtual environment, instructors have to think about the challenges of virtual classrooms and their potential impact on diversity and inclusion. For instance, the faceless nature of course participation and asynchronous delivery may make it easier for participants to disregard or neglect diversity and inclusion rules. Teachers need to reflect on ways to ensure that the virtual space of online classes remains an environment that fosters diversity and inclusion. One drawback of online classes is the potential impact of the relative anonymity on social engagement. In a traditional classroom, participants are constrained by the physical presence of their peers in the confined space of the classroom. The closed physical space of the classroom, combined with the instructor’s authority and peer pressure contribute to fostering discipline. Reflecting on the way online teaching impacts the instructor, one faculty noted: “I didn’t realize how much I rely on walking around the room and making eye contact with students to keep them engaged.” As an online teacher, one lacks the ability to connect physically with students, to read emotional cues and body language that might inform about the individuality of a student. Moreover, a good grasp of the diversity in the classroom and of students’ learning abilities is needed to plan instruction, and give each of them the opportunity to learn and succeed.

Drawing from the above considerations, here are some key questions that instructors should consider as they migrate online: What skills do instructors need to properly address diversity and inclusion online? How do instructors include diversity and inclusion requirements in online course design? How to create an inclusive online classroom? How do instructors attend to diverse students’ needs during instruction? How do they monitor behaviors and enforce diversity and inclusion rules during instruction?

While the migration might have been abrupt, instructors need not seek perfection in moving their courses online. As in traditional classes, what matters the most, from the student’s point of view, is constant communication, clear directions and support from their teachers. Students understand the challenges we all face. They also understand the rules in virtual classes, provided we emphasize them.

References

Hill, Phil (2020), Massive Increase in LMS and Synchronous Video Usage Due to COVID-19. PhilonEdTech. https://philonedtech.com/massive-increase-in-lms-and-synchronous-video-usage-due-to-covid-19/

Greeno, Nathan (2020), Prepare to Move Online (in a Hurry). Inside Higher Ed. https://www.insidehighered.com/views/2020/03/10/prepare-move-online-continuity-planning-coronavirus-and-beyond-opinion


McMurtrie, Beth (2020), The Coronavirus Has Pushed Courses Online. Professors Are Trying Hard to Keep Up. The Chronicle of Higher Education. https://www.chronicle.com/article/The-Coronavirus-Has-Pushed/248299

Dr Ida Fonkoué is a post-doctoral fellow at Emory University School of Medicine in the Laboratory of Dr Jeanie Park. She trained under Dr Jason Carter at Michigan Technological University, where she graduated with a PhD in Biological Sciences in December 2016. She teaches renal physiology classes and lead small groups in the School of Medicine. Her long-term research goal is to understand how the sympathetic nervous system, the vasculature and inflammation interplay to contribute to the high cardiovascular disease risk of patients living with chronic stress, such as those with post-traumatic stress disorder.

Dr. Ramon A Fonkoué is an Associate Professor of French and Cultural Studies and the Director of Graduate Studies in the Department of Humanities at Michigan Technological University. He is also a Visiting Scholar in the department of French and Italian at Emory University. He has been teaching online for 9 years and has experience with blended, flipped and full online classes.

Involving students in the teaching experience
Karen L. Sweazea, PhD, FAHA
Arizona State University

As faculty, we often find ourselves juggling multiple responsibilities at once. Although many of us are interested in adding hands-on or other activities to our classes, it can be difficult to find the time to develop them. This is where more advanced students who have already taken the class or graduate students can help.

A couple of summers ago I requested the help of an extra teaching assistant in my Animal Physiology course. The role of the position I was requesting was unique as I was not seeking a student to help with grading or proctoring exams. Rather, the role of this student was to help develop in-class activities that would enhance the learning experience of students taking the course.

For each lesson, the special graduate student TA was tasked with finding an existing (ex: https://www.lifescitrc.org/) or creating a new activity that could be implemented in the classroom during the last 10-20 minutes of each session, depending on the complexity of the activity. This enabled me to begin converting the course into a flipped classroom model as students enrolled in the course were responsible for reading the material ahead of time, completing a content comprehension quiz, and coming to class prepared to discuss the content and participate in an activity and/or case study. Special TAs can also assist with developing activities for online courses.

While the benefits of having such a TA for the faculty are clear, this type of experience is also beneficial to both the TA as well as the students enrolled in the course. For the TA, this experience provides an opportunity to develop their own teaching skills through learning to develop short lesson plans and activities as well as receiving feedback from the faculty and students. For the students, this is a great way to build cultural competence into the course as TAs are often closer in age to the students and may better reflect the demographics of the classroom. Cultural competence is defined by the National Education Association as “the ability to successfully teach students who come from a culture of cultures other than our own.” Increasing our cultural competency, therefore, is critical to student success and is something that we can learn to address. Having special TAs is just one way we can build this important skill.

Karen Sweazea is an Associate Professor in the College of Heath Solutions at Arizona State University. Her research specializes in diabetes and cardiovascular disease. She received her PhD in Physiological Sciences from the University of Arizona in 2005 where her research focused on understanding glucose homeostasis and natural insulin resistance in birds. Her postdoctoral research was designed to explore how poor dietary habits promote the development of cardiovascular diseases. 

Dr. Sweazea has over 40 publication and has chaired sessions and spoken on topics related to mentoring at a variety of national and local meetings. She has additionally given over 10 guest lectures and has developed 4 graduate courses on topics related to mentoring and professional development. She has mentored or served on the committees for undergraduate, master’s, and doctoral students and earned an Outstanding Faculty Mentor Award from the Faculty Women’s Association at Arizona State University for her dedication towards mentoring.   

Strategies and Tips for Inclusive Advising
Katie Johnson, PhD
Programmatic Improvement Consultant
Trail Build, LLC

Educators often find themselves in the role of advisor, either formally or incidentally. If you teach or lead a research group, it is likely students or trainees arrive at your office door with a plethora of questions or issues, seeking your input. Yet, very few academics have formal training in how to advise students.

How do you become a productive advisor who supports the success of your students? For the purpose of our discussion, I am defining advisor as any person who provides guidance, information, or advice to a student or trainee, the advisee. Many productive and inclusive advising strategies align with effective teaching practices.

Inclusive advising strategies interrupt assumptions an advisor may have about the needs, issues, or questions facing an advisee. It also acknowledges and embraces the relationship between the academic, professional, and personal trajectories of each advisee. One approach to inclusive advising is to use a question-focused advising strategy. Rather than advisors serving only as a conduit for information, advisors should ask advisees thoughtful and strategic questions, within the context of a collegial and respectful conversation. When an advisor carefully and attentively listens to the responses provided by the advisee, the advisor gains important information about how to support and assist the advisee.

There are many points to consider when advising, but here are a few suggestions for advisors, followed by examples of questions advisors can ask advisees. These questions are not to be used in sequential order, but rather as needed.

1. Listen carefully. This strategy is a lot harder than it sounds. It is easy to provide information, but is the information the right information? When careful and engaged listening directs advising, advisors are much more likely to provide the information and support needed by the advisee.

Questions to ask advisees: How can I help you? What brings you to my office today? What are your goals for this project/assignment/course? Did we address the issue that brought you in today? Do you think the solutions we talked about today are attainable? Do you have any other questions for me?

2. Believe advisees when they say they are struggling. Again, much harder than it sounds. Help advisees think through productive steps forward, rather than sending them off to figure things out on their own. Check-in with them later to help address lingering questions.

Questions to ask advisees: Can you remember a time when things were going well? What worked for you at that point? What strategies are you using to navigate these issues? If those strategies are not working, can we brainstorm other strategies? Can we work together to find resources to support your success? Do you have local friends you can turn to when you are having difficulties?

3. Guide advisees to identify what they need to achieve their academic, professional, and personal goals. After careful listening, assign advisees homework. Assignments could include visiting a resource on campus or doing directed online research to find the information they need to design a plan to accomplish their goals. Schedule future appointments for the advisee to report back what they found.

Questions to ask advisees: What information do you need to achieve your goals? What information do you have? What resources do you need to find? Is there anyone you know who would be a good resource?

4. Recognize the power dynamic between advisors and advisees. Even the most friendly and welcoming advisors can be intimidating to advisees. It takes courage to talk to an advisor. Given the power dynamic, advisees may be too intimidated to speak-up when they do not understand their advisor’s suggestions or advice.

Questions to ask advisees: Can you explain to me what your next steps should be to address this issue? Is there anything I said that I need to explain in a different way for you to be better prepared to address this issue?

5. Advisors are at a different point in their career than their advisees. It is likely the life priorities of any given advisee and advisor are different. Ask advisees about their priorities, listen carefully, and believe what they say.

Questions to ask advisees: Where do you see yourself in ten years? What is your ideal lifestyle? What is essential to this lifestyle for you to feel successful? How do you like to spend your time?

While these concepts may take time to incorporate into your advising, here are a few quick tips:

1. Really good advising takes time. Make sure to reserve enough time and energy to have productive advising meetings.

2. Successful advising is a continuous process. Expect numerous interactions in the classrooms, hallways, over e-mail, and during private meetings. This multiple check-in approach allows for investigation and reflection.

3. Articulate the expectations and responsibilities of advisees and advisors. It is possible you are your advisee’s first advisor. Advisees may not know the reason or meaning for an advisor or appropriate boundaries. As an advisor, determine your expectations and communicate these expectations to your advisees.

4. Offer options to schedule meetings. While walk-in office hours have some benefits, a dedicated time and space allows both advisee and advisor to focus on the task at hand. Offer designated advising timeslots for advisees. Signing-up for timeslots could occur either on a sheet of paper or using a free online tool that automatically syncs to online calendars.

5. If you expect advisees to meet at your office, make sure you tell your advisees where your office is located. Advisees should also know how to contact you if they must change or miss a meeting.

6. Schedule group advising to work with advisees who have similar academic or professional (NOT personal) issues. This will save the advisor time, and the advisees benefit from conversations with students or trainees asking similar questions.

7. Recruit a more advanced student or trainee to meet with advisees about standard advising issues, such as program requirements or course registration. It is effective if this meeting occurs prior to the advisor-advisee meeting, so unanswered questions and clarifications can be provided by the advisor.

8. You do not need to know the answer to everything. Know your limits and your resources. Institutions often have services and professionals trained in handling various student situations. Have their phone numbers or emails readily available so you can connect advisees directly to the assistance they need. Know your responsibilities around state and federally mandated reporting.

Productive and inclusive advising is an opportunity to help and to support students and trainees as they develop their own paths to success. What an amazing perk of being an educator! Happy Advising!

REFERENCES:

Chambliss DF. How College Works. Harvard University Press, 2014.

Cooper KM, Gin LE, Akeeh B, Clark CE, Hunter JS, Roderick TB, Elliott DB, Gutierrez LA, Mello RM, Pfeiffer LD, Scott RA, Arellano D, Ramirez D, Valdez EM, Vargas C, Velarde K, Zheng Y, Brownell SE. Factors that predict life sciences student persistence in undergraduate research experiences. PLOS ONE 14: e0220186, 2019.

Johnson KMS, Briggs A, Hawn C, Mantina N, Woods BC. Inclusive practices for diverse student populations: Experimental Biology 2017. Adv Physiol Educ 43: 365–372, 2019.

Katie Johnson, Ph.D., is an experienced practitioner and evaluator of inclusive teaching and mentoring practices. Dr. Johnson advises and serves on national STEM education initiatives and committees, working with a diverse network of collaborators. As a Programmatic Improvement Consultant, Dr. Johnson assists institutions and organizations to develop innovative solutions to curricular and assessment challenges. Prior to becoming an independent consultant for Trail Build, LLC, Dr. Johnson was Chair and Associate Professor of Biology at Beloit College. She earned her Ph.D. in the Department of Molecular Physiology and Biophysics at Vanderbilt University and her B.S. from Beloit College. Disclosure: Dr. Johnson serves as an external consultant for the American Physiological Society.

My Summer Reading: Discussion as a Way of Teaching: Tools and Techniques for Democratic Classrooms 2nd Edition by Stephen D. Brookfield and Stephen Preskill

Jessica L. Fry, PhD
Associate Professor of Biology
Curry College, Milton, MA

Ah Summer – the three months of the year when my To Do list is an aspirational and idealistic mix of research progress, pedagogical reading, curriculum planning, and getting ahead.  Here we are in July, and between hiring, new building construction, uncooperative experiments and familial obligations, I am predictably behind, but my strategic scheduling of this blog as a book review– meaning I have a deadline for both reading and digesting this book handed out at our annual faculty retreat — means that I am guaranteed to get at least one item crossed off my list!

My acceptance of (and planning for) my tendency to procrastinate is an example of the self-awareness Stephen D. Brookfield and Stephen Preskill advocate for teachers in their book “Discussion as a Way of Teaching”.  By planning for the major pitfalls of discussion, as well as the reasons behind why both teachers and students manage discussions poorly, they catalog numerous strategies to increase the odds of realizing the major benefits of discussion in the classroom.  At fifteen years old, this book is hardly dated; some of the discussion formats will be familiar to practitioners of active learning such as snowballing and jigsaw, but the real value in this book for me was the frank discussion of the benefits, drawbacks, and misconceptions about discussion in the classroom that are directly relevant to my current teaching practice.  

My lowest moments as a professor seem to come when my students are more focused on “finding the right answer” than on exploring a topic and fitting it into their conceptual understanding.  Paper discussions can fall flat, with students hastily reciting sentences from the discussion or results sections and any reading questions I may have assigned.  This book firmly makes the case that with proper groundwork and incentive, students can and will develop deliberative conversational skills.  Chapter 3 describes how the principles for discussion can be modeled during lecture, small group work, and formats designed for students to practice the processes of reflection and analysis before engaging in discussions themselves. Chapters 4 and 5 present the nuts and bolts of keeping a discussion going by describing active listening techniques, teacher responses, and group formats that promote rather than suppress discourse, and chapters 9 and 10 illustrate the ways students and teachers talk too much… and too little.  One of the most emphasized concepts in these chapters and threaded throughout the book is allowing silence.  Silence allows for reflection and should not be feared – 26 pages in this book cover silence and importantly, how and why professors and students are compelled to fill it, which can act as a barrier to all students participating in the discussion.   

Preskill and Brookfield emphasize the need for all students to be active listeners and participants in a discussion, even if they never speak a word, because discussion develops the capacity for the clear communication of ideas and meaning.  “Through conversation, students can learn to think and speak metaphorically and to use analogical reasoning…. They can get better at knowing when using specialized terminology is justified and when it is just intellectual posturing” (pg. 32).  What follows is an incredibly powerful discussion on not only honoring and respecting diversity, but a concise well-written explanation of how perceptions of social class and race affect both non-white and non-middle-class students in American college classrooms.  Their explanation of how academia privileges certain patterns of discourse and speech that are not common to all students leading to feelings of impostership should be read by everyone who has ever tone-policed a student or a colleague.  The authors advocate for a democratic approach to speech, allowing students to anonymously report if, for example, another student banging their hand on their desk to emphasize a point seemed too violent, which then allows the group to discuss and if necessary, change the group rules in response to that incident.  The authors note that “A discussion of what constitutes appropriate academic speech is not lightweight or idle.  It cuts to several core issues: how we privilege certain ways of speaking and conveying knowledge and ideas, who has the power to define appropriate forms and patterns of communication, and whose interests these forms and patterns serve” (pg 146).  The idea that academic language can be gatekeeping and alienating to many students is especially important in discussions surrounding retention and persistence in the sciences, where students seeing themselves as scientists is critical (Perez et al. 2014).  Brookfield and Preskill argue that through consistent participation in discussion, students will see themselves as co-creators of knowledge and bring their authentic selves to the community.   

All in all, this book left me inspired and I recommend it for those who imagine the kinds of invigorating discussions we have with colleagues taking place with our students and want to increase the chances it will happen in the classroom.  I want to cut out quotes from my favorite paper’s discussion section and have my students justify or refute the statements made using information from the rest of the paper (pg. 72-73 Getting Discussion Started).  I want my students to reflect on their journey to science and use social media to see themselves reflected in the scientific community (pg. 159-160 Discussing Across Gender Differences), and I want to lay the groundwork for the first discussion I have planned for the class of 2023; Is Water Wet?  All this and the rest of that pesky To Do list with my remaining month of summer. Wish me luck!  

Brookfield, S. D., & Preskill, S. (2005). Discussion as a Way of Teaching: Tools and Techniques for Democratic Classrooms (2nd ed.). San Francisco: Jossey-Bass.

Perez, T., Cromley, J. G., & Kaplan, A. (2014). The role of identity development, values, and costs in college STEM retention. Journal of Educational Psychology. http://doi.org/10.1037/a0034027

Jessica L. Fry Ph.D. is an Associate Professor of Biology at Curry College, a liberal-arts based primarily undergraduate institution in Milton, Massachusetts.  She currently teaches Advanced Physiology, Cell Biology, and Introduction to Molecules and Cells for majors, and How to Get Away with Murder which is a Junior Year Interdisciplinary Course in the General Education Program.  She procrastinates by training her dog, having great discussions with her colleagues, and reading copious amounts of science fiction. 

Fostering an Inclusive Classroom: A Practical Guide

Ah, the summer season has begun! I love this time of year, yes for the sun and the beach and baseball games and long, lazy summer reading, but also because it gets me thinking about new beginnings. I’ve always operated on a school-year calendar mindset, so if you’re like me, you’re probably reflecting on the successes and shortcomings of the past year, preparing for the upcoming fall semester, or maybe even launching into a new summer semester now. As campuses become more diverse, fostering an inclusive learning environment becomes increasingly important, yet the prospect of how to do so can be daunting. So where to start?

First, recognize that there is not just one way to create an inclusive classroom. Often, the most effective tactics you use may be discipline-, regional-, campus-, or classroom-specific. Inclusive teaching is a student-oriented mindset, a way of thinking that challenges you to maximize opportunities for all students to connect with you, the course material, and each other.

Second, being proactive before a semester begins can save you a lot of time, headaches, and conflict down the road. Set aside some dedicated time to critically evaluate your course structure, curriculum, assignments, and language choices before ever interacting with your students. Consider which voices, perspectives, and examples are prominent in your class materials, and ask yourself which ones are missing and why. Try to diversify the mode of content representation (lectures, videos, readings, discussions, hands-on activities, etc.) and/or assessments types (verbal vs. diagrammed, written vs. spoken, group vs. individual, online vs. in-class, etc.). Recognize the limits of your own culture-bound assumptions, and, if possible, ask for feedback from a colleague whose background differs from your own.

Third, know that you don’t have to change everything all at once. If you are developing an entirely new course/preparation, you’ll have less time to commit to these endeavors than you might for a course you’ve taught a few times already. Recognize that incremental steps in the right direction are better than completely overwhelming yourself and your students to the point of ineffectiveness (Trust me, I’ve tried and it isn’t pretty!)

Below, I have included some practical ways to make a classroom more inclusive, but this list is far from comprehensive. As always, feedback is much appreciated!

Part 1: Course Structure and Student Feedback

These strategies require the largest time commitment to design and implement, but they are well worth the effort.

  • Provide opportunities for collaborative learning in the classroom. Active learning activities can better engage diverse students, and this promotes inclusivity by allowing students from diverse backgrounds to interact with one another. Furthermore, heterogeneous groups are usually better problem-solvers than homogeneous ones.
  • Implement a variety of learning activity types in order to reach different kinds of learners. Use poll questions, case studies, think-pair-share, jigsaws, hands-on activities, oral and written assignments, etc.
  • Select texts/readings whose language is gender-neutral or stereotype-free, and if you run across a problem after the fact, point out the text’s shortcomings in class and give students the opportunity to discuss it.
  • Promote a growth mindset. The language you use in the classroom can have a surprising impact on student success, even when you try to be encouraging. How many of us have said to our students before a test, “You all are so smart. I know you can do this!”? It sounds innocent enough, but this language conveys that “being smart” determines success rather than hard work. Students with this fixed mindset are more likely to give up when confronted with a challenge because they don’t think they are smart/good/talented enough to succeed. Therefore, when we encourage our students before an assessment or give them feedback afterwards, we must always address their effort and their work, rather than assigning attributes (positive or negative) to them as people.
  • Convey the same level of confidence in the abilities of all your students. Set high expectations that you believe all students can achieve, emphasizing the importance of hard work and effort. Perhaps the biggest challenge is maintaining high expectations for every student, even those who have performed poorly in the past. However, assuming a student just can’t cut it based on one low exam grade may be as damaging as assuming a student isn’t fit due to their race, gender, background, etc.
  • Be evenhanded in praising your students. Don’t go overboard as it makes students feel like you don’t expect it of them.

Part 2: Combating Implicit Bias

Every one of us harbors biases, including implicit biases that form outside of our conscious awareness. In some cases, our implicit biases may even run counter to our conscious values. This matters in the classroom because implicit bias can trigger self-fulfilling prophecies by changing stereotyped groups’ behaviors to conform to stereotypes, even when the stereotype was initially untrue. Attempting to suppress our biases is likely to be counterproductive, so we must employ other strategies to ensure fairness to all our students.

  • Become aware of your own biases, by assessing them with tools like the Harvard Implicit Association Test (https://implicit.harvard.edu/implicit/takeatest.html) or by self-reflection. Ask yourself: Do I interact with men and women in ways that create double standards? Do I assume that members of one group will need extra help in the classroom – or alternatively, that they will outperform others? Do I undervalue comments made by individuals with a different accent than my own?
  • Learn about cultures different than your own. Read authors with diverse backgrounds. Express a genuine interest in other cultural traditions. Exposure to different groups increases your empathy towards them.
  • Take extra care to evaluate students on individual bases rather than social categorization / group membership. Issues related to group identity may be especially enhanced on college campuses because this is often the first time for students to affirm their identity and/or join single-identity organizations / groups.
  • Recognize the complexity of diversity. No person has just one identity. We all belong to multiple groups, and differences within groups may be as great as those across groups.
  • Promote interactions in the classroom between different social groups. Even if you choose to let students form their own groups in class, mix it up with jigsaw activities, for example.
  • Use counter-stereotypic examples in your lectures, case studies, and exams.
  • Employ fair grading practices, such as clearly-defined rubrics, anonymous grading, grading question by question instead of student by student, and utilize activities with some group points and some individual points.

Part 3: Day-to-Day Classroom Culture

These suggestions fall under the “biggest bang for your buck” category. They don’t require much time to implement, but they can go a long way to making your students feel more welcome in your classroom.

  • Use diverse images, names, examples, analogies, perspectives, and cultural references in your teaching. Keep this in mind when you choose pictures/cartoons for your lectures, prepare in-class or take-home activities, and write quiz/test questions. Ask yourself if the examples you are using are only familiar or relevant to someone with your background. If so, challenge yourself to make it accessible to a wider audience.
  • Pay attention to your terminology and be willing to adjust based on new information. This may be country-, region-, or campus-specific, and it may change over time (e.g. “minority” vs. “historically underrepresented”). When in doubt, be more specific rather than less (e.g. “Korean” instead of “Asian”; “Navajo” instead of “Native American”).
  • Use inclusive and non-gendered language whenever possible (e.g. “significant other/partner” instead of “boyfriend/husband,” “chairperson” instead of “chairman,” “parenting” instead of “mothering”).
  • Make a concerted effort to learn your students’ names AND pronunciations. Even if it takes you a few tries, it is a meaningful way to show your students you care about them as individuals.
  • Highlight the important historical and current contributions to your field made by scientists belonging to underrepresented groups.
  • Limit barriers to learning. You will likely have a list of your own, but here are a few I’ve compiled:
    • Provide lecture materials before class so that students can take notes on them during class.
    • Use a microphone to make sure all students can hear you clearly.
    • Consider using Dyslexie font on your slides to make it easier for dyslexic students to read them.
    • Speak slowly and limit your use of contractions so that non-native-English speakers can understand you more easily.
    • Write bullet points on the board that remain there for the whole class period, including the main points for that lecture, important dates coming up, and key assignments.
    • Be sensitive to students whose first language is not English and don’t punish them unnecessarily for misusing idioms.

As a final parting message, always try to be mindful of your students’ needs, but know that you don’t have everything figured out at the outset. Make time to reevaluate your approach, class materials, and activities to see where improvements can be made. Challenge yourself to continually improve and hone better practices. Listen to your students, and be mindful with the feedback you ask them to give you in mid-semester and/or course evaluations.

For more information, I recommend the following resources:

  1. Davis, BG. “Diversity and Inclusion in the Classroom.” Tools for Teaching (2nd Ed). San Francisco: Jossey-Bass, A Wiley Imprint. p 57 – 71. Print.
  2. Eredics, Nicole. “16 Inclusive Education Blogs You Need to Know About!” The Inclusive Class, 2016 July 27. http://www.theinclusiveclass.com/2016/07/16-inclusive-education-blogs-you-need.html
  3. Handelsman J, Miller S, Pfund C. “Diversity.” Scientific Teaching. New York: W. H. Freeman and Company, 2007. p 65 – 82. Print.
  4. “Instructional Strategies: Inclusive Teaching and Learning.” The University of Texas at Austin Faculty Innovation Center. https://facultyinnovate.utexas.edu/inclusive

Laura Weise Cross is an Assistant Professor of Biology at Millersville University, beginning in the fall of 2019, where she will be teaching courses in Introductory Biology, Anatomy & Physiology, and Nutrition. Laura received a B.S. in Biochemistry from the University of Texas and a Ph.D. in Molecular and Cellular Pathology from the University of North Carolina. She recently completed her post-doctoral training in the Department of Cell Biology & Physiology at the University of New Mexico, where she studied the molecular mechanisms of hypoxia-induced pulmonary hypertension. Laura’s research is especially focused on how hypoxia leads to structural remodeling of the pulmonary vessel wall, which is characterized by excessive vascular smooth muscle cell proliferation and migration. She looks forward to engaging undergraduate students in these projects in her new research lab.

An inventory of meaningful lives of discovery

by Jessica M. Ibarra

I always had this curiosity about life. Since the very beginning, always wanting to understand how animals’ breathe, how they live, how they move. All that was living was very interesting. – Dr. Ibarra

“I always had this curiosity about life and I wanted to become a doctor, but my parent told me it was not a good idea,” Lise Bankir explained in her interview for the Living History Project of the American Physiological Society (APS).  The video interview (video length: 37.14 min.) is part of a rich collection over 100 senior members of the APS who have made outstanding contributions to the science of physiology and the profession. 

The archive gives us great insight into how these scientists chose their fields of study.  As Dr. Bankir, an accomplished renal physiologist, explain how she ended up “studying the consequences of vasopressin on the kidney.”  She describes her work in a 1984 paper realizing “high protein was deleterious for the kidney, because it induces hyperfiltration,” which of course now we accept that high protein accelerates the progression of kidney disease. Later she describes her Aha! moment, linking a high protein diet to urea concentration, while on holiday. 

“It came to my mind that this adverse effect of high protein diet was due to the fact that the kidney not only to excrete urea (which is the end product of proteins), but also to concentrate urea in the urine.  Because the plasma level of urea is already really low and the daily load of urea that humans excrete need that urea be concentrated about 100-fold (in the urine with respect to plasma).” 

Other interviews highlight how far ahead of their time other scientists were.  As is the case when it comes to being way ahead of teaching innovations and active learning in physiology with  Dr. Beverly Bishop.  In her video interview, you can take inspiration from her 50 years of teaching neurophysiology to physical therapy and dental students at SUNY in New York (video length: 1 hr. 06.09 min.).  Learn about how she met her husband, how she started her career, and her time in Scotland.  Dr. Bishop believed students could learn better with experimental laboratory activities and years ahead of YouTube, she developed a series of “Illustrated Lectures in Neurophysiology” available through APS to help faculty worldwide.

She was even way ahead of others in the field of neurophysiology.  Dr. Bishop explains, “everyone knows that they (expiratory muscles) are not very active when you are sitting around breathing quietly, and yet the minute you have to increase ventilation (for whatever reason), the abdominal muscles have to play a part to have active expiration.  So, the question I had to answer was, “How are those muscles smart enough to know enough to turn on?” Her work led to ground breaking work in neural control of the respiratory muscles, neural plasticity, jaw movements, and masticatory muscle activity.

Another interview shed light on a successful career of discovery and their implications to understanding disease, as is the case with the video interview of Dr. Judith S. Bond. She describes the discovery of meprins proteases as her most significant contribution to science (video length: 37.38 min.), “and as you know, both in terms of kidney disease and intestinal disease, we have found very specific functions of the protease.  And uh, one of the functions, in terms of the intestinal disease relates to uh inflammatory bowel disease.  One of the subunits, meprin, alpha subunit, is a candidate gene for IBD and particularly ulcerative colitis. And so that opens up a window to – that might have significance to the treatment of ulcerative colitis.”

Or perhaps you may want to know about the life and research of Dr. Bodil Schmidt-Nielsen, the first woman president of the APS (video length: 1 hr. 18.07 min.) and daughter of August and Marie Krogh.  In her interview, she describes her transition from dentistry to field work to study water balance on desert animals and how she took her family in a van to the Arizona desert and while pregnant developed a desert laboratory and measured water loss in kangaroo rats.  Dr. Schmidt-Nielsen was attracted to the early discoveries she made in desert animals, namely that these animals had specific adaptations to reduce their expenditure of water to an absolute minimum to survive. 

The Living History Project managed to secure video interviews with so many outstanding contributors to physiology including John B. West, Francois Abboud, Charles TiptonBarbara Horwitz, Lois Jane Heller, and L. Gabriel Navar to name a few.  For years to come, the archive provides the opportunity to learn from their collective wisdom, discoveries, family influences, career paths, and entries into science. 

As the 15th anniversary of the project approaches, we celebrate the life, contributions, dedication, ingenuity, and passion for science shared by this distinguished group of physiologists.  It is my hope you find inspiration, renewed interest, and feed your curiosity for science by taking the time to watch a few of these video interviews. 

Dr. Jessica M. Ibarra is an Assistant Professor of Physiology at Dell Medical School in the Department of Medical Education of The University of Texas at Austin.  She teaches physiology to first year medical students.  She earned her B.S. in Biology from the University of Texas at San Antonio.  Subsequently, she pursued her Ph.D. studies at the University of Texas Health Science Center in San Antonio where she also completed a postdoctoral fellowship.  Her research studies explored cardiac extracellular matrix remodeling and inflammatory factors involved in chronic diseases such as arthritis and diabetes.  When she is not teaching, she inspires students to be curious about science during Physiology Understanding Week in the hopes of inspiring the next generation of scientists and physicians. Dr. Ibarra is a native of San Antonio and is married to Armando Ibarra.  Together they are the proud parents of three adult children – Ryan, Brianna, and Christian Ibarra.

Graduate Student Ambassadors: An APS Effort to Increase Involvement in Professional Societies

The Graduate Student Ambassador (GSA) program was organized by the American Physiological Society’s (APS) Trainee Advisory Committee in 2015. The goal of the program is to train graduate students to act as liaisons between APS and local undergraduate and graduate students. GSAs visit schools in their local area to share their experiences as graduate students, discuss physiology careers and the benefits of an APS membership, and encourage students to consider becoming a member of APS. The program has a unique, symbiotic relationship in that GSAs learn valuable outreach, public speaking, and leadership skills, while APS receives promotion of their awards, programs, and memberships. One particular goal of the GSA program is to recruit and retain individuals from under-represented communities. This is the aim that attracted me to the program.

 

As a first-generation college student, I was raised in a very low socioeconomic background. My exposure to careers was limited and like countless other young girls, I grew up with a short supply of role models who looked like me. While most of my public school teachers were female, the science labs and principal’s offices were considered masculine domains. In my mind, a scientist was that image we all remember of the mad chemist brewing his potions in a lab, hair all in disarray. Although I got the messy hair right, I couldn’t picture myself as this version of a scientist. I didn’t know anything about college because nobody in my life had ever been to one. I certainly didn’t know what a Ph.D. was at the time. By luck and happenstance, I wound up at the University of Kentucky for my undergraduate studies as a nontraditional student following community college. UK is a Research 1 institution, so I was exposed to the scientific method from the start. However, looking back, I’ve always wondered what if I had attended a different university? Would I have ever found my niche in research? And, thus, is the goal of the GSA program: to expose students to careers in research and promulgate the ways in which APS can assist them in these pursuits.

 

When I first got wind of the new GSA program, I was quick to apply. From the beginning, I was excited by the prospect of sharing my experiences as a graduate student with undergraduates. I knew I wanted to visit less research-intensive universities and try to reach under-represented students, first-generation college students, and students from low socioeconomic backgrounds. I recognized the need for diversity in STEM and wanted to contribute to efforts being made to increase it. According to the National Science Foundation, while blacks and Hispanics constitute 36% of the US resident population ages 18-24, they only represent 17% of enrolled graduate students. There is even less representation at the level of doctorate holders (Figure 3). Ethnic and cultural representations in science do not match their share in the US population. However, it is absolutely essential to the growth of STEM to sample from all groups of people.

 

Science is meant to be an objective process, but much of science has been shaped by individuals of a similar background. This not only halts progress but can actually hurt it. For example, the standard medical treatment for breast cancer used to be radical mastectomies. It wasn’t until female voices were welcomed that alternative treatments were implemented—treatments that allowed women to keep their breasts and have been shown to be just as, if not more, effective. Progress was made because of a different perspective. The same is true of drug development, our understanding of sex differences in cardiovascular disease, even air-bag design which was initially tailored to a man’s height and thus not as effective for women. A diverse and inclusive program can promote widely applicable and lifelong learning so that historically under-represented groups can contribute to future breakthroughs with a new perspective. If fields are not diverse and inclusive, we are not cultivating potential but instead losing talent.

 

Berea College, the first coeducational and interracial college in the south, is an example of an ongoing effort to increase inclusion. This school, located in Berea, Kentucky, is a 4-year university that offers a tuition-free education to every single student. They enroll academically promising, economically challenged students from every state in the U.S. and 60 other countries. Over one third of their student population are of color, 8% are international, and 70% are from the Appalachian region and Kentucky. They are inclusive regardless of sexual orientation, gender identity, disability, race, citizenship status, etc. Despite not being a research intensive university, they have an excellent science program with a newly built Natural Sciences and Health building featuring state-of-the-art teaching laboratory equipment. They also encourage students to participate in the Kentucky Biomedical Research Infrastructure Network, a program designed to support undergraduate students in biomedical research, promote collaboration, and improve access to biomedical facilities.

 

I wanted to visit Berea to share my experiences as a graduate student, discuss the different career paths within physiology, and provide interested students with information about beneficial awards and programs offered through APS. Many of the students I spoke with didn’t know much about graduate school or obtaining a Ph.D. They seemed intrigued by my experience as a teaching assistant to fund my program. Berea College offers a unique work program at their school where students work as part of their tuition-free enrollment. Some act as teaching assistants in their courses, giving these students the experience they need to enter a funded graduate program with a teaching component. A lot of the students didn’t realize, though, that you could simply apply to a doctoral program with a bachelor’s degree—they thought you needed to obtain a master’s degree first. Most of the students were particularly interested in the undergraduate summer research programs offered through APS, such as the STRIDE fellowship. They wanted to know more about the Porter Physiology Development Fellowship for graduate students. I was also very excited to share with them the Martin Frank Diversity Travel Fellowship Award to attend the Experimental Biology conference.

 

I had a meaningful and productive visit to Berea College. My next step will be visiting a local community college, another area where efforts to promote diversity and inclusion are progressing. Community colleges are also an excellent place to reach nontraditional students, such as myself. These students sometimes transfer to larger universities to finish their bachelor’s degree, but being a transfer student often doesn’t allow for exposure to research as an undergraduate. I hope to encourage these students to pursue careers in physiology.

 

If you’re interested in contributing to this mission, consider applying to become a GSA. The position is a 2 year term and requires you to attend Experimental Biology each year of your term. The applications for 2019 are currently under review.

 

References

National Science Foundation, National Center for Science and Engineering Statistics. 2017. Women, Minorities, and Persons with Disabilities in Science and Engineering: 2017. Special Report NSF 17-310. Arlington, VA. Available at www.nsf.gov/statistics/wmpd/.

 

Chelsea C. Weaver is a fourth year PhD candidate at the University of Kentucky where she studies hypertensive pregnancy disorders in African Green Monkeys. She has served as a teaching assistant for Principles of Genetics and Animal Physiology for undergraduates. She also guest-lectured for graduate level Advanced Physiology courses. Chelsea is interested in pursuing a postdoctoral position in STEM education research in K-16 upon graduation.
Acknowledging race in the science classroom

thinking“I don’t teach about race. Leave it to the social scientists. They are trained to talk and teach about this stuff. I wouldn’t even know where to start.” I am embarrassed to admit it, but there were times in my life I thought this, and I know I am not alone.

As a science educator, it is easy to stick close to our training as scientists. Scientists teaching science is normalized, largely unquestioned, and safe. Early in my career as an educator, with every institutional equity initiative announcement, I easily convinced myself that I supported my students in other ways. “Leave diversity to the experts.”

What about my expertise? Diabetes is a topic I know well after more than 15 years of training, research, and teaching. It was easy to incorporate this topic into all of my courses. In fact, I teach my entire introductory biology course using humans as a model and diabetes as a way to connect many of the systems. Most students know someone with diabetes. Their personal experience with the disease, complemented by a continuous barrage of hands-on, inquiry-based laboratory activities in this intro course, completely hooks the students! They succeed, with very low drop or fail rates (<5%). At the conclusion of the course, students are enthusiastic about taking more biology courses (Johnson & Lownik, 2013). Things seem to be going well. Why worry?

During the introductory biology course, we spend days going over CDC data about the trends and risk factors for diabetes (CDC, 2015). Are the relationships correlations or causations? How can we use population data to think about the biological mechanism of diabetes? These are great questions for introductory students, and they totally buy in.

However, something funny happens when we start looking at these data. Diabetes is a disease that affects black and Latinx populations at a vastly higher rate than white populations (CDC, 2015). Why would I talk about that? Let’s talk about the science. I know the science. I have spent years studying how hormones regulate glucose (i.e. “the science”).

Frankly, I was scared to stray from my training. The students of color really engage the topic of diabetes, intrigued by the data indicating racial differences.  Many students of color speak of their beloved grandparents’ struggle with diabetes. What if students started asking me questions about race? As a white professor, how could I answer their questions? I know how hormones act to change glucose levels; I don’t know why certain racial and ethnic groups are more susceptible to diabetes. Students want answers about their own risk, and I didn’t know how to help them.

Looking back now, in response to my fear, I deliberately avoided discussions of race disparities. During the introductory biology course, we talked about socioeconomic factors, cultural factors, obesity, and food availability, but in vague and general terms. I might put up a graph to demonstrate disparities, but we never “had time” to engage the topic. We never really talked about why these disparities exist.

As a researcher, I would never intentionally ignore a major contributing factor to a disease. Would we ever ignore smoking as a risk factor for lung cancer? Why completely avoid race as a risk factor for diabetes, even though some individuals are almost twice as likely to develop the disease (CDC, 2015)?

 

By ignoring race and ethnicity as risk factors for diabetes in my course, I taught my students:

  1. Only traditional aspects of disease are worthy of investigation and emerging or relatively newly identified risk factors do not deserve attention.

Potential long-term impact: Reinforcing old practices comes at the expense of new findings and approaches. Focusing exclusively on the role of hormones in diabetes ignores other potential mechanisms, specifically those related to race, limiting the scope and creativity of questions investigated in my classroom and the scientific community.

  1. Scientists don’t “do” diversity.

Potential long-term impact: While national science education initiatives have a strong emphasis on encouraging diversity and equity, these movements have struggled to develop at the grassroots level. In my experience, most white science undergraduate students cannot articulate the importance of diversity of thought and experience in science. Students typically miss the mark when they emphasize that science is “objective,” and therefore, unbiased.  In fact, every scientist has different experiences, training, and assumptions, resulting in different approaches to asking questions and drawing conclusions. Diversifying these approaches is essential for innovation. If the importance of diversity in science continues to be misunderstood, current and future scientists will surround themselves with individuals that think and act like them, limiting new ideas, interpretations, and innovations.

  1. To ignore the concerns and questions of students of color.

Potential long-term impact: By glossing over the details of racial health disparities and not taking the time to understand them myself, I silenced the legitimate health concerns of my students of color. It should not be a surprise that many of my black and Latinx students switched their majors to public health and sociology. I was ignoring their queries and interests. They went to disciplines that addressed their questions. Mass exodus of individuals of color represents a deletion of perspectives from the scientific community. The result is a limited set of experiences that determine the scope of future research agendas; therefore, severely limiting the ability to solve large and complex scientific problems (Page, 2007).

To address these problematic gaps in my pedagogy, I continually challenge the way I think about diversity and equity in my classroom and make impactful changes. Avoiding potential harm to my students was a factor in making these changes; however, my greatest influence was students of color at my institution stating that they did not feel safe or welcome in the sciences (Johnson & Mantina, 2016).

Here are a few first steps I have taken to change the atmosphere in my classroom:

  1. We now talk about racial health disparities and investigate mechanisms related to these disparities in my courses, using CDC data or peer-reviewed scientific articles (ex. Herman, et al., 2016).
  2. I continue to educate myself about the interdisciplinary research investigating these disparities.
  3. I acknowledge publicly to students that when we discuss race and diversity, I might not get it right, might not have all the facts, and might have different personal experiences than theirs.
  4. Prior to larger class conversations about race, I collect input from students of color about how they might approach these conversations.
  5. I never ask a student to speak on behalf of their race or identity, only to speak to their own experiences. I never force a student to speak on the topic of race, period. However, reflective writing or small group discussions are helpful to bring ideas to the forefront.
  6. I avoid telling students that their experiences with racism are wrong or overblown.
  7. I use an assets-based approach to teaching science. Students develop strategies to become successful by identifying the skills and information they bring to the classroom based on their unique experiences and background.
  8. I challenge myself to continue to evolve my approaches to active learning and engaging students. For example, in my early years of teaching, to establish an interactive environment on the first day of class, students introduced themselves and talked about a summer experience to a small group. However, students that worked as day labors found this exercise intimidating when sharing with students that went on wonderful European vacations. I now prefer to ask students to describe their favorite food or dessert.

I acknowledge that issues of race, equity, and diversity are multi-faceted and nuanced, and purposefully, this description is a broad overview of the topic. I still have a lot to learn and do, but I am now a scientist that “does” diversity.

References

CDC (2015). Diabetes Public Health Resource. Available at: http://www.cdc.gov/diabetes/statistics/incidence/fig6.htm, accessed August 2, 2016.

Herman, et al. (2007). Differences in A1c by race and ethnicity among patients with impaired glucose tolerance in the diabetes prevention program. Diabetes Care, 30 (10): pp. 2453-7.

Johnson, K.M.S. and Lownik, J.C. (2013). Workshop Format Increases Scientific Knowledge, Skills, and Interest when Implemented in an Introductory Biology Course that Attracts and Retains Underrepresented Minorities.  Poster.  Experimental Biology, Boston, MA, April 20-24, 2013.  Published Abstract: FASEB J. 27:739.7

Page, S.E. (2007). The difference: how the power of diversity creates better groups, firms, schools, and societies. Princeton University Press (Princeton, New Jersey).

 

KatieJohnson

 

 

 

 

 

 

 

Katie Johnson, Associate Professor of Biology at Beloit College, evaluates the effects of active teaching practices on learning attitudes and outcomes in different student populations. She has been recognized by the American Physiological Society for her work. Her laboratory research assesses the connection between obesity and hormones that regulate glucose levels in animals. She mentors a diverse group of trainees and has numerous physiology and pedagogy publications and presentations co-authored by undergraduate researchers.