Tag Archives: pedagogy

Synergy – From conference to classroom – The value of attending and doing project-based learning

Monica J. McCullough, PhD
Western Michigan University, Department of Biological Sciences

After attending the 2018 APS – ITL conference for the first time, I walked away with so many actionable ideas to implement in my large classes. One valuable experience was practicing active learning techniques as part of a session. “Doing” helps many to learn much more than “hearing” about best practices. I not only learned much from the active sessions offered at APS-ITL but transferred that experience into my own classroom upon returning.

I decided to try a semester-long project for my Intro to Bio for majors, modifying a project  I learned about from Dr. Beth Beason-Abmayr (http://advan.physiology.org/content/41/2/239) from Rice University.  Dr. Beason-Abmayr introduced ‘The Fictitious Animal Project’ during her session at APS-ITL as one she uses in her Vertebrate Physiology for non-bio majors, averaging around 30 students per semester.  During her session at APS-ITL, we divided into groups, ranging from 2-10, and mimicked the project. I instantly saw the value of this activity and had to add it to my teaching repertoire.  Dr. Beason-Abmayr’s project was to create a fictitious animal that had certain physiological characteristics. Students had categories, such as cardiovascular system, respiratory system, that were randomly selected and answer sets of questions that students would answer about the integration of them, including benefits and trade-offs for the fictitious animal.   They completed scheduled homework sets after topics were discussed in class. The students worked in groups and would present their creations to the class with drawings of their animals. What really piqued my interest was that since students had to create an animal that does not exist in nature, they couldn’t just Google it to create this project, and the potential to bring out their ingenuity to the design. 

Since I was going to teach biological form and function the upcoming Fall, and mind you for the first time, I thought I’d start with this semester-long project for 290 students, which were primarily freshmen. A major component that I wanted to maintain was the student presentations, as this is an important skill for these budding scientists. Obviously, the logistics to maintain this was the first decision, and when factoring in around 75 groups (averaging 4 students per group), I decided that the group presentations would span a total of 4 days at the end of the semester, in a gallery-style presentation. Presenters would line the room with their visual aid and the rest of the class would visit each group with designated rubrics. (Presentation Rubric) Additionally, the individual group members would submit a peer evaluation of their group mates at the end of the day of their presentation. (Group Peer Evaluation). My next modification was to adapt the category options so that the students would create a species that yielded both plant and animal components, as we would be learning about both. There were 5 overall anatomical/physiological categories, including size, circulation, sensory environmental interaction, structure and motility.  These too would be randomized with the use of Google by “rolling the dice” to assign each characteristic. (Project directions)  I continued with Dr. Beason-Abmayr’s project checkpoint of homework sets throughout the semester where students work on a subset of the categories and continue to build their species, as we learn about the topics in class. Each group submitted electronically to Dropbox, and allow time for feedback with rubrics. (HW set 1 rubric example) To end, there was a final wrap-around short answer portion on the final exam where students described each category and how it was incorporated with their own species. This allowed me to check for individual understanding of the project as we all know some group projects allow for ‘moochers’ to do and understand little.   

For me, this project is a keeper. It helped reinforce the essential concepts during the semester and practice soft skills needed to excel in the workforce. It was exciting to see how some students really embraced the project, including creating a costume of their species, 3-D print outs, live plants they’ve modified and sculptures. While difficult, there were also some group conflicts that did occur, yet, these emerging adults were able to work through their differences. A key factor to this was each group developing their own contract at the very beginning of the semester and was open for adjustments for the duration of the semester. (Team Contract)  The big take-away for me is, it is worth the risk to try something new in the classroom, no matter how large or small the size. This project helped student gains with the material, and practice throughout the semester. As an educator, I feel it is pivotal to find ways that help our students feel confident with the material and keep them curious and innovative. Just as at the top presentations at our conference, doing science makes concepts stick much more than just hearing about it.  

Monica J. McCullough, PhD joined as a Faculty Specialist in the Department of Biological Sciences and Western Michigan University in 2016, prior to which she was faculty at Adrian College. She currently teaches large introductory courses, including Anatomy, Physiology and Biological Form and Function. Dr. McCullough received her BS and PhD from Western Michigan University and studied regulation of neurotrophic factors. Dr. McCullough has 4 young children and has found a great interest in doing science demo’s in her elementary children’s’ classrooms.

The Large Lecture: Minor Adjustments, Major Impacts

Large lecture courses are hard, for both students and faculty alike, and while an exhaustive body of Scholarship of Teaching & Learning (SOTL) research boasts benefits of smaller classes (Cuseo, 2007), budgetary and a myriad of other restrictions leave many higher education institutions with few options for reducing class sizes.  Accordingly, many instructors are forced to figure out a way to best serve our students in this unideal setting.

Three years ago, in my first year as a full time faculty member, I found myself teaching one of these large lecture classes.  There were ~250 students, split across two sections, piled into an outdated auditorium.   The setting was intimidating for me, and if one thing was certain, it was that however intimidated I felt, my students felt it even harder (and as an aside, three years later, I still find myself, at times, intimidated by this space).  So, in a high-stakes, pre-requisite course like Anatomy & Physiology that is content-heavy and, by nature, inherently intense, what can be done in a large lecture hall to ease the tension and improve student learning?

When looking to the SOTL research for evidence-based recommendations on student engagement and active learning ideas in high-enrollment courses such as mine, I quickly became overwhelmed with possibilities (not unlike a kid in a candy store).  Before I knew it, finding meaningful ways to reshape my class in the best interest of the student became defeating – how was I supposed to overhaul my course to integrate best-practice pedagogy while still juggling the rest of my faculty responsibilities?

Thankfully, last year a colleague introduced me to a book, Small Teaching: Everyday Lessons from the Science of Learning, by James Lang.  Admittedly – I still have not finished this book (rest assured – I am currently in a book club studying this book, so I WILL finish it!); that being said, Lang’s powerful message about the significance of small changes resonated with me pretty early on in the text.  Minor, thoughtful adjustments to the daily classroom routine are capable of eliciting substantial impacts on student learning.  In other words, I did not need to reinvent the wheel to better serve my students; instead, I set a goal for myself to try out one or two small, reasonable adjustments per semester.  While I am still navigating best-practice teaching and experience a healthy dose of trial-and-error, here is what I have found useful thus far:

 

1. Learning names. This is perhaps the most straightforward, obvious classroom goal, but when you have a large number of students, something as simple as learning student names can quickly slip through the cracks.  Now, I appreciate that implementing this goal takes considerable time and intention, and depending on the structure of your high-enrollment course, it may or may not be feasible.  In my course, for example, it is a two-part series, which means I have the same students for an entire academic year rather than one semester.  Moreover, in addition to lecture, I have all of my students in smaller lab sections.  Accordingly, I have plenty of opportunity to interact with students and pay attention to names.

From a purely anecdotal observation, if and when a student musters up the courage to ask a question in the large auditorium, addressing them by name appears to increase the likelihood of the student asking again.  Moreover, it seems to have an impact on other students in the classroom, too; anecdotally, I have noticed in lectures where I address student questions using student names, the number of different students asking questions appears to increase.  Overall, addressing students by name seems to communicate a message that students in our classrooms are not simply a body in a seat or a number in the system, but they are a member of a learning community.

2. Finding an inclusive platform for voicing questions. Despite reaching a point in the academic year where everyone knows each other by name, some students will never feel comfortable enough raising their hand to ask questions in the big lecture hall. Knowing this, along with the notion that student confusion rarely exist in isolation, this semester I made it a point to explore alternative platforms for asking questions during lecture.  Cue in the Google Doc: this handy, online word-processing tool gave me a platform for monitoring student questions in real time during lecture.  On the logistical end, it is worth noting that I have a TA monitoring our Google Doc during lecture, so that when a stream of questions comes through, common themes in questions are consolidated into one or two questions.  A few times during the lecture, I will check in with our TA and address questions.  It is also worth mentioning that the document has been set up such that student names are linked to their comments; this was implemented as a measure to keep comments appropriate and on track.  So far, this has turned out to be a great platform, not only for students asking lecture questions in real time, but also for facilitating some really great discussion amongst students.

 

3. Holding students accountable for in-class activities.  I quickly realized in my large lecture class that students were generally unmotivated to participate in any in-class activity unless I collected it and assigned points (which, by the way, can be a logistical nightmare with 250 students).  Yet, as I learned in Making it Stick: The Successful Science of Learning, by Brown, Roediger, and McDaniel (a previous book club endeavor of mine), engaging students in activities like 5 minute recall exercises is widely supported as an effective tool for long-term learning and retention.  So, I decided to piggy back off my previous idea of the Q&A Google Doc, and open up an entire classroom folder where, in addition to our Q&A doc, students had daily folders for submitting in-class activities (again, in real time).  As of now, the way that it works is as follows: upon completing the short recall exercise, or other in-class activity, students will snap a photo of their work and upload it to our Google drive.  Then, I choose a piece of student work to display as we review the activity prompt, which has proven to be a great method for maintaining student accountability (I disclosed to the students that I will randomly choose a few days in the semester to award extra credit for those who submitted during class).  Additionally, this provides quick feedback to me (in real time) regarding student comprehension and common misunderstandings; in fact, I will occasionally choose to review a student submission that represents a common mistake to highlight and address a common problem area.

In summary, implementing these small changes has offered realistic approaches to improving my students’ experience and creating community in an otherwise challenging setting: the large lecture.  While I retain other long-term teaching goals that require more of a time commitment, Lang’s sentiment that small ≠ insignificant provides a solid ground for improvement in the present.

References:

Brown, PC, Roediger, HL, and McDaniel, MA (2014). Making it Stick: The Successful Science of Learning.  Cambridge, MA: Harvard University Press.

Cuseo, Joe. (2007). The empirical case against large class size: Adverse effects on the teaching, learning, and retention of first-year students. Journal of Faculty Development: 21.

Lang, James (2016).  Small Teaching: Everyday Lessons from the Science of Learning. San Francisco, CA: Jossey-Bass.

 

Amber Schlater earned her B.S. from the University of Pittsburgh in Biological Sciences, and her M.S. and Ph.D. from Colorado State University in Zoology; she also completed a two-year post-doctoral fellowship at McMaster University.  Currently, Amber is an Assistant Professor in the Biology Department at The College of Saint Scholastica in beautiful Duluth, MN, where she teaches Human Anatomy & Physiology, Super Physiology (a comparative physiology course), and mentors undergraduate research students.  Outside of work, Amber enjoys hiking, biking, camping, canoeing, and doing just about anything she can outside with her family.
Likely or unlikely to be true? I like to have students hypothesize

Throughout my science education career, if I was asked what I do, I responded “I write standardized tests.” Let me assure you, this doesn’t win you too many fans outside of science education assessment circles. But in my opinion, there is nothing better to help one develop an understanding and intuition about how students learn than interviewing hundreds of students, listening to their thinking as they reason through questions.

 

When I listen to students think aloud as they answer questions, I learn a lot about what they know and about their exam-taking processes too. For example, while interviewing a student on a multiple true-false format physiology question, the student answered all the true-false statements then said “Wait, let me go back. There’s always some exception I might be missing.” For this student, physiology always broke the rules and the exams they typically took tried to test whether they knew the exceptions. Although my intention for the question was to have the students apply general conceptual knowledge, the student, like most others I interviewed, was instead spending a lot of time making sure they had recalled all the right information. Eventually, moments like this led to a simple change in question format that created an interesting shift in the way questions elicited thinking from faculty and students alike.

 

The interview mentioned above occurred during the process of writing a programmatic physiology assessment, Phys-MAPS.2 The goal of this assessment and the others in a suite of Bio-MAPS assessments was to build tools that could measure student learning across biology majors. Our working team3 and I chose to build all the assessments using a multiple true-false format, where for each question, a short scenario is described, followed by several (often 4-6) statements about the scenario that students identify as either true or false. We chose this format for its high utility assessing how students can hold both correct and incorrect ideas about a topic simultaneously,4 highly pertinent to learning across a major. In addition, the multiple true-false format has the benefit of facilitating easy and quick grading for a large number of students while still allowing for a rich understanding of student thinking comparable to essay assessments.5

Example of Modified Multiple True-False Design (from a question similar to but not on the Phys-MAPS)

However, as I was creating the physiology-specific assessment and Dr. Mindi Summers was creating the ecology-evolution-specific assessment, we ran into challenges when writing statements that needed to be absolutely “true” or “false.” Sometimes we had to write overly complex scenarios for the questions because too many constraints were needed for a “true” or “false” answer. In addition, discipline experts were refusing to ever say something was “true” or “false” (especially, but not solely, the evolutionary biologists). Thus, many of our statements had to be re-written as something that was “likely to be true” or “unlikely to be true”, making the statements bulky and long.

 

Dr. Summers was the first to bring up in our working group meeting the idea of modifying the true-false format. She suggested changing the prompt. What initially read “Based on this information and your knowledge of biology, evaluate each statement as true or false,” became “Based on this information and your knowledge of biology, evaluate each statement as likely or unlikely to be true.” I was instantly sold. I thought back to the student who had spent so much extra time trying to search her brain for the exceptions to the general rules. Surely, this was going to help!

 

It did. For starters, the discipline experts we were consulting were much more inclined to agree the answers were scientifically accurate. And for good reason! We science experts do not often work in the absolutes of “true” and “false”. In fact, I’m pretty sure a whole field of math was created for exactly this reason. I also saw a difference in how students responded to the new language. In my interviews, I noticed students took considerably less time on the assessment and I never again heard a student stop to try to remember all the exceptions they might know. Better yet, I started hearing language that reflected students were applying knowledge rather than trying to remember facts. For example, in the previous true-false format, I often heard “Oh, I just learned this,” and then I would watch the student close their eyes and agonize trying to remember a piece of information, when all the information they needed to answer the question was right in front of them. With the new “likely or unlikely to be true” format, I was hearing more “well that’s generally true, so I think it would work here too.” It appeared that students had shifted to a more conceptual rather than factual mindset.

 

But what really convinced me that we were on to something worthwhile was the awareness of some students of what they were truly being asked to do. “Wait, so basically what you want me to do is hypothesize whether this would be true [in this new scenario] based on what I already know?” YES!!! (I do my inner happy dance every time.)

 

We educators hear the message from a million places that we should teach science as we do science. I maintain that this should count towards how we assess science knowledge and skills too, asking students to apply their knowledge in new contexts where there is no known answer. But when science explores the unknown, how do you ask about the unknown and still have a right answer to grade? (Easily, on a scantron, that is.) As scientists, we use our knowledge to make predictions all the time, not thinking that our hypotheses will absolutely be true, but that they are the mostly likely outcome given what we already know. Why not show our students how much we value that skill by asking them to do the same?

 

1 Answer: Likely to be true.

2 More information about the Phys-MAPS and all of the Bio-MAPS programmatic assessments can be found on: http://cperl.lassp.cornell.edu/bio-maps

3 The Bio-MAPS working group includes: Drs. Michelle Smith, Jennifer Knight, Alison Crowe, Sara Brownell, Brian Couch, Mindi Summers, Scott Freeman, Christian Wright and myself.

4 Couch, B. A., Hubbard, J. K., and Brassil, C. E. (2018). Multiple–true–false questions reveal the limits of the multiple–choice format for detecting students with incomplete understandings. BioScience 68, 455–463.

5 Hubbard, J. K., Potts, M. A., and Couch, B. A. (2017). How question types reveal student thinking: An experimental comparison of multiple-true-false and free-response formats. CBE Life Sci. Educ.

Dr. Katharine (Kate) Semsar finally found a job that uses all her diverse training across ecology, physiology, genetics, behavioral biology, neuroscience, science education, and community building. Kate is the Assistant Director of STEM Programming for the Miramontes Arts & Sciences Program (MASP), an academic community for underrepresented students in the College of Arts & Sciences at the University of Colorado Boulder.

She received her PhD from North Carolina State University and continued her training at University of Pennsylvania. She then became a science education specialist with the Science Education Initiative in the Integrative Physiology department at the University of Colorado Boulder, studying how students learn and collaborating with faculty to incorporate fundamental principles of learning in their courses. She continued her science education research with the Bio-MAPS team before finally landing in her dream career, teaching and mentoring students in MASP. Despite the career shift, she still loves watching people’s reactions when she tells them she used to write standardized assessments.

Paradigm Shifts in Teaching Graduate Physiology

From years of experience teaching physiology to graduate students, I found students learn best when they have a good grasp of basic concepts and mechanisms. As we are well aware, the lecture format was used to disseminate knowledge on various topics.  Students took notes and were expected to reinforce their knowledge by reading recommended texts and solving related questions that were assigned.  Some courses had accompanying laboratories and discussion sessions where students learned about applications and gained practical experience.  The term “active learning” was not in vogue, even though it was taking place in a variety of ways!  Successful teachers realized that when students were able to identify the learning issues and followed through by searching for what they needed to understand, this process enhanced learning.  The idea of a “flipped” classroom had not been described as such, but was occurring de facto in rudimentary ways with the ancillary activities that were associated with some courses.  As you are reading this, you are incorrect if you think it is an appeal to go back to the way things were.

 

By coincidence, one evening after work, I was listening to the radio about the story of a professor at an elite college.  My colleagues and I had just been discussing new teaching ideas and technologies!  As an acclaimed and accomplished educator he was surprised to learn that his students did not do as well as he expected on a national exam in comparison to other students being tested on the same subject. I was mesmerized and had to stop and listen to this teacher’s thoughts about how he changed his methods to improve student learning and their ability to apply knowledge.  This is also when I heard the expression, “if it was good enough for Galileo, it is good enough for me.”  This humorously illustrates an extreme case of someone who doesn’t want to incorporate new ideas, different knowledge and new developments.  As you are reading this, you are incorrect if you think it is an appeal to go back to the way things were.  Obviously, we can and do find new ways to teach, but this doesn’t mean abandoning methods that work.  In listening to debates on topics such as integrating the curriculum, we acknowledge that other systems also work if used properly.  However, they should be well thought-out and appropriate for the group of students you are teaching.  So, how does this apply to teaching graduate physiology to today’s students?

 

Creative teachers have always found a way to engage their students. From what I have come to understand, today’s students seem to prefer a classroom environment that combines lectures with some form of a multimedia presentation and exercises such as team-based learning, where they can interact with fellow students and instructors.  This keeps their attention and works well with students who grew up with technology.  While technology also makes it easier for instructors to make slides and use multimedia, care must be taken to avoid oversimplifying.  A tendency of modern media is to compress information into sound-bytes and that is a dangerous mindset for a graduate level course.

 

Instead of just acquiring knowledge for its own sake, today’s students want to learn what is relevant for their future endeavors.  In my opinion, it is very important to show them how and why what they are learning relates to practical “real world” applications.  I like to develop concepts, discuss mechanisms whenever possible, and show examples of how the knowledge is applied and useful.  A plus is that these students like to work cooperatively and enjoy problem solving as a group exercise with a common goal in mind.  However, in-class activities sometimes become too social and groups have to be kept on track.  Another pitfall stems from the fact that in many courses, lectures are recorded and notes are distributed in the form of a syllabus that student’s rely on as their sole source of material.  Too often, students copiously read the prepared notes and listen to the recorded lectures instead of more actively reviewing and connecting with the material that was presented.

 

The internet is a useful resource where information can easily be looked up.  While this is helpful, I find that they may miss the larger context even though it was presented in class.  This is where another comprehensive source of information such as a textbook (on-line or in print) can be used to reiterate material and reinforce what was discussed in class. Students would benefit more by using other resources to accompany notes and lectures. The “flipped” classroom works well if students come to class having prepared by reading, reviewing and analyzing the subject matter.  This type of preparation also makes lectures more interactive and enjoyable by fostering class discussion.  Therefore, I would conclude by stating it is the preparation by student and teacher that makes even the traditional lecture format more engaging and effective.

Andrew M. Roberts, MS, PhD is an Associate Professor in the Department of Physiology at the University of Louisville School of Medicine in Louisville, Kentucky.  He received his PhD in Physiology at New York Medical College and completed a postdoctoral training program in heart and vascular diseases and a Parker B. Francis Fellowship in Pulmonary Research at the University of California, San Francisco in the Cardiovascular Research Institute. His research focuses on cardiopulmonary regulatory mechanisms with an emphasis on neural control, microcirculation, and effects of local endogenous factors.  He teaches physiology to graduate, medical, and dental students and has had experience serving as a course director as well as teaching allied health students.
Why do you teach the way that you do?

Have you ever stopped to think about why you do something the way that you do it? We educators are often very good at describing what we do or have done. I was recently reviewing some CVs for a teaching position; all the CVs were replete with descriptions of what content was taught in which course at which institution. However, I feel that we educators often fail to capture why we teach in a certain way.

 

 

In my extra-curricular life, I am an educator on the soccer field in the form of a coach. Through coaching education, I have been encouraged to develop a philosophy of coaching. This is a description of why I coach the way I do. To develop a coaching philosophy, coaches should think about three central aspects (see: https://www.coach.ca/develop-a-coaching-philosophy-in-3-easy-steps-p159158 for more details):

 

  1. Purpose: why do you coach?

  2. Leadership style – what methods do you use to coach? Are you more ‘coach-centered’ or more ‘player-centered’ in your approach? Or somewhere in between? Why?

  3. Values: what is most important to you? How does it affect the way you coach?

 

If ‘coach’ is replaced by ‘teach’ or ‘teacher’ in the above list, and ‘player’ is replaced by ‘student’, we can use this framework to develop a philosophy of teaching. I have found that putting ‘pen to paper’ in forming a philosophy helps to crystallize your beliefs about teaching that may have been seemingly random, disparate thoughts previously. It can be insightful to synthesize your beliefs about teaching, as it provides some structure and guidance when planning future teaching.

 

It is time to nail my colors to the mast. I teach because I want to help my students be successful diagnosticians in their profession (medicine) and understand why their patient’s bodies are responding in the way that they do in order to help them treat them effectively. I do believe in the benefit of having an expert instructor, especially when you have novice students, so I am probably more teacher-centric than is the current fad. However, I don’t like lectures for the most part, because from my perspective, lectures principally focus on information transfer rather than using and applying the important information. This is not to say that lectures are all bad, but I prefer ‘flipped classroom’ methods that require students to gather the necessary knowledge before class, and then during class, demonstrate mastery of material and apply it to clinical scenarios (with the aid of the instructor). But, that’s me. What about you?

 

If you are applying for positions that will require teaching, having both a teaching philosophy and a teaching portfolio will provide the appropriate evidence to the search committee about how you plan to teach.  The following resources might be useful to you:

Preparing a Teaching Portfolio http://www.unco.edu/graduate-school/pdf/campus-resources/Teaching-Portfolio-Karron-Lewis.pdf

Writing Your Teaching Philosophy https://cei.umn.edu/writing-your-teaching-philosophy

  Hugh Clements-Jewery, PhD is currently Visiting Research Associate Professor at the University of Illinois College of Medicine in Rockford, Illinois. He teaches medical physiology in the integrated Phase 1 undergraduate medical curriculum at the University of Illinois College of Medicine. He is the College-wide leader for the Circulation-Respiration course. He has also recently taken on the role of Director of Phase 1 curriculum at the Rockford campus.
Why I’m a Clicker Convert

Recently I was faced with a teaching challenge: how to incorporate active learning in a huge Introductory Biology lecture of 400+ students. After searching for methods that would be feasible, cost effective, and reasonably simple to implement in the auditorium in which I was teaching, I came up with clickers. Our university has a site license for Reef Polling Software which means I wouldn’t add to the cost for my students—they could use any WiFi enabled device or borrow a handset at no cost. I incorporated at least 4 clicker questions into every class and gave students points for completing the questions. 10% of their grade came from clicker questions and students could get full credit for the day if they answered at least 75% of the questions. I did not give them points for correct answers because I wanted to see what they were struggling to understand.

I’m now a clicker convert for the following 3 reasons:

  • Clickers Increase Student Engagement and Attendance

In a class of 400+, it is easy to feel like there is no downside to skipping class since the teacher won’t realize you are gone. By attaching points to completing in-class clicker questions, about 80% of the class attended each day. While I would like perfect attendance, anecdotally this is much better than what my colleagues report for similar classes that don’t use clickers. Students still surfed the internet and slept through class, but there was now more incentive to pay a bit of attention so you didn’t miss the clicker questions. In my opinion, getting to class can be half the battle so the incentive is worth it. In my small classes I like to ask a lot of questions and have students either shout out answers or vote by raising their hands. Often, students won’t all vote or seem to be too embarrassed to choose an answer. I tested out clickers in my small class and found an increased response rate to my questions and that I was more likely to see the full range of student understanding.

  • Clickers Help Identify Student Misconceptions in Real Time

Probably the biggest benefit of clickers to my teaching is getting a better sense of what the students are understanding in real time. Many times I put in questions that I thought were ‘gimmes’ and was surprised to see half the class or more getting them wrong. When that happens, I can try giving them a hint or explaining the problem in a different way, having them talk with their group, and then asking them to re-vote. Since I don’t give points for correctness, students don’t feel as pressured and can focus on trying to understand the question. I’m often surprised that students struggle with certain questions. For instance, when asked whether the inner membrane of the mitochondria increases surface area, volume, or both, only half of the students got the correct answer the first time (picture). Since this is a fundamental concept in many areas of biology, seeing their responses made me take time to really explain the right answer and come up with better ways of explaining and visualizing the concept for future semesters.

  • Clickers Increase Student Learning (I hope)

At the end of the day, what I really hope any active learning strategy I use is doing is helping students better understand the material. To try to facilitate this, I ask students to work in groups to solve the problems. I walk around the class and listen while they solve the problem. This can help me get an idea of their misconceptions, encourage participation, and provide a less scary way for students to ask questions and interact with me. While working in groups they are explaining their reasoning and learning from each other. Interspersing clicker questions also helps to reinforce the material and make sure students stay engaged.

I’m convinced that clickers are helping to improve my teaching and students seem to agree. Of the 320 students who filled out course evaluations one semester, 76 included positive comments about clicker questions. Here are two of my favorites:

“I like how we had the in-class clicker questions because it made me think harder about the material we were learning about in that moment.”

“I enjoyed doing the clicker questions. If the class disagreed with something she would stop and reteach the main point and hope we would understand. That was really helpful on her part.”

I would be remiss if I didn’t end by thanking the many researchers who have studied how to incorporate clickers into your class to maximize learning. I decided to try them after hearing Michelle Smith talk at the first APS Institute on Teaching and Learning and highly recommend seeing her speak if you have the chance. If you only want to read one paper, I suggest the following:

Smith, Michelle K., et al. “Why peer discussion improves student performance on in-class concept questions.” Science 323.5910 (2009): 122-124.

I hope you will comment with how you use clickers or other strategies to engage large lecture classes. For more resources I’ve found helpful designing my classes click here.

Katie Wilkinson, PhD is a newly minted Associate Professor of Biological Sciences at San Jose State University. She completed her undergraduate work in Neuroscience at the University of Pittsburgh and her PhD in Biomedical Sciences at the University of California, San Diego. She was an NIH IRACDA Postdoctoral Fellow in Research and Scientific Teaching at Emory University. At SJSU her lab studies the function of stretch sensitive muscle proprioceptors. She teaches Introductory Biology, Vertebrate Neurophysiology, Integrative Physiology, Pain Physiology, and Cardiorespiratory Physiology to undergraduate and masters students.
Thoughts from the Future

 

 

April 23, 2028

 

Dear Dave Harris of 2018,

It has been a long time my friend, in fact 10 years.  I have plenty of good news to share with you, which may be shocking or expected!

First, I am happy to inform you that the past decade has been extremely good for your Philadelphia Eagles!  After winning Super Bowl LII in 2018, they have gone on to win 3 more with Carson Wentz running new “Philly Specials” year after year!  Tom Brady finally retired after he dropped another wide-open pass in Super Bowl LV.  However, the biggest surprise for you may be that the Cleveland Browns won Super Bowl LV!

I am also happy to tell you that the educators survived the Great Medical Education Transformation of the 2020s! I knew that you saw this coming around 2015, but the speed at which the Transformation occurred was mind-blowing for many faculty!  We lost a few good “soldiers” in the process when they failed to adapt their educational views and styles, but as of now, medical education has never been better and there have been substantial improvements in patient safety and outcomes!  I am sharing some of the changes with you to prepare the faculty of the future!

One of the first recognizable changes was the manner in which students approached medical school curricula.  Even during your time, schools saw drastic reductions in class attendance and student engagement with the formal curriculum.  The millennial students were used to obtaining information how they wanted and immediately when they wanted.  Recording of lectures led to students remaining at home so that they could double speed your voice to sound (you have no idea how they describe you!), allowed them to view these lectures at midnight in their pajamas, and gave them the ability to stop and take notes.  Many faculty mistook this as student disengagement and tried to “force” them into class by making mandatory sessions or increasing the frequency of assessments. However, students responded by stating that some sessions were a “waste of time” and “took time away from studying for Step 1”.  They continued to vote with their feet and migrate away from the classroom!

However, what caught most faculty of your time off guard was the use of external resources outside of your own curricular items.  The emergence of the “hidden curriculum”!  Students were presented with alternative options such as Anki, Sketchy Medical, Osmosis, First Aid, Khan Academy and Pathoma to name a few!  At first faculty were unaware and put up a staunch resistance.  It was even postulated by some that the core curriculum of basic science could be delivered as a shared Medical Curricular Ecosystem (Le and Prober) that would help reduce redundancy in medical schools.  This caused an imbalance in the galaxy and many of the upset faculty tried to prevent this from coming. However, many astute faculty quickly realized that it was already there!!  At that point the faculty rebel forces decided to become proactive instead of reactive!

Town hall meetings, focus groups, and interviewing revealed many weaknesses in the medical school schema to date.  Faculty struggled to realize that the millennial students grew up with the internet and basically a cell phone attached to their hand.  Finding content was not an issue for them and what faculty discovered was that much of the content delivered in lectures was identical to what could be viewed in a video in 8 minutes.  They also discovered that students grew up in a world where everyone was connected through social media and available almost 24 hours a day!  They expected responses from their friends on a chat within seconds!  After all, how many people sleep with their cell phone next to them?  Faculty also discovered in these town halls that the generation valued work/life balance and anything that was deemed inefficient cut into this time that they could be doing something else.  Through these important meetings, faculty also discovered that students were excellent at recalling facts and regurgitating knowledge. However, when asked to apply that knowledge to a problem, the students went back to recalling the facts. Students had mistaken memorizing for learning!  And many faculty had mistaken learning for telling!  Some faculty reflected back and actually admitted that we may have enabled the behaviors with our constant barrage of standardized tests of knowledge!

At least, the good news is that this led to some drastic changes in medical education!  Gross anatomy has been severely trimmed down in an effort to focus on clinically relevant anatomy for undifferentiated medical students. Gross anatomy dissection is reserved for students interested in a surgical career as an elective.  Much of that experience of cutting through muscle layers and isolating each artery, nerve and vein, and picking through layers of fat to get there has been replaced by complex computer programs that help students visualize the anatomy in 3D!  Since ultrasound is currently available to any physician through their phone, more emphasis of anatomy related to ultrasound aspects has been a focus of instruction.  For many of the pathological or anatomical variations, 3D printing has allowed for much cheaper and better alternatives for learning.  Everything is currently related to clinical medicine and focuses on key concepts that are necessary to master as opposed to “knowing” everything!  However, the changes did not stop there!

Much of the basic physiology content knowledge is now presented to the students in alternative ways using directed, short videos or providing references.  The class time has been reserved for higher level threshold concepts where students are placed in situations in which misconceptions and dangerous reasoning can be identified and corrected.  Simulations and standardized patients (robots) have become common place where students have to integrate what they were learning in Doctoring courses with real life physiology.  Students enjoy the safe environment and as faculty discovered the role of affect in cognition, they quickly realized that this was a time efficient pedagogy.  Faculty have discovered that 1 hour of intense, clinically oriented, and high yield threshold concept learning is much more beneficial and time efficient than 4 hours of didactic lecture. And faculty discovered it was fun!

Another aspect under appreciated by faculty of your time is that students enjoy being able to learn in their own environment as opposed to in the classroom.  In your day coffee shops were filled with students studying away, but technology has allowed for large communities of learners to “get together” from their own homes.  Time spent traveling from various hospital sites during the clerkships was saved by developing online communities for learning and using technology to facilitate discussion.  Students felt more at ease critiquing another’s differential with this new design and appreciated the time saved from travel.

As I said my friend, medical education has been transformed in exciting and very positive ways!  Successful faculty have worked with the students to enhance the learning experience as opposed to trying to teach the way we were taught!  Faculty focused more on the learning process as opposed to trying to relay knowledge to the students.  It was discovered that technology could not substitute for poor teaching. Faculty learned to develop activities to get students out of their comfort zones so that true learning could occur.  And lastly, faculty realized that their roles were not eliminated. Rather the role of faculty had to change from the expert sage on the stage to the facilitator of student learning!

Well, I can’t wait to see what the next ten years will bring!  You will be happy to know that your two daughters have grown up to be beautiful, caring people!

 

See you in 10 years and Fly Eagles Fly!!

Dave Harris of 2028

 

———————————————————————————————————————————————————————

 

I realize that this letter may be viewed as provocative, crazy, and aspiring!  However, I hope that the conversations in medical education can begin to REALLY improve patient safety and outcomes in the future.  What changes do you think will occur in medical education in the next 10 years?

 

David M. Harris, PhD, is currently an Associate Professor of Physiology at the University of Central Florida College of Medicine in Orlando, Florida.  He received his PhD from Temple University School of Medicine, completed his post-doctoral research at Thomas Jefferson University, and was offered his first faculty position at Drexel University College of Medicine. He moved away from Philly to Orlando in 2011.  He has written several educational research manuscripts, mostly about the use of high fidelity mannequin simulators in medical physiology and currently serves as an Associate Editor for Advances in Physiology Education.  He is also on the Aquifer Sciences (formerly MedU Science) leadership team developing a curriculum that provides tools or how to integrate basic science knowledge with clinical decision making  to prevent harm.

Reference:  Le TT, Prober CG. A Proposal for a Shared Medical School Curricular Ecosystem. Acad Med, March 6, 2018

Writing—Work in Progress

As a scientist and educator over the years, I have had the good fortune and pleasure to write and edit many manuscripts and documents, especially in collaborations with mentors, colleagues, and students. As most of us in the business know, writing doesn’t always come easy. It is often very challenging to convey information, thoughts, and ideas in a coherent and straightforward manner, and leave little room for misinterpretation, confusion, and ambiguity. In addition, it can be hard to convey excitement in writing. Writing is an art and deserves time and effort to create a masterpiece. Realistically though, time is rarely on our side for routinely creating works of art. However, we should still try!

 

Writing for me is work in progress, but very enjoyable. I know that I can always improve. Consequently, I seek better and more creative ways to express myself. I certainly wasn’t always enthusiastic about writing. Graduate students and postdoctoral fellows please take note! As a graduate student writing my early manuscripts, I would often string a few sentences together that seemed reasonable and whisper to myself, “This is close and good enough.” It rarely was. My doctoral mentor, Dr. Walter F. Boron (presently at Case Western Reserve University) almost always caught those good enough sentences when we sat together meticulously reviewing every sentence when editing a manuscript. This experience was humbling, yet highly educational, and certainly one of the high points of my graduate school years. I have continued this tradition in my own lab— enduring the occasional sighs of annoyance from my students.

 

The extra effort in writing can be a wonderful and rewarding experience. Many helpful resources are available. Don’t be afraid to pull out that composition/grammar book when needed. I am particularly fond of The Random House Handbook (1), which remains dust-free on my office bookshelf. Also, make use of that Thesaurus tab in Microsoft® Word! Finally, learn from the creativity of others in their writing prose, sentence structure, and expression usage.

I leave you with a list of some of my favorite writing points and guides from over the years.

I acquired most of these from my former advisor, Dr. Boron; I owe him a great deal of gratitude. I also used Ref. 1 to supplement my understanding. Write on and become my fellow artists!

1. Tell a story with the goal of exciting your readers (yes, even with a scientific manuscript).

2. Assemble outlines.

3. Write rather than stare at a blank screen/page for too long. You can always edit a mess later.

4. Edit exhaustively, but spaced out over time.

5. Get input from others.

6. Scrutinize every sentence.

7. Ask the following for every sentence:

“Does it say what I want it to say?”

“How can I make it clearer and/or shorter?”

8. Write active sentences. For example, “Compound X caused effect Y” is better than, “The effect Y was caused by compound X.”

Writing active sentences also holds when citing the work of others. For example, “Smith et al. showed that…” is stronger than, “It has been shown that… (Smith et al.).”

9. Use parallel construction in multi-part sentences. For example, “Compound X caused an increase in Y, and Compound A caused a decrease in B.”

Use parallel construction for multiple sentences that are clearly linked. For example, if you are making three points and you start the first sentence with, “First,…,” then you should have a “Second,…” and a “Third,…”

10. Give the direction of an effect whenever possible. Using the example above, “Compound X caused an increase in Y” is better than, “Compound X had an effect on Y.” Sentences should be as informative as possible.

11. Use present tense when discussing a universal truth.

12. Be consistent in using declarative or non-declarative statements in main headings, in-line headings, figure legends, etc. throughout a body of work.

13. Be careful assigning an action to an inanimate object such as an experimental result. For example, “Experiment X showed Y.” Did the experiment really perform an action?

14. Use caution when starting a sentence with This or These. The reference needs to be clear.

15. Use then in if/then statements. Many writers leave out the then. For example, “If you add media A, then the cells will die” flows better than, “If you add media A the cells will die.” If you use if in an if/then sentence, then hunt for the expected then.

16. Use more gerunds, which are refreshingly active. For example, “Applying X increased Y” is more appealing than, “Application of X increased Y.”

17. Experiment with less frequently used forms of punctuation, e.g., the semicolon and em dash. It’s fun!

18. Don’t confuse that and which clauses. That is used in a restrictive clause to understand sentence meaning. Which is used in a nonrestrictive clause to present additional information; which follows a comma.

19. Use because instead of since in many cases. Since refers to time.

20. Minimize split infinitives. Some will argue with me on this one. For example, “to argue incessantly” is better than, “to incessantly argue.” It is sometimes difficult to avoid splitting up to-base verb pairs because they then sound clumsy. Some will reason that a split is acceptable in those cases. My Father’s response: “No. Rewrite the sentence.”

21. Be careful with generic terms such as numerous, many, variety of, etc. Ask yourself, “Is the term accurate? How many exactly?” Consider giving an appropriate example to the reader.

22. Use respectively sparingly. For example, “The results from experiments A, B, and C were 5.6, 8.9, and 4.3, respectively” is hard to follow and tedious. A good general rule: Avoid sentences that require the reader to match up terms in different parts of the sentence.

23. Remember the neither…nor combination.

24. Know the difference between i.e. and e.g.

25. Consider abandoning the old-fashioned, two-space rule between sentences that was popular with typewriter use. We’re in the age of computers with line justification.

Mark O. Bevensee, PhD is an Associate Professor in the Department of Cell, Developmental & Integrative Biology at the University of Alabama at Birmingham. His laboratory focuses on studying the cellular and molecular physiology of acid-base transporters involved in regulating intracellular pH in health and disease. Dr. Bevensee also teaches— primarily cell and renal physiology to graduate and professional students. He has served as the Director of the Renal Module for medical students since 2006, and currently serves as the Co-Director & Interim Director of the Master of Science in Biomedical and Health Sciences post-baccalaureate program. He is a member of many education committees, including the Medical Education Committee of the University of Alabama School of Medicine. He serves on the editorial board of Advances in Physiology Education (American Physiological Society, APS) and Medical Science Educator (International Association of Medical Science Educators, IAMSE), as well as the Membership committee of IAMSE. He has been a member of the APS for over 20 years, and is the newly elected Awards Councilor of the Cell and Molecular Physiology Section (CaMPS) Steering Committee of the APS.

Reference:

1. Crews, F. C. (1992). The Random House Handbook, 6th Ed. McGraw-Hill, Inc., New York.

Diary of an Adventure Junkie: Be Daring…Step Outside Your Comfort Zone!

19257649I love adventures, don’t you?  In fact, I love them so much that I am convinced that an adventure can happen anywhere and anytime.  I am a world traveler, the silly shopper who throws items into the grocery cart the length of the aisle just to make my daughter laugh, I geocache and I jump in rain puddles…but sometimes the excitement of an unknown adventure turns into anxiety and fear.  Like most people, I have had my fair share of anxiety about the unknown…starting graduate school, moving, becoming a parent, my first faculty position.  However, stepping outside of your comfort zone and trying something new can often have fantastic results.  In fact, physiology, the foundation of my professional adventures, is actually perfectly designed to help us achieve, when we place ourselves just outside of our comfort zone.

Upon completion of my postdoctoral fellowship, I found myself embarking on a series of new adventures…motherhood, moving and monetary-insufficiency.  At this juncture, monetary-insufficiency demanded that I find a fount of funds and quickly, so I applied for a physiology teaching position at a brand-new, doors-opening-soon medical school.  With so many non-professional challenges already on my plate, many asked why I would choose to start my career at a start-up institution.  The answers are simple…the job was in my hometown, it moved me from unemployed to employed and I had the chance to build a program and my career simultaneously from the ground up.  Building two sand castles at the same time was certainly pushing me over the edge of my comfort zone.

I decided immediately that I needed to make physiology interactive.  I did not want to reinvent the wheel and instead felt I could tap into a fellow physiologist’s methods and have students answer real-time questions in class with colored-construction paper.  My hope was that this interactive way of lecturing would benefit me as a new teacher and allow me to know when my students understood the lecture material and when they didn’t.  I proposed my idea to a few of the basic scientists on faculty with me and was met with a lot of, “well, you can try that it you want to,” coupled with doubtful looks.  Maybe I shouldn’t pursue this after all…I need everyone’s approval, right?

Without full support from senior faculty, I watched my comfort zone slipping away like the receding tide.  But I am an adventure junkie, so steeled with my ever present resolve, I marched down the hall to my first lecture.  I handed out four sheets of paper, red, blue, green and purple, to each entering student, admonished them not to lose the papers and dimmed the lights.  The lecture started and up popped the first question.  “Vote with confidence!” I cried after I had read the question stem.  Hesitantly, hands were raised and an answer was given in the form of colored-construction paper.  I explained why the answer the majority had given was correct and my comfort zone came slinking back towards me.  After a few more questions, the comfort zone of the class slowly reentered the auditorium and we all breathed a collective sigh of relief.  Our newest adventure no longer evoked feelings of anxiety and physiology became interactive in our school.  Soon, thereafter other faculty wanted to poll students during lecture, I was commended for starting the movement and the school adopted an electronic audience response system.  But now what?

Shortly after beginning my faculty position, I knew I wanted to engage K12 children in science and began participating in PhUn week.  I started small, 25 students in one classroom.  I felt comfortable with these students, managed by their teacher, while l was partially shielded by my fellow physiologists; but I knew that many more would push me to the edge of my comfort circle, where the waves of anxiety waited to lap over me.  With each year of involvement, the number of participants and my comfort with them grew, expanding my comfort zone and forcing the waves out with the tide.  I connected with a local first-grade teacher who invited me to work with her class and facilitate their discovery of the special senses and germ transmission.  Then it happened…the wave crashed over me and I was rolling, tossing and being pulled down by the riptide. The upcoming project with one first-grade class had been expanded, “Please include all of the first-grade and the kindergarten classes too,” she said, “800 students in all.”  800! I can’t manage 800 students.  Fearing I would disappoint the young scientists-in-the-making, I agreed.  My comfort zone however, was on hiatus, minus an internet, telephone or even smoke signal connection.  I started the plotting and planning, recruiting volunteers, creating a schedule for each of the classes, buying supplies and encountering sleepless nights of worry.  The day of the Human Body Fair arrived, as did I, full of inward worry and outward energy.  After two days, 800 students, 40 volunteers, 6 physiology stations and innumerable cups of coffee, my comfort zone telephoned and said, “See, I knew you could do this with just a little push.”

All of these adventures have created anxiety and fear and ultimately feelings of satisfaction.  Sometimes I feel like my comfort zone took a trip to the beach without me, but it always comes back and I am always a better person for having let it take a vacation.  Now, as I swim towards my next adventure, a life outside of traditional academia, I know that while I may submerge at times, my head will always bob back up above the water and ride the waves.

Taylor

 

 

 

 

 

 

 

 

Jessica C Taylor is a physiologist, medical educator and adventure seeker. For the past six years she has served as a member of the physiology faculty at the William Carey University College of Osteopathic Medicine. Outside of the classroom she focuses on K12 outreach, presenting science to the general public and encouraging young women to pursue careers in science and healthcare. Her comfort zone is currently being washed out to sea as she leaves her current university in pursuit of other scientific arenas. Hopefully, she will be safely back in the zone soon.