Tag Archives: engagement

My Summer Reading: Discussion as a Way of Teaching: Tools and Techniques for Democratic Classrooms 2nd Edition by Stephen D. Brookfield and Stephen Preskill

Jessica L. Fry, PhD
Associate Professor of Biology
Curry College, Milton, MA

Ah Summer – the three months of the year when my To Do list is an aspirational and idealistic mix of research progress, pedagogical reading, curriculum planning, and getting ahead.  Here we are in July, and between hiring, new building construction, uncooperative experiments and familial obligations, I am predictably behind, but my strategic scheduling of this blog as a book review– meaning I have a deadline for both reading and digesting this book handed out at our annual faculty retreat — means that I am guaranteed to get at least one item crossed off my list!

My acceptance of (and planning for) my tendency to procrastinate is an example of the self-awareness Stephen D. Brookfield and Stephen Preskill advocate for teachers in their book “Discussion as a Way of Teaching”.  By planning for the major pitfalls of discussion, as well as the reasons behind why both teachers and students manage discussions poorly, they catalog numerous strategies to increase the odds of realizing the major benefits of discussion in the classroom.  At fifteen years old, this book is hardly dated; some of the discussion formats will be familiar to practitioners of active learning such as snowballing and jigsaw, but the real value in this book for me was the frank discussion of the benefits, drawbacks, and misconceptions about discussion in the classroom that are directly relevant to my current teaching practice.  

My lowest moments as a professor seem to come when my students are more focused on “finding the right answer” than on exploring a topic and fitting it into their conceptual understanding.  Paper discussions can fall flat, with students hastily reciting sentences from the discussion or results sections and any reading questions I may have assigned.  This book firmly makes the case that with proper groundwork and incentive, students can and will develop deliberative conversational skills.  Chapter 3 describes how the principles for discussion can be modeled during lecture, small group work, and formats designed for students to practice the processes of reflection and analysis before engaging in discussions themselves. Chapters 4 and 5 present the nuts and bolts of keeping a discussion going by describing active listening techniques, teacher responses, and group formats that promote rather than suppress discourse, and chapters 9 and 10 illustrate the ways students and teachers talk too much… and too little.  One of the most emphasized concepts in these chapters and threaded throughout the book is allowing silence.  Silence allows for reflection and should not be feared – 26 pages in this book cover silence and importantly, how and why professors and students are compelled to fill it, which can act as a barrier to all students participating in the discussion.   

Preskill and Brookfield emphasize the need for all students to be active listeners and participants in a discussion, even if they never speak a word, because discussion develops the capacity for the clear communication of ideas and meaning.  “Through conversation, students can learn to think and speak metaphorically and to use analogical reasoning…. They can get better at knowing when using specialized terminology is justified and when it is just intellectual posturing” (pg. 32).  What follows is an incredibly powerful discussion on not only honoring and respecting diversity, but a concise well-written explanation of how perceptions of social class and race affect both non-white and non-middle-class students in American college classrooms.  Their explanation of how academia privileges certain patterns of discourse and speech that are not common to all students leading to feelings of impostership should be read by everyone who has ever tone-policed a student or a colleague.  The authors advocate for a democratic approach to speech, allowing students to anonymously report if, for example, another student banging their hand on their desk to emphasize a point seemed too violent, which then allows the group to discuss and if necessary, change the group rules in response to that incident.  The authors note that “A discussion of what constitutes appropriate academic speech is not lightweight or idle.  It cuts to several core issues: how we privilege certain ways of speaking and conveying knowledge and ideas, who has the power to define appropriate forms and patterns of communication, and whose interests these forms and patterns serve” (pg 146).  The idea that academic language can be gatekeeping and alienating to many students is especially important in discussions surrounding retention and persistence in the sciences, where students seeing themselves as scientists is critical (Perez et al. 2014).  Brookfield and Preskill argue that through consistent participation in discussion, students will see themselves as co-creators of knowledge and bring their authentic selves to the community.   

All in all, this book left me inspired and I recommend it for those who imagine the kinds of invigorating discussions we have with colleagues taking place with our students and want to increase the chances it will happen in the classroom.  I want to cut out quotes from my favorite paper’s discussion section and have my students justify or refute the statements made using information from the rest of the paper (pg. 72-73 Getting Discussion Started).  I want my students to reflect on their journey to science and use social media to see themselves reflected in the scientific community (pg. 159-160 Discussing Across Gender Differences), and I want to lay the groundwork for the first discussion I have planned for the class of 2023; Is Water Wet?  All this and the rest of that pesky To Do list with my remaining month of summer. Wish me luck!  

Brookfield, S. D., & Preskill, S. (2005). Discussion as a Way of Teaching: Tools and Techniques for Democratic Classrooms (2nd ed.). San Francisco: Jossey-Bass.

Perez, T., Cromley, J. G., & Kaplan, A. (2014). The role of identity development, values, and costs in college STEM retention. Journal of Educational Psychology. http://doi.org/10.1037/a0034027

Jessica L. Fry Ph.D. is an Associate Professor of Biology at Curry College, a liberal-arts based primarily undergraduate institution in Milton, Massachusetts.  She currently teaches Advanced Physiology, Cell Biology, and Introduction to Molecules and Cells for majors, and How to Get Away with Murder which is a Junior Year Interdisciplinary Course in the General Education Program.  She procrastinates by training her dog, having great discussions with her colleagues, and reading copious amounts of science fiction. 

Engaging students in active learning via protocol development

Physiology, particularly metabolic physiology, covers the fundamentals of biophysics and biochemistry for nutrient absorption, transport, and metabolism. Engaging pre-health students in experimentation may facilitate students’ learning and their in-depth understanding of the mechanisms coordinating homeostatic control. In addition, it may promote critical thinking and problem-solving ability if students are engaged in active learning.

Traditionally, students are provided instructions that detail the stepwise procedures before an experiment or demonstration. Although students are encouraged to ask questions before and during the experiments, an in-depth discussion would not be possible until they understand each step and the underlying principles. This is particularly true nowadays when commercial kits come with stepwise instructions where no explanation can be found of principles behind the procedure. The outcomes may contrast in three ways: (1) students are happy with the perfect data they acquire by following the instructions provided by the manufacturer, but they miss the opportunity to chew on the key principles that are critical for students to develop creative thinking; (2) students are frustrated as they follow the instruction but fail the experiments, without knowing what is wrong and where to start for trouble shooting; and (3) driven by self-motivation, students dig into the details and interact intensively with the instructor to grasp the principles of the procedure. As such, the students can produce reliable data and interpret the procedure and data with confidence, and in addition, they may effectively diagnose operational errors for trouble shooting. Evidently, the 3rd scenario demonstrates an example of active learning, which is desirable but not common in a traditional model of experimentation.

To engage students in active learning, one of the strategies is to remove the ready-to-go procedure from the curricular setting but request the students to submit a working protocol of their own version at the end of an experiment. Instead of a stepwise procedure (i.e., a “recipe”), the students are provided with reading materials that discuss the key principles of the analytical procedures. When students show the competency in the understanding of the principles in a formative assessment (e.g., a 30-min quiz), they are ready to observe the demonstrations step by step, taking notes and asking questions. Based on their notes and inspiration from discussion, each student is requested to develop a protocol of their own version. Depending on how detail-oriented the protocols are, the instructor may approve it or ask students to recall the details and revise their protocols before moving forward. Once students show competency in the protocol development, they are ready to conduct the steps in groups under the instructor’s (or teaching assistant, TA’s) supervision. Assessment on precision and accuracy is the key to examine the competency of students’ operation, which also provides opportunities for students to go back to improve or update their protocols. In the case of unexpected results, the students are encouraged to interpret and justify their results in a physiological setting (e.g., fasting vs. feeding states) unless they choose not to. Regardless, students are asked to go back to recall and review their operation for trouble shooting under the instructor’s (or TA’s) supervision, till they show competency in the experiment with reproducible and biologically meaningful data. Trouble shooting under instructor’s or TA’s supervision and inspiration serves as an efficient platform for students to take the lead in critical thinking and problem solving, which prompts students to go back to improve or update their protocols showing special and practical notes about potential pitfalls and success tips.

Often with delight, students realize how much they have grown at the end of experimentation. However, frustration is not uncommon during the troubleshooting and learning, which has to be overcome through students’ persistence and instructor’s encouragement. Some students might feel like “jumping off a cliff” in the early stage of an experiment where a ready-to follow instruction is not available. Growing in experience and persistence, they become more confident and open to pursue “why” in addition to “what”.

Of note, logistic consideration is critical to ensure active learning by this strategy. A single experiment would take up to 3-fold more time for the instructor and students to work together to reach competency. To this end, the instructor needs to reduce the number of experiments for a semester, and carefully select and design the key experiments to maximally benefit students in terms of skill learning, critical thinking, and problem solving. Furthermore, group size should be kept small (e.g., less than 3 students per group) to maximize interactive learning if independent experimentation by individuals is not an option. Such a requirement can be met either by increasing TA support or reducing class size.

 

 

Zhiyong Cheng is an Assistant Professor of Nutritional Science at the Food Science and Human Nutrition Department, University of Florida’s Institute of Food and Agricultural Sciences (UF/IFAS). Dr. Cheng received his PhD in Analytical Biochemistry from Peking University. After completing his postdoctoral training at the University of Michigan (Ann Arbor) and Harvard Medical School, Dr. Cheng joined Virginia Tech as a faculty member, and recently he relocated to the University of Florida. Dr. Cheng has taught Nutrition and Metabolism, with a focus on substrate absorption, transport, and metabolism. As the principal investigator in a research lab studying metabolic diseases (obesity and type 2 diabetes), Dr. Cheng has been actively participating in undergraduate and graduate research training.
The Large Lecture: Minor Adjustments, Major Impacts

Large lecture courses are hard, for both students and faculty alike, and while an exhaustive body of Scholarship of Teaching & Learning (SOTL) research boasts benefits of smaller classes (Cuseo, 2007), budgetary and a myriad of other restrictions leave many higher education institutions with few options for reducing class sizes.  Accordingly, many instructors are forced to figure out a way to best serve our students in this unideal setting.

Three years ago, in my first year as a full time faculty member, I found myself teaching one of these large lecture classes.  There were ~250 students, split across two sections, piled into an outdated auditorium.   The setting was intimidating for me, and if one thing was certain, it was that however intimidated I felt, my students felt it even harder (and as an aside, three years later, I still find myself, at times, intimidated by this space).  So, in a high-stakes, pre-requisite course like Anatomy & Physiology that is content-heavy and, by nature, inherently intense, what can be done in a large lecture hall to ease the tension and improve student learning?

When looking to the SOTL research for evidence-based recommendations on student engagement and active learning ideas in high-enrollment courses such as mine, I quickly became overwhelmed with possibilities (not unlike a kid in a candy store).  Before I knew it, finding meaningful ways to reshape my class in the best interest of the student became defeating – how was I supposed to overhaul my course to integrate best-practice pedagogy while still juggling the rest of my faculty responsibilities?

Thankfully, last year a colleague introduced me to a book, Small Teaching: Everyday Lessons from the Science of Learning, by James Lang.  Admittedly – I still have not finished this book (rest assured – I am currently in a book club studying this book, so I WILL finish it!); that being said, Lang’s powerful message about the significance of small changes resonated with me pretty early on in the text.  Minor, thoughtful adjustments to the daily classroom routine are capable of eliciting substantial impacts on student learning.  In other words, I did not need to reinvent the wheel to better serve my students; instead, I set a goal for myself to try out one or two small, reasonable adjustments per semester.  While I am still navigating best-practice teaching and experience a healthy dose of trial-and-error, here is what I have found useful thus far:

 

1. Learning names. This is perhaps the most straightforward, obvious classroom goal, but when you have a large number of students, something as simple as learning student names can quickly slip through the cracks.  Now, I appreciate that implementing this goal takes considerable time and intention, and depending on the structure of your high-enrollment course, it may or may not be feasible.  In my course, for example, it is a two-part series, which means I have the same students for an entire academic year rather than one semester.  Moreover, in addition to lecture, I have all of my students in smaller lab sections.  Accordingly, I have plenty of opportunity to interact with students and pay attention to names.

From a purely anecdotal observation, if and when a student musters up the courage to ask a question in the large auditorium, addressing them by name appears to increase the likelihood of the student asking again.  Moreover, it seems to have an impact on other students in the classroom, too; anecdotally, I have noticed in lectures where I address student questions using student names, the number of different students asking questions appears to increase.  Overall, addressing students by name seems to communicate a message that students in our classrooms are not simply a body in a seat or a number in the system, but they are a member of a learning community.

2. Finding an inclusive platform for voicing questions. Despite reaching a point in the academic year where everyone knows each other by name, some students will never feel comfortable enough raising their hand to ask questions in the big lecture hall. Knowing this, along with the notion that student confusion rarely exist in isolation, this semester I made it a point to explore alternative platforms for asking questions during lecture.  Cue in the Google Doc: this handy, online word-processing tool gave me a platform for monitoring student questions in real time during lecture.  On the logistical end, it is worth noting that I have a TA monitoring our Google Doc during lecture, so that when a stream of questions comes through, common themes in questions are consolidated into one or two questions.  A few times during the lecture, I will check in with our TA and address questions.  It is also worth mentioning that the document has been set up such that student names are linked to their comments; this was implemented as a measure to keep comments appropriate and on track.  So far, this has turned out to be a great platform, not only for students asking lecture questions in real time, but also for facilitating some really great discussion amongst students.

 

3. Holding students accountable for in-class activities.  I quickly realized in my large lecture class that students were generally unmotivated to participate in any in-class activity unless I collected it and assigned points (which, by the way, can be a logistical nightmare with 250 students).  Yet, as I learned in Making it Stick: The Successful Science of Learning, by Brown, Roediger, and McDaniel (a previous book club endeavor of mine), engaging students in activities like 5 minute recall exercises is widely supported as an effective tool for long-term learning and retention.  So, I decided to piggy back off my previous idea of the Q&A Google Doc, and open up an entire classroom folder where, in addition to our Q&A doc, students had daily folders for submitting in-class activities (again, in real time).  As of now, the way that it works is as follows: upon completing the short recall exercise, or other in-class activity, students will snap a photo of their work and upload it to our Google drive.  Then, I choose a piece of student work to display as we review the activity prompt, which has proven to be a great method for maintaining student accountability (I disclosed to the students that I will randomly choose a few days in the semester to award extra credit for those who submitted during class).  Additionally, this provides quick feedback to me (in real time) regarding student comprehension and common misunderstandings; in fact, I will occasionally choose to review a student submission that represents a common mistake to highlight and address a common problem area.

In summary, implementing these small changes has offered realistic approaches to improving my students’ experience and creating community in an otherwise challenging setting: the large lecture.  While I retain other long-term teaching goals that require more of a time commitment, Lang’s sentiment that small ≠ insignificant provides a solid ground for improvement in the present.

References:

Brown, PC, Roediger, HL, and McDaniel, MA (2014). Making it Stick: The Successful Science of Learning.  Cambridge, MA: Harvard University Press.

Cuseo, Joe. (2007). The empirical case against large class size: Adverse effects on the teaching, learning, and retention of first-year students. Journal of Faculty Development: 21.

Lang, James (2016).  Small Teaching: Everyday Lessons from the Science of Learning. San Francisco, CA: Jossey-Bass.

 

Amber Schlater earned her B.S. from the University of Pittsburgh in Biological Sciences, and her M.S. and Ph.D. from Colorado State University in Zoology; she also completed a two-year post-doctoral fellowship at McMaster University.  Currently, Amber is an Assistant Professor in the Biology Department at The College of Saint Scholastica in beautiful Duluth, MN, where she teaches Human Anatomy & Physiology, Super Physiology (a comparative physiology course), and mentors undergraduate research students.  Outside of work, Amber enjoys hiking, biking, camping, canoeing, and doing just about anything she can outside with her family.
Motivational Interviewing in Higher Education

Motivational interviewing (MI) originated in Norway in the early 1980s by psychotherapists who began to use this principle to treat patients with drinking difficulties.  He suggested one “could use empathetic listening to minimize resistance and increase motivation for change1. The methodology was further developed, revised and expanded 2, 3 by William Miller and fellow clinical psychologist Stephen Rollnick to elicit change behavior using intrinsic motivation to overcome resistance and ambivalence.

MI has gained greater popularity with it’s expansion from treatment of addiction by psychologists to healthcare providers working to elicit change health-related behaviors such as smoking cessation, exercise and healthy eating habits.  This is where I first encountered MI.  The outpatient physical therapy clinic where I was working offered a continuing education class for physical and occupational therapists to learn MI principles, conversation and listening (especially listening) skills to elicit change behavior in our patients.  Most of our patients are motivated to perform their home exercise program and implement lifestyle modifications, if necessary, to help in pain management and improving function.  However, as in the classroom, there always seems to be 1 or 2 patients on your schedule where it feels like pulling teeth to get them involved and motivated to participate.

During the 2-day MI course, we practiced reflective and empathetic listening skills and learned how to drive a conversation so the patient is the one doing most of the talking.   I worked to expand these new skills with my patients in the PT clinic.  It was harder than I anticipated to withhold my opinion on how I thought various obstacles could be overcome or ways my patients could make time in their day to do their home exercise program.  However, what emerged was a patient-driven conversation where they devised ways to make behavioral changes and I felt like I was doing less work.  Woah.

I split my time between treating patients as a PT in an outpatient PT clinic and being a PhD student.  For many reasons I love this split in my roles, but one of the best parts is experiencing how what I learn in one environment influences my actions in the other.  In my role as a lab instructor, discussion leader and eventually sole instructor on campus, one of my biggest challenges was knowing how far to go to reach out to the seemingly disengaged or apathetic students.  I felt responsible for their learning, I wanted them to get the most out of the short time we spent together in the classroom and I wanted them to have a positive experience.  At the same time, I recognized that I cannot make a student learn.  It was unclear to me how far I should be reaching, how often should I pull them into the conversation and really, how to manage the less well-engaged students.

I made use of the many wonderful people and resources available to me to better understand how others dealt with similar experiences and feelings.  I also started to think about how I handle the patients in the PT clinic that are there “because my doctor sent me”, at least on the surface don’t seem to want to be there and take few actions to help themselves resolve their pain.   And then the thought, “why not use MI strategies in the classroom”, came to me.  While MI is continually evolving over time with its ongoing expansion into more disciplines, to me, MI is a style of listening (really listening) and questioning to facilitate change behaviors by working with the other person to identify their intrinsic motivation.  And many of the keywords used to describe MI are words that have also been used to describe high-quality pedagogical techniques such as collaboration, empathy, autonomy and promoting self-efficacy.

After a few reflective listening conversations, what followed was not a miracle transformation of student behavior.  However, I gained a much better understanding of the student’s situation from her perspective, with many layers of complexity built in, and was able to give that student what she needed at that moment in time – which did not involve getting an A in that class.  We were now on the same page.  I felt so much better about the situation and I lost the guilt and stress over not being able to improve participation in the seemingly unengaged student in the back of the class.  This student seemed to also feel more comfortable in class and with me.  She did not pass that class, but it was what she needed to do at that time.  She took the class again over the summer, when her personal life allowed her to succeed in the classroom, with a high level of engagement throughout the term.  It was a huge win for both of us – she was eventually successful in the classroom and I felt good about meeting her where she was on that path to success.

I certainly am not the only one who has thought to transfer MI strategies from the healthcare setting to the classroom.  In fact, Harvey Wells and Anna Jones have recently published a couple papers on the theoretical basis4 and practical application5 of using MI in higher education classrooms.  They argue that using MI in higher education classrooms can lead to student-teacher collaboration, facilitate building self-efficacious behaviors in students and establish a student-driven pathway to change4.  After all, isn’t learning a non-linear process of change?  Why not couple that process with a set of useful techniques educators can use to see the change they want to see in students?

To be sure, there are challenges associated with taking a method or style of communication from one discipline and adapting it to another.  Certainly, empathetic and reflective listening practices can easily lead to a greater emotional involvement, yet as Wells & Jones4 have described, “education is not (nor should be) therapy”.  Using MI strategies should not be viewed as a mechanism to “treat” a student, but rather as a tool to foster change within a student and help educators to understand where they need to meet the student, so they can walk along the same path instead of pushing against each other.

While empirical evidence is needed to determine the effectiveness of using MI in higher education, given my own use of and success with MI, I can foresee MI practices becoming more prevalent in higher education as a mechanism to identify student-driven goals with a pathway for educators and students to collaboratively meet those goals.  I encourage you to do a little reading on MI practices.  At a minimum it will make you a better listener.

 

References

1) Rollnick, S. and Allison, J. (2004). Motivational Interviewing. In The Essential Handbook of Treatment and Prevention of Alcohol Problems. (105-116). Chapter 7: West Sussex, England: John Wiley & Sons, Ltd.

2) Miller, W.R. and Rollnick, S. (1991). Motivational interviewing: Preparing people for change. New York, NY: Guilford Press.

3) Miller, W.R. and Rollnick, S. (2013). Motivational Interviewing: Helping people change, 3rd edition. New York, NY: Guilford Press.

4) Wells, H. and Jones, A. (2018). Learning to change: the rationale for the use of motivational interviewing in higher education, Innovations in Education and Teaching International, 55:1, 111-118.

5) Wells, H., Jones, A. and Jones, S.C. (2014). Teaching reluctant students: using the principles and techniques of motivational interviewing to foster better student-teacher interactions, Innovations in Education and Teaching International, 51:2, 175-184.

 

Katie Kolwaski completed her BS and DPT from the University of Wisconsin – Madison.  After practicing as a full-time PT for 4 years, she decided to pursue further education at the University of Oregon.  In 2017, she finished a MS degree in Muscle Physiology and then transitioned into the Neurophysiology lab for her PhD, studying the impact of mental fatigue on neuromuscular function in older adults and the potential role of physical activity in modulating that relationship.  Katie has since moved to the University of Western Ontario in the great white north in order to finish her PhD.  She continues to treat patients as a PT and teach students within the Physio school in London, ON as a TA.
Creating Unique Learning Opportunities by Integrating Adaptive Learning Courseware into Supplemental Instruction Sessions

Teaching a large (nearly 400 students), introductory survey course in human anatomy and physiology is a lot like trying to hit a constantly moving target. Once you work out a solution or better path for one issue, a new one takes its place. You could also imagine a roulette wheel with the following slots: student-faculty ratios, student preparation, increasing enrollments, finite resources, limited dissection specimen availability (e.g., cats), textbook prices, online homework, assessment, adaptive courseware, core competencies, learning outcomes, engagement, supplemental instruction, prerequisites, DFW rates, teaching assistants, Dunning Kruger effect, open educational resources, GroupMe, student motivation, encouraging good study habits, core concepts, aging equipment … and the list goes on.

If the ball lands on your slot, are you a winner or loser?

Before getting ahead of myself, I need to provide an overview of A&P at the University of Mississippi. Fall semesters start with 390 students enrolled in A&P I within one lecture section, 13 lab sections at 30 students each, anywhere from 10-13 undergraduate teaching assistants, 2 supplemental instruction (SI) leaders, and at least six, one-hour SI sessions each week. The unusual class size and number of lab sections is the result of maxing out lecture auditorium as well as lab classroom capacities. I am typically the only instructor during the fall (A&P I) and spring (A&P II) terms, while a colleague teaches during the summer terms. The two courses are at the sophomore-level and can be used to fulfill general education requirements. There are no prerequisites for A&P I, but students must earn a C or better in A&P I to move on to A&P II. Approximately one-third of the students are allied health (e.g., pre-nursing) and nutrition majors, one-third are exercise science majors, and the remaining one-third of students could be majoring in anything from traditional sciences (e.g., Biology, Chemistry, etc.) to mathematics or art.

The university supports a Supplemental Instruction program through the Center for Excellence in Teaching and Learning (https://cetl.olemiss.edu/supplemental-instruction/). The SI program provides an extra boost for students in historically demanding courses such as freshman biology, chemistry, physics, accounting, etc. SI leaders have successfully passed the courses with a grade of B or better, have been recommended to the program by their professors, agree to attend all lectures for the courses in which they will be an SI leader, and offer three weekly, one-hour guided study sessions that are free to all students enrolled in the course. SI leaders undergo training through Center for Excellence in Teaching and Learning and meet weekly with the course professor. Students who regularly attend SI sessions perform one-letter grade higher than students who do not attend SI sessions.

It can be as easy for an instructor to be overwhelmed by the teaching side of A&P as it is for the student to be overwhelmed by the learning side! I know that a major key to student success in anatomy and physiology courses is consistent, mental retrieval practice across multiple formats (e.g., lectures, labs, diagrams, models, dissection specimens, etc.). The more a student practices retrieving and using straightforward information, albeit a lot of it, the more likely a student will develop consistent, correct use. Self-discipline is required to learn that there are multiple examples, rather than one, of “normal” anatomy and physiology. However, few students know what disciplined study means beyond reading the book and going over their notes a few times.

To provide a model for disciplined study that can be used and implemented by all students, I developed weekly study plans for A&P I and II. These study plans list a variety of required as well as optional activities and assignments, many of which are completed using our online courseware (Pearson’s Mastering A&P) and include space for students to write completion dates. If students complete each task, they would spend approximately 10 out-of-class hours in focused, manageable activities such as:

  • Completion of active learning worksheets that correlate to learning outcomes and can be used as flashcards.
  • Practice assignments that can be taken multiple times in preparation for lecture exams and lab practicals.
  • Self-study using the virtual cadaver, photographic atlas of anatomical models, interactive animations of physiological processes, virtual lab experiments, and dissection videos.
  • Regular graded assignments aligned with course learning outcomes.

Weekly study plans are also useful during office visits with students. I can easily assess student progress and identify changes for immediate and long-term improvement. An advantage of using online courseware to support course objectives is the ability to link various elements of the courses (e.g., lecture, lab, SI sessions, online homework, group study, and self-study) with a consistent platform.

All of this sounds like a great sequence of courses, doesn’t it? Yet, the target has kept moving and the roulette wheel has kept spinning. Imagine for the story within this blog that the roulette ball has landed on “using adaptive courseware to improve supplemental instruction.”

In 2016 the University of Mississippi was one of eight universities chosen by the Bill and Melinda Gates Foundation with support of the Association for Public and Land-Grant Universities to increase the use of adaptive courseware in historically demanding general education courses. Thus, began the university’s PLATO (Personalized Learning & Adaptive Teaching Opportunities) Program (https://plato.olemiss.edu/). The PLATO grant provides support for instructors to effectively incorporate adaptive courseware into their courses and personalize learning for all affected students. Administrators of the grant were particularly supportive of instructors who could use adaptive courseware to support the SI sessions. This challenge was my personal roulette ball.

I decided to use diagnostic results from Mastering A&P graded homework assignments to prepare for weekly meetings with SI leaders. Diagnostic data on percent of University of Mississippi students correctly answering each question as well as percent of UM students answering incorrect options are compared to the global performance of all Mastering A&P users. For each question incorrectly answered by more than 50% of the students, I write a short (4-6 sentences) explanation of where students are making errors in expressing or using their knowledge and how to prevent similar errors in the future. I then searched for active learning activities and teaching tips associated with the challenging questions from the LifeSciTRC (https://www.lifescitrc.org/) and Human Anatomy and Physiology Society (HAPS; https://www.hapsweb.org/) websites. I specifically search for active learning exercises that can be conducted in a small, group setting using widely available classroom resources (e.g., white board, sticky notes, the students, etc.).

By using online courseware diagnostics, selecting focused learning activities, and communicating regularly with SI leaders, I was able to create value and unique learning opportunities for each student. The SI session format has been extremely well-received by the students and they immediately see the purpose in the study session experience. The best part is that it takes me only 30-40 minutes each week to write up explanations for the diagnostics and find the best learning activities.

I would say that we are all winners with this spin of the wheel.

Carol Britson received her B.S. from Iowa State University and her M.S. and Ph.D. from the University of Memphis. She has been in the Department of Biology at the University of Mississippi for 22 years where she teaches Vertebrate Histology, Human Anatomy, Introductory Physiology, and Human Anatomy and Physiology I and II. In 2018 she received the University of Mississippi Excellence in Teaching award from the PLATO (Personalized Learning & Adaptive Teaching Opportunities) Program supported by the Association of Public and Land-Grant Universities and the Bill and Melinda Gates Foundation.
Graduate Student Ambassadors: An APS Effort to Increase Involvement in Professional Societies

The Graduate Student Ambassador (GSA) program was organized by the American Physiological Society’s (APS) Trainee Advisory Committee in 2015. The goal of the program is to train graduate students to act as liaisons between APS and local undergraduate and graduate students. GSAs visit schools in their local area to share their experiences as graduate students, discuss physiology careers and the benefits of an APS membership, and encourage students to consider becoming a member of APS. The program has a unique, symbiotic relationship in that GSAs learn valuable outreach, public speaking, and leadership skills, while APS receives promotion of their awards, programs, and memberships. One particular goal of the GSA program is to recruit and retain individuals from under-represented communities. This is the aim that attracted me to the program.

 

As a first-generation college student, I was raised in a very low socioeconomic background. My exposure to careers was limited and like countless other young girls, I grew up with a short supply of role models who looked like me. While most of my public school teachers were female, the science labs and principal’s offices were considered masculine domains. In my mind, a scientist was that image we all remember of the mad chemist brewing his potions in a lab, hair all in disarray. Although I got the messy hair right, I couldn’t picture myself as this version of a scientist. I didn’t know anything about college because nobody in my life had ever been to one. I certainly didn’t know what a Ph.D. was at the time. By luck and happenstance, I wound up at the University of Kentucky for my undergraduate studies as a nontraditional student following community college. UK is a Research 1 institution, so I was exposed to the scientific method from the start. However, looking back, I’ve always wondered what if I had attended a different university? Would I have ever found my niche in research? And, thus, is the goal of the GSA program: to expose students to careers in research and promulgate the ways in which APS can assist them in these pursuits.

 

When I first got wind of the new GSA program, I was quick to apply. From the beginning, I was excited by the prospect of sharing my experiences as a graduate student with undergraduates. I knew I wanted to visit less research-intensive universities and try to reach under-represented students, first-generation college students, and students from low socioeconomic backgrounds. I recognized the need for diversity in STEM and wanted to contribute to efforts being made to increase it. According to the National Science Foundation, while blacks and Hispanics constitute 36% of the US resident population ages 18-24, they only represent 17% of enrolled graduate students. There is even less representation at the level of doctorate holders (Figure 3). Ethnic and cultural representations in science do not match their share in the US population. However, it is absolutely essential to the growth of STEM to sample from all groups of people.

 

Science is meant to be an objective process, but much of science has been shaped by individuals of a similar background. This not only halts progress but can actually hurt it. For example, the standard medical treatment for breast cancer used to be radical mastectomies. It wasn’t until female voices were welcomed that alternative treatments were implemented—treatments that allowed women to keep their breasts and have been shown to be just as, if not more, effective. Progress was made because of a different perspective. The same is true of drug development, our understanding of sex differences in cardiovascular disease, even air-bag design which was initially tailored to a man’s height and thus not as effective for women. A diverse and inclusive program can promote widely applicable and lifelong learning so that historically under-represented groups can contribute to future breakthroughs with a new perspective. If fields are not diverse and inclusive, we are not cultivating potential but instead losing talent.

 

Berea College, the first coeducational and interracial college in the south, is an example of an ongoing effort to increase inclusion. This school, located in Berea, Kentucky, is a 4-year university that offers a tuition-free education to every single student. They enroll academically promising, economically challenged students from every state in the U.S. and 60 other countries. Over one third of their student population are of color, 8% are international, and 70% are from the Appalachian region and Kentucky. They are inclusive regardless of sexual orientation, gender identity, disability, race, citizenship status, etc. Despite not being a research intensive university, they have an excellent science program with a newly built Natural Sciences and Health building featuring state-of-the-art teaching laboratory equipment. They also encourage students to participate in the Kentucky Biomedical Research Infrastructure Network, a program designed to support undergraduate students in biomedical research, promote collaboration, and improve access to biomedical facilities.

 

I wanted to visit Berea to share my experiences as a graduate student, discuss the different career paths within physiology, and provide interested students with information about beneficial awards and programs offered through APS. Many of the students I spoke with didn’t know much about graduate school or obtaining a Ph.D. They seemed intrigued by my experience as a teaching assistant to fund my program. Berea College offers a unique work program at their school where students work as part of their tuition-free enrollment. Some act as teaching assistants in their courses, giving these students the experience they need to enter a funded graduate program with a teaching component. A lot of the students didn’t realize, though, that you could simply apply to a doctoral program with a bachelor’s degree—they thought you needed to obtain a master’s degree first. Most of the students were particularly interested in the undergraduate summer research programs offered through APS, such as the STRIDE fellowship. They wanted to know more about the Porter Physiology Development Fellowship for graduate students. I was also very excited to share with them the Martin Frank Diversity Travel Fellowship Award to attend the Experimental Biology conference.

 

I had a meaningful and productive visit to Berea College. My next step will be visiting a local community college, another area where efforts to promote diversity and inclusion are progressing. Community colleges are also an excellent place to reach nontraditional students, such as myself. These students sometimes transfer to larger universities to finish their bachelor’s degree, but being a transfer student often doesn’t allow for exposure to research as an undergraduate. I hope to encourage these students to pursue careers in physiology.

 

If you’re interested in contributing to this mission, consider applying to become a GSA. The position is a 2 year term and requires you to attend Experimental Biology each year of your term. The applications for 2019 are currently under review.

 

References

National Science Foundation, National Center for Science and Engineering Statistics. 2017. Women, Minorities, and Persons with Disabilities in Science and Engineering: 2017. Special Report NSF 17-310. Arlington, VA. Available at www.nsf.gov/statistics/wmpd/.

 

Chelsea C. Weaver is a fourth year PhD candidate at the University of Kentucky where she studies hypertensive pregnancy disorders in African Green Monkeys. She has served as a teaching assistant for Principles of Genetics and Animal Physiology for undergraduates. She also guest-lectured for graduate level Advanced Physiology courses. Chelsea is interested in pursuing a postdoctoral position in STEM education research in K-16 upon graduation.
Affective Teaching and Motivational Instruction: Becoming More Effective Educators of Science

As educators, we’re intimately familiar with learning objectives such as, “Using Fick’s principle, calculate the diffusion of a substance across a membrane.” Also, as scientists, we are familiar with technical objectives such as, “Using a micropipette, transfer 5μL of Solution A into the chromatography chamber.” In terms of learning conditions, the first is an intellectual skill and the second is a motor skill.1 One area in which we don’t often give much thought is the third type of skill that was identified by Gagné and Medsker — the affective skill. This is the area that is most often neglected by educators because it is the hardest to evaluate and quantify. We can’t explicitly say to a student, “By the end of the semester you will develop a love of physiology.” We can hope to achieve this through the semester, but as educators, the best that we can do is hope to instill these attitudes, choices, and values in our learners that persist beyond our brief time with them in the classroom.

Instilling attitudes in our learners is a complex goal. This is, in part, because stating an affective goal is at times counterproductive to the goal and interferes with learning. In the example above, it is clearly ridiculous to expect that all students will leave our classrooms with a true passion for our subject matter. Some clearly will, but others will not. That will be shaped by the attitudes with which students enter our classrooms. Those attitudes consist of the knowledge that a learner has about a subject – the cognitive aspect, how the person feels about the subject — the affective aspect, and how the person behaves in response to those influences — the behavioral aspect.2 So despite our best interests to instill a care for the animal and human models we frequently use in experiments, it is completely beyond our ability to control the behavior of our learners outside of the classroom. That doesn’t mean that we shouldn’t still try because the majority of our students will come away with those lessons intact. Additionally, affective learning is difficult to assess. We can test the knowledge and skills necessary and ask about student feelings3, but at the end of the day, our students will make a choice on their behaviors on their own. For that reason, we should not make affective learning objectives part of our formal instruction plan. Because there are so many methods that depend on the affect you might want to influence, I’m going to focus on two areas that are most common: attitude and motivational instruction.

 

Katz and Stotland identified five types of attitudes.4 These types of attitudes vary with differing levels of affective and cognitive components, but the key takeaway is that individual experiences and the results and consequences of previous choices dramatically shape the attitudes with which our learners enter our classrooms. Reward for behavior not only reinforces the behavior, but also the cognitive and behavioral components that drive that behavior.1 When we focus purely on the cognitive and the motor skill aspects of learning, we can often get away with a fair amount of do-as-I-say-not-as-I-do-style instruction. The problem with this is that students look to the faculty and other instructors for role model behavior.  Thus, the more accurately that we reflect the attitudes that we want to instill in our learners, the more the students will reflect those ideals.3 One of the easiest ways to bring about these changes of attitudes are through in-class discussions.5 This positive benefit is most likely due to differences that are raised during discussion, sometimes prompting the discovery of a discrepancy between existing attitudes in a learner and new facts that are being presented. The learners then have a choice on how to adapt to the new desired attitudes. Most importantly, never underestimate group acceptance of attitudes, as immediate social reinforcement can be a powerful driver in solidifying attitudes.

 

Having discussed attitude, motivational instruction is another key area that is relevant to affective learning. No two students enter the classroom with the same motivation. One student may be enrolled in your class because of a deep passion for your subject matter while another is there simply to satisfy a requirement for their major. This mix of intrinsic and extrinsic motivations will drive the overall outcomes of affective learning. The student who is highly motivated by an intrinsic interest in your subject or the student who is extrinsically driven by the reward of a good grade (or fear of a bad grade) will generally excel in class, albeit for different reasons. The student who is there out of obligation to meet a requirement may have very little motivation to do anything beyond what is required of them to get by. To help with those students who are lacking in motivation, JM Keller broke motivational instruction into four components: attention, relevance, confidence and satisfaction.6 Gaining the attention of students through demonstrations, discussions, and other active learning techniques may help keep student motivation high. Practical application of concepts and ideas will generally inspire higher motivation than abstract or arbitrary examples.7 Keeping the material relevant will generate motivation for intrinsic learners by providing self-improvement and for the extrinsic learners by providing a reward, such as doing well on the exam. Confidence is a harder area to approach, as students must first believe they are capable of meeting the stated objectives. Making the material too easy will not lead to feelings of accomplishment, while making the material too challenging will undermine confidence in all learners.1 Finally, satisfaction can be achieved by learners of all types, regardless of motivation type when outcomes match objectives. Keeping motivation high by providing opportunities to apply learning will drive further motivation to continue learning.

Last week I completed a comprehensive review of our capstone thesis writing course, which has changed dramatically over the past year and a half while I have been the course director. Initially, the goal of the course was to have students write a literature research paper on a physiological topic of their choosing where their grade was entirely dependent upon the finished paper. The students were frequently frustrated with a lack of guidance in the course and the faculty regularly complained about the burden of reading papers of sometimes-questionable quality. Clearly there were issues with the affective components of this course from both the student and faculty side. I’ve de-emphasized the actual paper and refocused the course on the process of writing with stated learning outcomes such as: 1) Develop the language that helps us talk about science; 2) Strengthen research skills to become educated consumers of science; and 3) Gain specialized knowledge in a selected area of physiological research. Focusing the course in this way has yielded measurable results in course evaluations and faculty perceptions of paper quality from the students. By focusing on the affective components of writing and giving students more opportunities to apply their new skills, overall satisfaction has improved. Like all works of science, though, this course continues to evolve and improve. In short, to be effective teachers, we need to go beyond the intellectual and motor skills and make sure we address the affective learning of our students as well.

1 Gagné RM and Medsker LK. (1996). The Conditions of Learning. Training Applications. Fort Worth: Harcourt Brace College Publishers.

2 Baron RA and Byrne D. (1987). Social Psychology: Understanding Human interaction. 5th ed. Boston: Allyn and Bacon.

3 Dick W and Carey L. (1996). The Systematic Design of Instruction. 4th ed. New York: HarperCollins Publishers.

4 Katz D and Stotland E. (1959). A preliminary statement to a theory of attitude structure and change. In Psychology: A Study of Science. vol 3. New York: McGraw-Hill.

5 Conrad CF. (1982). Undergraduate Instruction. In Encyclopedia of Educational Research. 5th ed. New York: The Free Press.

6 Keller JM. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development. 10;3. 2-10.

7 Martin BL and Briggs LJ. (1986). The Affective and Cognitive Domains: Integration for Instruction and Research. Englewood Cliffs, New Jersey: Educational Technology Publications.

Ryan Downey is an Assistant Professor in the Department of Pharmacology & Physiology at Georgetown University. As part of those duties, he is the Co-Director for the Master of Science in Physiology and a Team Leader for the Special Master’s Program in Physiology. He teaches cardiovascular and neuroscience in the graduate physiology courses. He received his Ph.D. in Integrative Biology from UT Southwestern Medical Center. His research interests are in the sympathetic control of cardiovascular function during exercise and in improving science pedagogy. When he’s not working, he is a certified scuba instructor and participates in triathlons.
What if your students went to a lecture . . . and a concert broke out?

In June I attended the American Physiological Society’s Institute on Teaching and Learning (ITL) for the first time.  It was a fantastic week of presentations, workshops, and networking, from the opening keynote address on “Student-instructor interactions in a large-group environment” by Prem Kumar (University of Birmingham, UK) to the closing plenary talk on “Inclusive practices for diverse student populations” by Katie Johnson (Beloit College).

 

The week is hard to summarize concisely, yet I can easily identify my most memorable moment.  That occurred on Wednesday morning (June 20th).  Robert Bjork, a UCLA psychologist, had just delivered a fascinating plenary talk on learning, forgetting, and remembering information.  He had reviewed several lines of evidence that the memorization process is more complicated than tucking facts into a mental freezer where they persist forever.  Instead, the timing and context of information retrievals can profoundly affect the success of subsequent retrievals.

 

At the end of the lecture, I stood up with a question (or possibly a monologue masquerading as a question). “It seems that maintaining long-term memories is a really active, dynamic process,” I said. “The brain seems to be constantly sorting through and reassessing its memory ‘needs,’ somewhat like the way the kidney is constantly sifting through the plasma to retain some things and discard others. Is that a reasonable analogy?”

 

“Yes it is,” he answered politely.  “Perhaps,” he added, “you could write a paper on the ‘kidney model’ of how the brain learns.”

 

“I can do even better than that,” I said.  “Here’s a song I wrote about it!”  And I launched into an impromptu a cappella rendition of “Neurons Like Nephrons” (http://faculty.washington.edu/crowther/Misc/Songs/NLN.shtml).

 

The audience clapped along in time, then erupted with wild applause!  That’s how I prefer to remember it, anyway; perhaps others who were there can offer a more objective perspective.

 

In any case, singing is not just a mechanism for hijacking Q&A sessions at professional development conferences; it can also be done in the classroom.  And this example of the former, while unusual in and of itself, hints at several useful lessons for the latter.

 

  1. Unexpected music gets people’s attention. In truth, I have no idea whether most ITL attendees found my song fun or helpful. Still, I’m quite sure that they remember the experience of hearing it.  Now think about your own courses.  Are there any particular points in the course where you desperately need students’ undivided attention?  Unexpected singing or rapping is amazingly effective as an attention-grabber, even (especially?) if the performer is not a gifted musician.  Don’t be afraid to use this “nuclear option.”

 

  1. Music is not just for “making science fun” and memorizing facts. Many teachers and students who support the integration of music into science courses do so because they think it’s fun and/or useful as a mnemonic device. Both reasons are legitimate; we do want our courses to be fun, and our students do need to memorize things.  But music can be much more than an “edutainment” gimmick.  “Neurons Like Nephrons” (http://faculty.washington.edu/crowther/Misc/Songs/NLN.shtml), for example, develops an analogy between the way that the brain processes information and the way that the kidney processes plasma.  It’s not a perfect analogy, but one worthy of dissection and discussion (https://dynamicecology.wordpress.com/2016/11/14/imperfect-analogies-shortcuts-to-active-learning/).  Songs like this one can thus be used as springboards to critical thinking.

 

  1. The effectiveness of any musical activity is VERY context-specific. After my musical outburst at ITL, I was flattered to receive a few requests for a link to the song. I was happy, and remain happy, to provide that. (Here it is yet again: http://faculty.washington.edu/crowther/Misc/Songs/NLN.shtml.)  But here’s the thing: while you are totally welcome to play the song for your own students, they probably won’t love it.  To them, it’s just a weird song written by someone they’ve never heard of.  They won’t particularly care about it unless the production quality is exceptional (spoiler: it’s not) or unless they are going to be tested on the specific material in the lyrics.   Or unless you take other steps to make it relevant to them – for example, by challenging them to sing it too, or to explain what specific lines of lyrics mean, or to add a verse of their own.

 

 

In conclusion, music can function as a powerful enhancer of learning, but it is not pixie dust that can be sprinkled onto any lesson to automatically make it better.  As instructors, for any given song, you should think carefully about what you want your students to do with it.  That way, when the music begins, the wide-eyed attention of your incredulous students will be put to good use.

Gregory J. Crowther, PhD has a BA in Biology from Williams College, a MA in Science Education from Western Governors University, and a PhD in Physiology & Biophysics from the University of Washington. He teaches anatomy and physiology in the Department of Life Sciences at Everett Community College.  His peer-reviewed journal articles on enhancing learning with content-rich music have collectively been cited over 100 times.
Fastballs, houses, and ECG’s

As adults of ever increasing age, I am sure almost every one of you has had a conversation lamenting your loss of physical abilities over the years. “I used to be able to do that.” “I used to be good at that.” As a parent to two young, energetic, fearless boys I hear (and think) these sentiments almost daily. While watching children play on a playground, sprinting for hours, hanging upside down, contorting their bodies into nearly impossible positions, jumping (and falling), twisting and turning, and literally bouncing off walls, parent conversations almost always include incredulous statements about children’s’ physical capacity followed immediately by a statement of the parents’ lack thereof. More than once I’ve heard a parent say, “If I did that, I’d be in the hospital.”

But have you ever actually thought, “Why can’t I do that anymore?” The answer isn’t just “I’m too old”. Obviously the physiologic changes of age are undeniable, but it’s a more complicated reason. At some point in your life, you stopped playing like children play. You stopped running and jumping and twisting and turning. You move in straight lines. You sit for hours. You don’t try that new move. It looks too hard. You might hurt yourself. As physiologists, we all know about homeostasis and adaptations, and it’s no surprise that our lifestyles have contributed to our physical inability in adulthood. Of course you would hurt yourself if you tried ‘that’, but only because you haven’t tried anything like that in years. Start trying ‘that’ though, and over time you’ll find yourself much more physically capable despite the aging process.

This childhood to adulthood performance decrement is not exclusive to physical capacity though. We are doing much the same to our mental capacity with age. A child will take physical risks on the playground, much as they also take mental “risks” in the classroom. Ask a group of 3rd graders a question, any question, almost all of them raise their hand hoping to answer…even if they don’t know the answer. And the student who got it wrong, will raise his hand again after the next question. Give them a challenge or a mystery to solve and they will dive right in. Let them touch and feel and manipulate. They don’t hesitate. They are on their mental playground. This is how they learn. As adults though, we aren’t going to the mental playground, because that’s not what adults do. We sit in chairs. We watch lectures. We make notecards. We read papers. We study the learning objectives and the PowerPoints.

Just as adults could physically benefit from some time on the playground every day, adults (and I’m including college students in this category) can also benefit from time on a mental playground. Even as educators of other adults, we need to remember this. We often forget the multitude of ways that we can put our students on the mental playground. We don’t do an activity, because the students might think it’s ridiculous. It might waste too much time, and there is too much material to cover today. I have found in my classrooms though, that activities that would work with kindergarteners can work equally well for college students.

To give examples of ways to put college students on the mental playground, I would like to share two activities that I have done in a physiologic assessment of health course that have been very effective. The course consists of juniors and seniors who have already taken several biology, chemistry, and physiology courses beyond anatomy and physiology. The first assignment that I give them is to work with a partner to draw a picture of a person with as many health risk factors as they can think of. I have found that most students who take this class (instructor included) are horrible artists, but this adds to the fun of the assignment. The students love it and come up with thousands of creative ways to represent health risk factors. We have a discussion over which drawings have incorporated the most “official” risk factors (as designated by national organizations like ACSM, AHA, etc.) and why some of the others are certainly not healthy (setting off fireworks indoors), but not listed as official risk factors.  Something about taking the time to draw silly pictures on a specific topic really aids in student understanding (anecdotally in my class, but evidence exists that this is effective (Ainsworth S, Prain V, Tytler R. Drawing to Learn in Science. Science. 333 (6046),1096-1097, 2011.).

Another assignment I’ve had good results with to get students onto the mental playground is half mystery for the students to solve and half drawing pictures. I tell the class that we are going to learn about how the heart works and talk about the electrocardiogram. The first thing I ask them to do is to get out of a sheet of paper and to draw a picture of the house they grew up in as if they were looking at it from the road. Normally confusion ensues and the students want to know if it’s for a grade (yes), and why they’re doing it (trust me, it’ll make sense later). After giving the students time to sketch their house, I ask permission to show each to the class, and then ask the question to the class. “Whose house is bigger?” Ultimately the students come to the conclusion that it is nearly impossible to tell without knowing the perspective and distance from the artist and the other views of the house (the front view is only one of multiple views that would be needed to construct the 3-dimensional size of the house). Then, still without talking about the heart, I ask them to draw a picture of a baseball (just the baseball) being thrown. Once again I show the drawings to the class. All usually agree that everyone probably knows the approximate size of a baseball, but then I highlight how different people drew different sizes on the paper. Once again I discuss perspective and how large a baseball looks when it’s about to hit you in the face, because it takes up your entire field of vision, but if it were thrown at you, it would look smaller relative to your field of vision at the start. If you’re watching people playing catch equidistant from both, the ball might move back and forth without appearing to change size relative to the visual field. But all the baseballs are still the same size!

Finally, after the house and baseball drawings I ask, “what did all of that have to do with the heart and electrocardiograms?” After a few minutes, most students understand the theory behind the electrocardiogram without ever having analyzed one. I’ve even had a strong student who was finishing her clinical exercise testing degree that semester say that even though she had taken several courses on ECG analysis and knew how to read them to get good grades on ECG tests, this was the first time she truly “got it.”

Thousands of other ways to engage students on the mental playground are out there as well. Discussing muscle physiology? Hand out rubber bands before class starts and ask them to think about how muscles and rubber bands are remarkably similar yet not the same at all. Teaching about bones? Pass out a few models to let them hold and manipulate. Then ask the students to pretend they’re cavemen and they need to build all of their tools out of bones, which bones would make a good hammer? A good bowl? Spoon? Fork? Weapon? Teaching about brain physiology? Have the students invoke thoughts, memories, feelings or movements and then tell them which part of the brain is responsible. Be creative and remember that just like our bodies, our minds work best when they’re stretched and twisted and used in different ways on a regular basis.

I do not know enough about educational psychology to understand the underlying mechanisms by which these types of activities work (my PhD is in Kinesiology after all – a content expert told to teach well!).  And admittedly most of my evidence that they work is anecdotal or comes by way of gradually improved student scores on final exam and practical questions related to my course objectives over several semesters in which I certainly adjusted more than one variable. However, I do know that in learning, students attend to touch and feel, emotion, and mystery. The same thing you’ll witness at an elementary school playground. Incorporating these into your lessons, even in the simplest of ways can be beneficial for all different types of learners. I’m asking you to turn your classrooms into intellectual playgrounds. Encourage risk taking. Validate atypical approaches. Make it fun. Make it engaging. All the memorized note cards might be forgotten by next semester if it’s not.

   Ed Merritt is an assistant professor in the Department of Kinesiology at Southwestern University in Georgetown, Texas. Ed received his doctorate in Kinesiology from the University of Texas at Austin and completed a postdoctoral fellowship in Cellular and Integrative Biology at the University of Alabama at Birmingham. Ed was a faculty member at Appalachian State University until family ties brought him back to central Texas and Southwestern University. Ed’s research focuses on the molecular underpinnings of skeletal muscle atrophy after trauma and with aging, but he is also equally involved in the scholarship of teaching and learning and melding educational outreach activities with service learning.
Five lesson design tips to help your learners find their Happy Place (…with some help from Dr Seuss)

We’ve all been there, that unhappy place at the pointy end of some badly designed learning material. You know the place – it’s grim and grey and jammed full of text-laden power point slides, complicated jargon, and at least one terrifying pie graph with microscopic labeling. It’s a place that’s confusing, generic, and entirely unengaging for you as a learner. In the words of Dr. Seuss, “You will come to a place where the streets are not marked. Some windows are lighted. But mostly they’re darked.”[1]

And dark these places are. The challenge can be even greater when you’re creating online lessons for students to use away from the classroom. But that’s where thoughtful lesson design helps: it switches on the floodlights, clears the way, and points your students in the right direction by putting them at the center of the learning experience, whether a teacher is in the room with them or not.

So, here are five simple design tips for creating effective and engaging online lessons, so you can help your learners find their happy place and stay on track:

 

Tip 1: Keep it simple!

  • Define your learning outcomes and post them in the lesson.
  • If content doesn’t support your instructional goals, delete it!
  • Make notes of relevant, contextual examples that could bring “life” to the learning outcomes, and help students understand why they are learning it.
  • Some hacks specifically for Life Science teaching:

 

Tip 2: Break up the text

  • Use your learning outcomes to help guide you in dividing up / chunking your text.
  • Keep sentences and paragraphs short and simple.
  • Highlight the focal points using headings, text formatting, color, and contrast.
  • Intentionally leave blank space on your lesson pages – it can be a powerful design tool to give important concepts some buffer space to call attention to their importance.
  • Make use of lists, bullet points, and tables to present information:

 

Tip 3: Make it visual

Did you know the old saying, “A picture is worth a thousand words,” is backed by neuroscience? Research suggests that we remember more of what we see than what we read.[2]

Try these:

  • Use icons as virtual “signposts” for extra information. You can use these in multiple lessons to add cohesiveness.
  • Turn information into graphs or infographics for your lessons – you could even turn this into an assessment for students. This works especially well for conveying relationships or showing steps in a process:

Here’s another example of a complementary visual element:

 

These are some of our favorite free resources to help you create or add public domain or Creative Commons media to your lessons:

Note: While free, most of the sources above require proper attribution. Don’t forget to give the creator a virtual high-five by adding a citation to their media!

 

Tip 4: Ask questions

Adding practice and feedback to lessons is the most effective way to enhance the retention and recall of new material [3,4,5]. It also enables students to check their understanding and self-monitor for misconceptions early on in the learning process.

Test it out:

  • Distribute formative questions with feedback throughout lessons, not just at the end. (By making questions formative, the emphasis is placed on learning rather than earning or losing points.)
  • Mix up question types: categorizing, matching, ordering, and labeling exercises, MCQs, completing tables, free recall, etc. Variety in quizzing strengthens the ability to recall information down the road.
  • Are there still big blocks of text in your lessons? Try turning text into interactive questions! Students can order steps in a process, match terms and definitions, correct false statements into true statements, categorize by function, characteristic, etc.
  • Ask questions and create activities that check knowledge about the most important aspects of the instruction. Use your learning objectives to guide you!

 

Tip 5: Connect & reflect

Ask students to draw out new questions, connections, and conclusions through reflective activities. Actions like summarizing information into words or diagrams help students organize new information into preexisting schema, aiding the conversion of long-term memory [3,4].

 

Some reflective ideas:

  • Teach a new concept to friends or family members.
  • Brainstorm analogies that link new topics to well known ones.
  • Create a mind map or other visual or auditory representation that highlights the main points and connections between concepts.
  • Ask students how they would respond in a series of scenario-based questions.
  • Design a research project or critique a research paper.
  • Brainstorm what questions they still have about the subject, to encourage curiosity and further self-directed learning.

________

Ultimately, even simple tweaks to how you display information will have a big impact on students’ attitude toward and engagement with course materials. To help, download this cool infographic of our lesson design tips to keep handy when designing your lessons!
These design elements are a way to shift from instructor-led lessons to ones where the student is the center of the design and learning experience. If you can spend a small amount of time and effort on lesson design it can greatly enhance student motivation and increase time on task – turning them into the brainy, footsy, mountain-moving achievers they are destined to be.

 

The only question now is…will you succeed?

Yes! You will, indeed!

(98 and ¾ percent guaranteed) [1]

 

References:

[1] Seuss, Dr. (1990). Oh, the places you’ll go! New York: Random House.

[2] Medina, J. (2014). Brain rules: 12 principles for surviving and thriving at work, home and school. Seattle: Pear press.

[3] Brown, P. C., Roediger, H. L., & McDaniel, M. A. (2014). Make it stick: the science of successful learning. Cambridge, MA: The Belknap Press of Harvard University Press.

[4] Malamud, C. (2016, Oct 6). Strategies For Effective Online Instruction: A Conversation with Michelle D Miller. The eLearning Coach Podcast. [Audio podcast] Retrieved from http://theelearningcoach.com/podcasts/36/

[5] Larsen, D. P, Butler, A.C., and Roediger, H. L. (2008). Test-enhanced learning in medical education. Medical Education. 42: 959–966. doi:10.1111/j.1365-2923.2008.03124.x

 

Ellen Crimmins (MS) is an instructional designer and ocean enthusiast. She loves studying how people learn and working with educators to bring their online lessons to life. Away from the computer screen, you can find her exploring nature trails and 50s themed diners with her better thirds (husband and dog).
Sina Walker (MSciComm) is a writer and former natural history filmmaker. She has three little boys so doesn’t have time for many hobbies, but enjoys taking mom-dancing to new levels of awesome.
Marissa Scandlyn (PhD) is a product manager at ADInstruments by day, and a netballer by night. She’s researched new drug treatments for breast cancer and children’s leukemia with her pharmacology background, and was previously the coordinator of ADI’s team of Instructional Designers. Marissa enjoys reading, movie watching, and being mum to the cutest dog in the world, Charlie.