Tag Archives: instruction

Protecting yourself means more than a mask; should classes be moved outside?
Mari K. Hopper, PhD
Associate Dean for Biomedical Science
Sam Houston State University College of Osteopathic Medicine

Disruption sparks creativity and innovation. For example, in hopes of curbing viral spread by moving classroom instruction outdoors, one Texas University recently purchased “circus tents” to use as temporary outdoor classrooms.

Although circus tents may be a creative solution… solving one problem may inadvertently create another. Moving events outdoors may be effective in reducing viral spread, but it also increases the skin’s exposure to harmful ultraviolet (UV) radiation from the sun. The skin, our body’s largest organ by weight, is vulnerable to injury. For the skin to remain effective in its role of protecting us from pollutants, microbes, and excessive fluid loss – we must protect it.

It is well known that UV radiation, including UVA and UVB, has deleterious effects including sunburn, premature wrinkling and age spots, and most importantly an increased risk of developing skin cancer.

Although most of the solar radiation passing through the earth’s atmosphere is UVA, both UVA and UVB cause damage. This damage includes disruption of DNA resulting in the formation of dimers and generation of a DNA repair response. This response may include apoptosis of cells and the release of a number of inflammatory markers such as prostaglandins, histamine, reactive oxygen species, and bradykinin. This classic inflammatory response promotes vasodilation, edema, and the red, hot, and painful condition we refer to as “sun burn.”1,2

Prevention of sunburn is relatively easy and inexpensive. Best practice is to apply broad spectrum sunscreen (blocks both UVA and UVB) 30 minutes before exposure, and reapply every 90 minutes. Most dermatologists recommend using SPF (sun protection factor) of at least 30. Generally speaking, an SPF of 30 will prevent redness for approximately 30 times longer than without the sunscreen. An important point is that the sunscreen must be reapplied to maintain its protection.

There are two basic formulations for sunscreen:  chemical and physical. Chemical formulations are designed to be easier to rub into the skin. Chemical sunscreens act similar to a sponge as they “absorb” UV radiation and initiate a chemical reaction which transforms energy from UV rays into heat. Heat generated is then released from the skin.3  This type of sunscreen product typically contains one or more of the following active ingredient organic compounds: oxybenzone, avobenzone, octisalate, octocrylene, homosalate, and octinoxate. Physical sunscreens work by acting as a shield. This type of sunscreen sits on the surface of the skin and deflects the UV rays. Active ingredients zinc oxide and/or titanium dioxide act in this way.4  It’s interesting to note that some sunscreens include an expiration date – and others do not. It is reassuring that the FDA requires sunscreen to retain their original “strength” for three or more years.

In addition to sunscreen, clothing is effective in blocking UV skin exposure. Darker fabrics with denser weaves are effective, and so too are today’s specially designed fabrics. These special fabrics are tested in the laboratory to determine the ultraviolet protection factor (UPF) which is similar to SPF for sunscreen.  A fabric must carry a UPF rating of at least 30 to qualify for the Skin Cancer Foundation’s Seal of Recommendation. A UPF of 50 allows just 1/50th of the UV rays to penetrate (effectively blocking 98%). Some articles of clothing are produced with a finish that will wash out over time. Other fabrics have inherent properties that block UV rays and remain relatively unchanged due to washing (some loss of protection over time is unavoidable) – be careful to read the clothing label.

Some individuals prefer relying on protective clothing instead of sunscreen due to concerns about vitamin D synthesis. Vitamin D activation in the body includes an important chemical conversion stimulated by UV exposure in the skin – and there is concern that sunscreen interferes with this conversion. However, several studies, including a recent review by Neale, et al., concluded that use of sunscreen in natural conditions is NOT associated with vitamin D deficiency.5,6 The authors did go on to note that at the time of publication, they could not find trials testing the high SPF sunscreens that are widely available today (current products available for purchase include SPFs over 100).

Additional concern about use of sunscreens includes systemic absorption of potentially toxic chemicals found in sunscreen. A recent randomized clinical trial conducted by Matta and colleagues investigated the systemic absorption and pharmacokinetics of six active sunscreen ingredients under single and maximal use conditions. Seven Product formulations included lotion, aerosol spray, non-aerosol spray, and pump spray. Their study found that in response to repeat application over 75% of the body surface area, all 6 of the tested active ingredients were absorbed systemically. In this study, plasma concentrations surpassed the current FDA threshold for potentially waiving some of the additional safety studies for sunscreen. The authors went on to note that the data is difficult to translate to common use and further studies are needed. It is important to note that the authors also conclude that due to associated risk for development of skin cancer, we should continue to use sunscreen.

Yet another concern for using sunscreen is the potential for harmful environmental and human health impact. Sunscreen products that include organic UV filters have been implicated in adverse reactions in coral and fish, allergic reactions, and possible endocrine disruption.8,9 In some areas, specific sunscreen products are now being banned (for example, beginning January of 2021, Hawaii will ban products that include oxybenzone and octinoxate). As there are alternatives to the use of various organic compounds, there is a need to continue to monitor and weigh the benefit verses the potential negative effects.

Although the use of sunscreen is being questioned, there is the potential for a decline in use to be associated with an increase in skin cancer. Skin cancer, although on the decline in recent years, is the most common type of cancer in the U.S. It is estimated that more than 3 million people in the United States are diagnosed with skin cancers each year (cancer.net). Although this is fewer than the current number of Americans diagnosed with COVID-19 (Centers for Disease Control and Prevention, July 20, 2020) – changes in human behavior during the pandemic (spending more time outdoors) may inadvertently result in an increase in the number of skin cancer cases in future years.  

While we responsibly counter the impact of COVID-19 by wearing masks, socially distancing, and congregating outdoors – we must also continue to protect ourselves from damaging effects of the sun. As physiologists, we are called upon to continue to investigate the physiological impacts of various sunscreen delivery modes (lotion, aerosol, non-aerosol spray, and pumps) and SPF formulations. We are also challenged to investigate inadvertent and potentially negative impacts of sunscreen including altered Vitamin D metabolism, systemic absorption of organic chemicals, and potentially adverse environmental and health outcomes.

Again, solving one problem may create another challenge – the work of a physiologist is never done!

Stay safe friends!



  1. Lopes DM, McMahon SB. Ultraviolet radiation on the skin: a painful experience? CNS neuroscience & therapeutics. 2016;22(2):118-126.
  2. Dawes JM, Calvo M, Perkins JR, et al. CXCL5 mediates UVB irradiation–induced pain. Science translational medicine. 2011;3(90):90ra60-90ra60.
  3. Kimbrough DR. The photochemistry of sunscreens. Journal of chemical education. 1997;74(1):51.
  4. Tsuzuki T, Nearn M, Trotter G. Substantially visibly transparent topical physical sunscreen formulation. In: Google Patents; 2003.
  5. Passeron T, Bouillon R, Callender V, et al. Sunscreen photoprotection and vitamin D status. British Journal of Dermatology. 2019;181(5):916-931.
  6. Neale RE, Khan SR, Lucas RM, Waterhouse M, Whiteman DC, Olsen CM. The effect of sunscreen on vitamin D: a review. British Journal of Dermatology. 2019;181(5):907-915.
  7. Matta MK, Florian J, Zusterzeel R, et al. Effect of sunscreen application on plasma concentration of sunscreen active ingredients: a randomized clinical trial. Jama. 2020;323(3):256-267.
  8. Schneider SL, Lim HW. Review of environmental effects of oxybenzone and other sunscreen active ingredients. Journal of the American Academy of Dermatology. 2019;80(1):266-271.
  9. DiNardo JC, Downs CA. Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone‐3. Journal of cosmetic dermatology. 2018;17(1):15-19.

    All images from:
    Royalty Free Stock Pictures – Public Domain Images

Prior to accepting the Dean’s positon at Sam Houston State University, Dr Hopper taught physiology and served as the Director of Student Research and Scholarly Work at Indiana University School of Medicine (IUSM). Dr Hopper earned tenure at IUSM and was twice awarded the Trustees Teaching Award. Based on her experience in developing curriculum, addressing accreditation and teaching and mentoring of medical students, she was selected to help build a new program of Osteopathic Medicine at SHSU. Active in a number of professional organizations, Dr. Hopper is past chair of the Chapter Advisory Council Chair for the American Physiological Society, the HAPS Conference Site Selection Committee, and Past-President of the Indiana Physiological Society.

Creating Unique Learning Opportunities by Integrating Adaptive Learning Courseware into Supplemental Instruction Sessions

Teaching a large (nearly 400 students), introductory survey course in human anatomy and physiology is a lot like trying to hit a constantly moving target. Once you work out a solution or better path for one issue, a new one takes its place. You could also imagine a roulette wheel with the following slots: student-faculty ratios, student preparation, increasing enrollments, finite resources, limited dissection specimen availability (e.g., cats), textbook prices, online homework, assessment, adaptive courseware, core competencies, learning outcomes, engagement, supplemental instruction, prerequisites, DFW rates, teaching assistants, Dunning Kruger effect, open educational resources, GroupMe, student motivation, encouraging good study habits, core concepts, aging equipment … and the list goes on.

If the ball lands on your slot, are you a winner or loser?

Before getting ahead of myself, I need to provide an overview of A&P at the University of Mississippi. Fall semesters start with 390 students enrolled in A&P I within one lecture section, 13 lab sections at 30 students each, anywhere from 10-13 undergraduate teaching assistants, 2 supplemental instruction (SI) leaders, and at least six, one-hour SI sessions each week. The unusual class size and number of lab sections is the result of maxing out lecture auditorium as well as lab classroom capacities. I am typically the only instructor during the fall (A&P I) and spring (A&P II) terms, while a colleague teaches during the summer terms. The two courses are at the sophomore-level and can be used to fulfill general education requirements. There are no prerequisites for A&P I, but students must earn a C or better in A&P I to move on to A&P II. Approximately one-third of the students are allied health (e.g., pre-nursing) and nutrition majors, one-third are exercise science majors, and the remaining one-third of students could be majoring in anything from traditional sciences (e.g., Biology, Chemistry, etc.) to mathematics or art.

The university supports a Supplemental Instruction program through the Center for Excellence in Teaching and Learning (https://cetl.olemiss.edu/supplemental-instruction/). The SI program provides an extra boost for students in historically demanding courses such as freshman biology, chemistry, physics, accounting, etc. SI leaders have successfully passed the courses with a grade of B or better, have been recommended to the program by their professors, agree to attend all lectures for the courses in which they will be an SI leader, and offer three weekly, one-hour guided study sessions that are free to all students enrolled in the course. SI leaders undergo training through Center for Excellence in Teaching and Learning and meet weekly with the course professor. Students who regularly attend SI sessions perform one-letter grade higher than students who do not attend SI sessions.

It can be as easy for an instructor to be overwhelmed by the teaching side of A&P as it is for the student to be overwhelmed by the learning side! I know that a major key to student success in anatomy and physiology courses is consistent, mental retrieval practice across multiple formats (e.g., lectures, labs, diagrams, models, dissection specimens, etc.). The more a student practices retrieving and using straightforward information, albeit a lot of it, the more likely a student will develop consistent, correct use. Self-discipline is required to learn that there are multiple examples, rather than one, of “normal” anatomy and physiology. However, few students know what disciplined study means beyond reading the book and going over their notes a few times.

To provide a model for disciplined study that can be used and implemented by all students, I developed weekly study plans for A&P I and II. These study plans list a variety of required as well as optional activities and assignments, many of which are completed using our online courseware (Pearson’s Mastering A&P) and include space for students to write completion dates. If students complete each task, they would spend approximately 10 out-of-class hours in focused, manageable activities such as:

  • Completion of active learning worksheets that correlate to learning outcomes and can be used as flashcards.
  • Practice assignments that can be taken multiple times in preparation for lecture exams and lab practicals.
  • Self-study using the virtual cadaver, photographic atlas of anatomical models, interactive animations of physiological processes, virtual lab experiments, and dissection videos.
  • Regular graded assignments aligned with course learning outcomes.

Weekly study plans are also useful during office visits with students. I can easily assess student progress and identify changes for immediate and long-term improvement. An advantage of using online courseware to support course objectives is the ability to link various elements of the courses (e.g., lecture, lab, SI sessions, online homework, group study, and self-study) with a consistent platform.

All of this sounds like a great sequence of courses, doesn’t it? Yet, the target has kept moving and the roulette wheel has kept spinning. Imagine for the story within this blog that the roulette ball has landed on “using adaptive courseware to improve supplemental instruction.”

In 2016 the University of Mississippi was one of eight universities chosen by the Bill and Melinda Gates Foundation with support of the Association for Public and Land-Grant Universities to increase the use of adaptive courseware in historically demanding general education courses. Thus, began the university’s PLATO (Personalized Learning & Adaptive Teaching Opportunities) Program (https://plato.olemiss.edu/). The PLATO grant provides support for instructors to effectively incorporate adaptive courseware into their courses and personalize learning for all affected students. Administrators of the grant were particularly supportive of instructors who could use adaptive courseware to support the SI sessions. This challenge was my personal roulette ball.

I decided to use diagnostic results from Mastering A&P graded homework assignments to prepare for weekly meetings with SI leaders. Diagnostic data on percent of University of Mississippi students correctly answering each question as well as percent of UM students answering incorrect options are compared to the global performance of all Mastering A&P users. For each question incorrectly answered by more than 50% of the students, I write a short (4-6 sentences) explanation of where students are making errors in expressing or using their knowledge and how to prevent similar errors in the future. I then searched for active learning activities and teaching tips associated with the challenging questions from the LifeSciTRC (https://www.lifescitrc.org/) and Human Anatomy and Physiology Society (HAPS; https://www.hapsweb.org/) websites. I specifically search for active learning exercises that can be conducted in a small, group setting using widely available classroom resources (e.g., white board, sticky notes, the students, etc.).

By using online courseware diagnostics, selecting focused learning activities, and communicating regularly with SI leaders, I was able to create value and unique learning opportunities for each student. The SI session format has been extremely well-received by the students and they immediately see the purpose in the study session experience. The best part is that it takes me only 30-40 minutes each week to write up explanations for the diagnostics and find the best learning activities.

I would say that we are all winners with this spin of the wheel.

Carol Britson received her B.S. from Iowa State University and her M.S. and Ph.D. from the University of Memphis. She has been in the Department of Biology at the University of Mississippi for 22 years where she teaches Vertebrate Histology, Human Anatomy, Introductory Physiology, and Human Anatomy and Physiology I and II. In 2018 she received the University of Mississippi Excellence in Teaching award from the PLATO (Personalized Learning & Adaptive Teaching Opportunities) Program supported by the Association of Public and Land-Grant Universities and the Bill and Melinda Gates Foundation.