Tag Archives: flipped classroom

Paradigm Shifts in Teaching Graduate Physiology

From years of experience teaching physiology to graduate students, I found students learn best when they have a good grasp of basic concepts and mechanisms. As we are well aware, the lecture format was used to disseminate knowledge on various topics.  Students took notes and were expected to reinforce their knowledge by reading recommended texts and solving related questions that were assigned.  Some courses had accompanying laboratories and discussion sessions where students learned about applications and gained practical experience.  The term “active learning” was not in vogue, even though it was taking place in a variety of ways!  Successful teachers realized that when students were able to identify the learning issues and followed through by searching for what they needed to understand, this process enhanced learning.  The idea of a “flipped” classroom had not been described as such, but was occurring de facto in rudimentary ways with the ancillary activities that were associated with some courses.  As you are reading this, you are incorrect if you think it is an appeal to go back to the way things were.

 

By coincidence, one evening after work, I was listening to the radio about the story of a professor at an elite college.  My colleagues and I had just been discussing new teaching ideas and technologies!  As an acclaimed and accomplished educator he was surprised to learn that his students did not do as well as he expected on a national exam in comparison to other students being tested on the same subject. I was mesmerized and had to stop and listen to this teacher’s thoughts about how he changed his methods to improve student learning and their ability to apply knowledge.  This is also when I heard the expression, “if it was good enough for Galileo, it is good enough for me.”  This humorously illustrates an extreme case of someone who doesn’t want to incorporate new ideas, different knowledge and new developments.  As you are reading this, you are incorrect if you think it is an appeal to go back to the way things were.  Obviously, we can and do find new ways to teach, but this doesn’t mean abandoning methods that work.  In listening to debates on topics such as integrating the curriculum, we acknowledge that other systems also work if used properly.  However, they should be well thought-out and appropriate for the group of students you are teaching.  So, how does this apply to teaching graduate physiology to today’s students?

 

Creative teachers have always found a way to engage their students. From what I have come to understand, today’s students seem to prefer a classroom environment that combines lectures with some form of a multimedia presentation and exercises such as team-based learning, where they can interact with fellow students and instructors.  This keeps their attention and works well with students who grew up with technology.  While technology also makes it easier for instructors to make slides and use multimedia, care must be taken to avoid oversimplifying.  A tendency of modern media is to compress information into sound-bytes and that is a dangerous mindset for a graduate level course.

 

Instead of just acquiring knowledge for its own sake, today’s students want to learn what is relevant for their future endeavors.  In my opinion, it is very important to show them how and why what they are learning relates to practical “real world” applications.  I like to develop concepts, discuss mechanisms whenever possible, and show examples of how the knowledge is applied and useful.  A plus is that these students like to work cooperatively and enjoy problem solving as a group exercise with a common goal in mind.  However, in-class activities sometimes become too social and groups have to be kept on track.  Another pitfall stems from the fact that in many courses, lectures are recorded and notes are distributed in the form of a syllabus that student’s rely on as their sole source of material.  Too often, students copiously read the prepared notes and listen to the recorded lectures instead of more actively reviewing and connecting with the material that was presented.

 

The internet is a useful resource where information can easily be looked up.  While this is helpful, I find that they may miss the larger context even though it was presented in class.  This is where another comprehensive source of information such as a textbook (on-line or in print) can be used to reiterate material and reinforce what was discussed in class. Students would benefit more by using other resources to accompany notes and lectures. The “flipped” classroom works well if students come to class having prepared by reading, reviewing and analyzing the subject matter.  This type of preparation also makes lectures more interactive and enjoyable by fostering class discussion.  Therefore, I would conclude by stating it is the preparation by student and teacher that makes even the traditional lecture format more engaging and effective.

Andrew M. Roberts, MS, PhD is an Associate Professor in the Department of Physiology at the University of Louisville School of Medicine in Louisville, Kentucky.  He received his PhD in Physiology at New York Medical College and completed a postdoctoral training program in heart and vascular diseases and a Parker B. Francis Fellowship in Pulmonary Research at the University of California, San Francisco in the Cardiovascular Research Institute. His research focuses on cardiopulmonary regulatory mechanisms with an emphasis on neural control, microcirculation, and effects of local endogenous factors.  He teaches physiology to graduate, medical, and dental students and has had experience serving as a course director as well as teaching allied health students.
Student Preparation for Flipped Classroom

Flipped teaching is a hybrid educational format that shifts lectures out of the classroom to transform class time as a time for student-centered active learning. Essentially, typical classwork (the lecture) is now done elsewhere via lecture videos and other study materials, and typical homework (problem solving and practice) is done in class under the guidance of the faculty member. This new teaching strategy has gained enormous attention in recent years as it not only allows active participation of students, but also introduces concepts in a repetitive manner with both access to help and opportunities to work with peers. Flipped teaching paves the way for instructors to use classroom time to engage students in higher levels of Bloom’s taxonomy such as application, analysis, and synthesis. Students often find flipped teaching as busy work especially if they are not previously introduced to this teaching method. Pre-class preparation combined with a formative assessment can be overwhelming especially if students are not used to studying on a regular basis.

When I flipped my teaching in a large class of 241 students in an Advanced Physiology course in the professional year-1 of a pharmacy program almost a decade ago, the first two class sessions were very discouraging. The flipped teaching format was explained to students as a new, exciting, and innovative teaching method, without any boring lectures in class. Instead they would be watching lectures on video, and then working on challenging activities in class as groups. However, the majority of the students did not complete their pre-class assignment for their first class session. The number of students accessing recorded lectures was tracked where the second session was better than the first but still far from the actual class size. The unprepared students struggled to solve application questions in groups as an in-class activity and the tension it created was noticeable.  The first week went by and I began to doubt its practicality or that it would interfere with student learning, and consequently I should switch to the traditional teaching format. During this confusion, I received an email from the college’s Instructional Technology office wondering what I had done to my students as their lecture video access had broken college’s records for any one day’s access to resources. Yes, students were preparing for this class! Soon, the tension in the classroom disappeared and students started performing better and their course evaluations spoke highly of this new teaching methodology. At least two-thirds of the class agreed that flipped teaching changed the way they studied. This success could be credited to persistence with which flipped teaching was implemented despite student resistance.

I taught another course entitled Biology of Cardiovascular and Metabolic Diseases, which is required for Exercise Science majors and met three times per week. Although students in this course participated without any resistance, their unsolicited student evaluations distinctly mentioned how difficult it was to keep up with class work with this novel teaching approach. Based on this feedback, I set aside one meeting session per week as preparation time for in-class activities during the other two days. This format eased the workload and students were able to perform much better. This student buy-in has helped improve the course design significantly and to increase student engagement in learning. Flexibility in structuring flipped teaching is yet another strategy in improving student preparation.

While one of the situations required persistence to make flipped teaching work, the other situation led me to modify the design where one out of three weekly sessions was considered preparation time. In spite of these adaptations, the completion of pre-class assignment is not always 100 percent. Some students count on their group members to solve application questions. A few strategies that are expected to increase student preparation are the use of retrieval approach to flipped teaching where students will not be allowed to use any learning resources except their own knowledge from the pre-class assignments. Individual assessment such as the use of clickers instead of team-based learning is anticipated to increase student preparation as well.

Dr. Chaya Gopalan earned her Ph.D. in Physiology from the University of Glasgow. Upon her postdoctoral training at Michigan State University, she started teaching advanced physiology, pathophysiology and anatomy and physiology courses at both the undergraduate and graduate levels in a variety of allied health programs. Currently she teaches physiology and pathophysiology courses in the nurse anesthetist (CRNA), nurse practitioner, as well as in the exercise science programs. She practices team-based learning and flipped classroom in her everyday teaching.