Tag Archives: professional development

Evidence-based teaching: when evidence is not enough
Gregory J. Crowther, PhD
Everett Community College

On June 23, Dr. Chaya Gopalan of Southern Illinois University spoke at the APS Institute of Teaching and Learning on the topic of “The Flexibility of Using the Flipped Classroom as a Virtual Classroom During the COVID-19 Pandemic.” The presentation was great — full of empirical data, practical tips, and audience participation.

One of the questions that arose was, assuming that one is flipping a class with video lectures, how long should those video lectures be? I can’t remember what Chaya said about this at the time, but many others used the chat window to weigh in. They mostly argued that shorter is better, with 10-12 minutes being a commonly prescribed upper limit.

The author droning on during a long video lecture.

I had heard this “shorter is better” mantra many times before, and believed that it was well-supported by the literature. Still, I had resisted any impulse to shorten my own videos. I was already generating one video per chapter per course — 50 videos per quarter in all. If I divided each video into four shorter videos, that would be 200 videos per quarter to manage. Couldn’t my students just hit “pause” and take breaks as needed?

Thus, the video-length issue was making me increasingly uncomfortable. I think of myself as an evidence-based teacher, yet I seemed unwilling to go where the evidence was pointing.

Having battled myself to an impasse, I decided to email Chaya. I wrote:

…If you — as an expert flipper who has read the literature and published your own papers on this — were to tell me, “Come on, Greg, the evidence is overwhelming — for the good of your students you just need to make your videos shorter — stop whining and do it!” then I probably would comply. So … what do you think?

Chaya declined to respond with an ultimatum, but she did note that her own videos vary greatly in length — from 8 minutes to an hour! A lot of this variation is topic-specific, she said; some “stories” need to be told as a single chunk, even if it takes longer to do so.

Chaya’s point about chunking the material according to natural breakpoints was exactly what I needed to hear. While the idea of shortening videos because “shorter is better” did not itself inspire me, the idea of finding those breakpoints and reorganizing the material accordingly seemed utterly worthwhile. Maybe this would help my students more easily track their progress within each chapter. And off I went — I was finally ready to shorten my videos!

So, what lessons can be extracted from this bout of navel-gazing?

The thing that jumps out at me is this: my long-held resistance to a fairly mild idea (“make your videos shorter!”) was suddenly overcome not by conclusive new research, but by a subtle shift in perspective. When Chaya made a particular point that happened to resonate with me, I now wanted to make the change that I had been guiltily avoiding for months.

This was — for me, at least — a valuable reminder that, while evidence-based teaching is undoubtedly a good thing, behavior is rarely changed by evidence alone. There’s just no substitute for direct conversations in which open-minded people with shared values can stumble toward a common understanding of something.

It may be slightly heretical for me to say so, but I’ll take a good conversation over a peer-reviewed paper any day.

Greg Crowther teaches human anatomy and physiology at Everett Community College (north of Seattle). He is the co-creator of Test Question Templates, a framework for improving the alignment of biology learning activities and summative assessments.

Balancing Coursework, Student Engagement, and Time
Jennifer Rogers, PhD, ACSM EP-C, EIM-2
Associate Professor of Instruction
Director, Human Physiology Undergraduate Curriculum
Department of Health and Human Physiology
University of Iowa

First, a true story. Years ago, when my son was very little, he and his preschool friends invented a game called “What’s In Nick’s Pocket?” Every day before leaving for school my son would select a small treasure to tuck into his pocket.  The other 3- and 4- year olds at school would crowd around and give excited “oooh’s” and “aaah’s” as he presented his offering, which had been carefully selected to delight and amaze his friends.  And so it is with the PECOP blog forum—as each new post arrives in my inbox I wonder with anticipation what educational gem has been mindfully curated by colleagues to share with the PECOP community.

My contribution? Thoughts on the balance between coursework, student engagement, and time.  Student engagement in this context refers to a wide range of activities that exist outside of the traditional classroom that offer valuable opportunities for career exploration and development of professional skills.  Examples include:

  • Internships: either for course credit or independently to gain experience within a particular setting
  • Study Abroad opportunities
  • Participation in a student organization
  • Peer tutor/mentoring programs
  • Research: either as a course-based opportunity or as a lab assistant in a PI’s lab (paid or unpaid)
  • Job experiences: for example, as a certified nursing assistant, medical transcriptionist, emergency medical technician
  • Volunteer and community outreach experiences
  • Job shadowing/clinical observational hours

These are all increasingly popular co-curricular activities that allow students to apply concepts from physiology coursework to real-world scenarios as an important stepping stone to enhance career readiness and often personal development.  At the same time, however, students seem to more frequently communicate that they experience stress, anxiety, and concerns that they “are not at their best,” in part due to balancing coursework demands against time demands for other aspects of their lives.  If you are interested in learning more about the health behaviors and perceptions of college students, one resource is the American College Health Association-National College Health Assessment II (ACHA-NCHA II) Undergraduate Student Reference Group Data Report Fall 2018 (1).  Relevant to this blog, over half of the undergraduates surveyed (57% of 11,107 participants) reported feeling overwhelmed by all they had to do within the past two weeks.

I recently gave an undergraduate physiology education presentation that included this slide.  It was an initial attempt to reconcile how my course, Human Physiology with Lab, (a “time intensive course” I am told), fits within the context of the undergraduate experience.

I was genuinely surprised by the number of undergraduates in the audience who approached me afterward to essentially say “Thank you for recognizing what it feels like to walk in my shoes, it doesn’t seem like [my professors, my PI, my parents] understand the pressure I feel. “

In response, and prior to the changes in higher education following COVID-19, I began to ponder how to balance the necessary disciplinary learning provided by formal physiology coursework and participation in also-valuable experiential opportunities.  The Spring 2020 transition to virtual learning, and planning for academic delivery for Fall 2020 (and beyond), has increased the urgency to revisit these aspects of undergraduate physiology education.  As PECOP bloggers and others have mentioned, this is a significant opportunity to redefine how and what we teach. 

It has been somewhat challenging to me to consider how to restructure my course, specifically the physiology labs, in the post COVID-19 era when lab activities need to be adaptable to either in-person or virtual completion.  My totally-unscientific process to identify areas for change has been the “3-R’s” test. With regard to physiology lab, there may be many important learning objectives:

  • An ability to apply the scientific method to draw conclusions about physiological function
  • The act of collecting data and best practices associated with collection of high-quality data (identification of control variables, volunteer preparation/preparation of the sample prior to testing, knowledge of how to use equipment)
  • Application of basic statistical analyses or qualitative analysis techniques
  • Critical thought and quantitative reasoning to evaluate data
  • How to work collaboratively with others, that may be transferrable to future occupational settings: patients, clients, colleagues
  • Information literacy and how to read and interpret information coming from multiple resources such as scientific journals, online resources, advertisements, and others, and
  • Science communication/the ability to communicate information about human function, in the form of individual or group presentations, written lab reports, poster presentations, formal papers, infographics, mock patient interactions, etc.

Arguably, these are all important lab objectives.  Really important, in fact.

So, what is the 3 R’s test, and how might it help?  The 3 R’s is simply my way of prioritizing.  In order to triage lab objectives, I ask myself: What is Really Important for students to master throughout the semester versus what is Really, Really Important, or even Really, Really, REALLY Important?  For example, if I can only designate one activity that is Really, Really, REALLY Important, which one would it be?  The answer for my particular course is science communication.  It is obviously a matter of semantics, but I like being able to justify that all course activities are still Really Important, even if it is only my inner dialogue.  Going into the unknowns of the Fall semester, this will help me guide how course activities in physiology lab are transformed. 

Another worthy goal, in light of academic stress and allocation of effort for maximum benefit, is to improve the transparency of expectations for students.  A common question that arose during the spring semester was if students would still learn what they needed to in preparation for future coursework or post-graduation opportunities.  The identification of one or two primary learning outcomes (the Really, Really, REALLY important ones) may attenuate feeling overwhelmed by a long list of lab-related skills to master if there is another abrupt shift to virtual instruction mid-semester; course objectives can still be met even if we discontinue in-person lab sessions. 

To return to the original topic of balancing time demands allocated to formal coursework and valuable experiences, the two broad conclusions I have reached fall under the categories what I can do in my own courses and suggestions for conversations to be had at the program level.

In My Courses: COVID-19 has sped up the time course for revisions I had already been considering implementing in physiology labs.  Aligning course activities with what is Really, Really, REALLY important will help me manage preparation efforts for the coming fall semester (and hopefully keep my stress levels manageable).  Another important goal is to improve the transparency of course goals for students, ideally alleviating at least a portion of their course-induced stress through improved allocation of effort.  Ultimately, I hope the lab redesigns reinforce physiology content knowledge AND provide relevant experiences to promote career readiness.  *It is also necessary to emphasize to students that both will require focused time and effort.

At the Program Level:  Earning a degree in physiology is not based on acquired knowledge and skills in a single course, rather it is an end-product of efforts across a range of courses completed across an academic program.  Here are some ideas for program-wide discussion:

  • Faculty should identify the most important course outcome for their respective courses, and we should all meet to talk about it. Distribute program outcomes throughout the courses across the breadth of the program.  (Yes, this is backward design applied to curriculum mapping.)  From the faculty perspective, perhaps this will reduce feeling the need to teach all aspects of physiology within a particular course and instead keep content to a manageable level.  From the student perspective, clear communication of course objectives, in light of content presented within any particular course, may promote “buy in” of effort.  It may also build an awareness that efforts both inside and outside of the classroom are valuable if the specific body of content knowledge and aptitudes developed across the curriculum, relevant for future occupational goals, is tangibly visible.
  • Review experiential/applied learning opportunities. Are there a sufficient number of opportunities embedded within program coursework?  If not, are there other mechanisms available to students, for example opportunities through a Career Center or other institution-specific entities?  Establishing defined pathways for participation may reduce student stress related to not knowing how to find opportunities.  Another option would be to consider whether or not the program would benefit from a career exploration/professional skills development course.  Alternatively, could modules be developed and incorporated into already existing courses? 
  • Lastly, communicate with students the importance of engaging in co-curricular activities that are meaningful to them; this is more important than the number of activities completed. Time is a fixed quantity and must be balanced between competing demands based on personal priorities. 

As we consider course delivery for Fall 2020, the majority of us are reconsidering how we teach our own courses.  There are also likely ongoing conversations with colleagues about plans to navigate coursework in the upcoming semesters.  If everything is changing anyway, why not take a few minutes to share what is Really, Really, REALLY important in your courses?  The result could be an improved undergraduate experience related to balancing the time and effort allocations required for success in the classroom along with opportunities for participation in meaningful experiences.

Reference:

1. American College Health Association. American College Health Association-National College Health Assessment II: Undergraduate Student Reference Group Data Report Fall 2018. Silver Spring, MD: American College Health Association; 2018.

Jennifer Rogers completed her PhD and post-doctoral training at The University of Iowa (Exercise Science).  She has taught at numerous institutions ranging across the community college, 4-year college, and university- level higher education spectrum.  Jennifer’s courses have ranged from small, medium, and large (300+ students) lecture courses, also online, blended, and one-course-at-a-time course delivery formats.  She routinely incorporates web-based learning activities, lecture recordings, and other in-class interactive activities into class structure.  Jennifer’s primary teaching interests center around student readiness for learning, qualitative and quantitative evaluation of teaching strategies, and assessing student perceptions of the learning process.

Strategies and Tips for Inclusive Advising
Katie Johnson, PhD
Programmatic Improvement Consultant
Trail Build, LLC

Educators often find themselves in the role of advisor, either formally or incidentally. If you teach or lead a research group, it is likely students or trainees arrive at your office door with a plethora of questions or issues, seeking your input. Yet, very few academics have formal training in how to advise students.

How do you become a productive advisor who supports the success of your students? For the purpose of our discussion, I am defining advisor as any person who provides guidance, information, or advice to a student or trainee, the advisee. Many productive and inclusive advising strategies align with effective teaching practices.

Inclusive advising strategies interrupt assumptions an advisor may have about the needs, issues, or questions facing an advisee. It also acknowledges and embraces the relationship between the academic, professional, and personal trajectories of each advisee. One approach to inclusive advising is to use a question-focused advising strategy. Rather than advisors serving only as a conduit for information, advisors should ask advisees thoughtful and strategic questions, within the context of a collegial and respectful conversation. When an advisor carefully and attentively listens to the responses provided by the advisee, the advisor gains important information about how to support and assist the advisee.

There are many points to consider when advising, but here are a few suggestions for advisors, followed by examples of questions advisors can ask advisees. These questions are not to be used in sequential order, but rather as needed.

1. Listen carefully. This strategy is a lot harder than it sounds. It is easy to provide information, but is the information the right information? When careful and engaged listening directs advising, advisors are much more likely to provide the information and support needed by the advisee.

Questions to ask advisees: How can I help you? What brings you to my office today? What are your goals for this project/assignment/course? Did we address the issue that brought you in today? Do you think the solutions we talked about today are attainable? Do you have any other questions for me?

2. Believe advisees when they say they are struggling. Again, much harder than it sounds. Help advisees think through productive steps forward, rather than sending them off to figure things out on their own. Check-in with them later to help address lingering questions.

Questions to ask advisees: Can you remember a time when things were going well? What worked for you at that point? What strategies are you using to navigate these issues? If those strategies are not working, can we brainstorm other strategies? Can we work together to find resources to support your success? Do you have local friends you can turn to when you are having difficulties?

3. Guide advisees to identify what they need to achieve their academic, professional, and personal goals. After careful listening, assign advisees homework. Assignments could include visiting a resource on campus or doing directed online research to find the information they need to design a plan to accomplish their goals. Schedule future appointments for the advisee to report back what they found.

Questions to ask advisees: What information do you need to achieve your goals? What information do you have? What resources do you need to find? Is there anyone you know who would be a good resource?

4. Recognize the power dynamic between advisors and advisees. Even the most friendly and welcoming advisors can be intimidating to advisees. It takes courage to talk to an advisor. Given the power dynamic, advisees may be too intimidated to speak-up when they do not understand their advisor’s suggestions or advice.

Questions to ask advisees: Can you explain to me what your next steps should be to address this issue? Is there anything I said that I need to explain in a different way for you to be better prepared to address this issue?

5. Advisors are at a different point in their career than their advisees. It is likely the life priorities of any given advisee and advisor are different. Ask advisees about their priorities, listen carefully, and believe what they say.

Questions to ask advisees: Where do you see yourself in ten years? What is your ideal lifestyle? What is essential to this lifestyle for you to feel successful? How do you like to spend your time?

While these concepts may take time to incorporate into your advising, here are a few quick tips:

1. Really good advising takes time. Make sure to reserve enough time and energy to have productive advising meetings.

2. Successful advising is a continuous process. Expect numerous interactions in the classrooms, hallways, over e-mail, and during private meetings. This multiple check-in approach allows for investigation and reflection.

3. Articulate the expectations and responsibilities of advisees and advisors. It is possible you are your advisee’s first advisor. Advisees may not know the reason or meaning for an advisor or appropriate boundaries. As an advisor, determine your expectations and communicate these expectations to your advisees.

4. Offer options to schedule meetings. While walk-in office hours have some benefits, a dedicated time and space allows both advisee and advisor to focus on the task at hand. Offer designated advising timeslots for advisees. Signing-up for timeslots could occur either on a sheet of paper or using a free online tool that automatically syncs to online calendars.

5. If you expect advisees to meet at your office, make sure you tell your advisees where your office is located. Advisees should also know how to contact you if they must change or miss a meeting.

6. Schedule group advising to work with advisees who have similar academic or professional (NOT personal) issues. This will save the advisor time, and the advisees benefit from conversations with students or trainees asking similar questions.

7. Recruit a more advanced student or trainee to meet with advisees about standard advising issues, such as program requirements or course registration. It is effective if this meeting occurs prior to the advisor-advisee meeting, so unanswered questions and clarifications can be provided by the advisor.

8. You do not need to know the answer to everything. Know your limits and your resources. Institutions often have services and professionals trained in handling various student situations. Have their phone numbers or emails readily available so you can connect advisees directly to the assistance they need. Know your responsibilities around state and federally mandated reporting.

Productive and inclusive advising is an opportunity to help and to support students and trainees as they develop their own paths to success. What an amazing perk of being an educator! Happy Advising!

REFERENCES:

Chambliss DF. How College Works. Harvard University Press, 2014.

Cooper KM, Gin LE, Akeeh B, Clark CE, Hunter JS, Roderick TB, Elliott DB, Gutierrez LA, Mello RM, Pfeiffer LD, Scott RA, Arellano D, Ramirez D, Valdez EM, Vargas C, Velarde K, Zheng Y, Brownell SE. Factors that predict life sciences student persistence in undergraduate research experiences. PLOS ONE 14: e0220186, 2019.

Johnson KMS, Briggs A, Hawn C, Mantina N, Woods BC. Inclusive practices for diverse student populations: Experimental Biology 2017. Adv Physiol Educ 43: 365–372, 2019.

Katie Johnson, Ph.D., is an experienced practitioner and evaluator of inclusive teaching and mentoring practices. Dr. Johnson advises and serves on national STEM education initiatives and committees, working with a diverse network of collaborators. As a Programmatic Improvement Consultant, Dr. Johnson assists institutions and organizations to develop innovative solutions to curricular and assessment challenges. Prior to becoming an independent consultant for Trail Build, LLC, Dr. Johnson was Chair and Associate Professor of Biology at Beloit College. She earned her Ph.D. in the Department of Molecular Physiology and Biophysics at Vanderbilt University and her B.S. from Beloit College. Disclosure: Dr. Johnson serves as an external consultant for the American Physiological Society.

Emerged Idea Led to a Unique Experience in Elephant’s City
Suzan A. Kamel-ElSayed, VMD, MVSc, PhD
Associate Professor, Department of Foundational Medical Studies
Oakland University

In May 2019, the physiology faculty at the Oakland University William Beaumont School of Medicine Department of Foundational Medical Studies received an email from Dr. Rajeshwari, a faculty member in JSS in a Medical College in India.

While Dr. Rajeshwari was visiting her daughter in Michigan, she requested a departmental visit to meet with the physiology faculty. Responding to her inquiry, I set up a meeting with her and my colleagues where Dr. Rajeshwari expressed her willingness to invite the three of us to present in the 6th Annual National Conference of the Association of Physiologists of India that was held from Sept. 11-14, 2019, in Mysuru, Karnataka, India.

The conference theme was: “Fathoming Physiology: An Insight.” My colleague then suggested a symposium titled “Physiology of Virtue,” where I could present the physiology of fasting since I fast every year during the month of Ramadan for my religion of Islam. To be honest, I was surprised and scared at my colleague’s suggestion. Although I fast every year due to the Quranic decree upon all believers, I was not very knowledgeable of what fasting does to one’s body. In addition, I faced the challenge of what I would present since I did not have any of my own research or data related to the field of fasting. Another concern was the cultural aspect in talking about Ramadan in India and how it would be received by the audience. However, willing to face these challenges, I agreed and admired my colleague’s suggestion and went forward in planning for the conference.

After Dr. Rajeshwari sent the formal invitation with the request for us to provide an abstract for the presentation, I started reading literature related to fasting in general. Reading several research articles and reviews, I was lost in where to begin and what to include. I began to ponder many questions: How will I present fasting as a virtue? Should I bring in religious connections? Will I be able to express spiritual aspects from a Muslim’s perspective? I decided that the aim of my presentation would be to describe how a healthy human body adapts to fasting, and the outcomes that practicing fasting has on an individual level and on the society as a whole. In addition, I found that focusing on the month of Ramadan and etiquettes of fasting required from Muslims had many physiological benefits and allowed me to have a real-world example in which fasting is present in the world.

Visiting India and engaging with physiologists from all over India was a really rich experience. The hospitality, generosity and accommodation that were provided was wonderful and much appreciated. The conference’s opening ceremony included a speech from the University Chancellor who is a religious Hindu Monk, along with Vice Chancellors, the organizing chair, and the secretary. In addition, a keynote speech on the physiological and clinical perspectives of stem cell research was presented by an Indian researcher in New Zealand. I was also able to attend the pre-conference workshops “Behavioral and Cognitive Assessment in Rodents” and “Exercise Physiology Testing in the Lab and Field” free of charge.

For my presentation, I included the definition, origin and types of fasting. In addition, I focused on the spiritual and physical changes that occur during Ramadan Intermittent Fasting (RIF). Under two different subtitles, I was able to summarize my findings. In the first subtitle, “Body Changes During RIF,” I listed all the changes that can happen when fasting during Ramadan. These changes include: activation of stress induced pathways, autophagy, metabolic and hormonal changes, energy consumption and body weight, changes in adipose tissue, changes in the fluid homeostasis and changes in cognitive function and circadian rhythm. In the second subtitle, “Spiritual Changes During RIF,” I presented some examples of spiritual changes and what a worshipper can do. These include development of character, compassion, adaptability, clarity of mind, healthy lifestyle and self-reflection. To conclude my presentation, I spoke of the impacts RIF has on the individual, society, and the global community.

In conclusion, not only was this the first time I visited India, but it was also the first time for me to present a talk about a topic that I did not do personal research on. Presenting in Mysuru not only gave me a chance to share my knowledge, but it allowed me to gain personal insight on historical aspects of the city. It was a unique and rich experience that allows me to not hesitate to accept similar opportunities. I encourage that we, as physiology educators, should approach presenting unfamiliar topics to broaden our horizons and enhance our critical thinking while updating ourselves on research topics in the field of physiology and its real-world application.  Physiology education is really valued globally!

Suzan Kamel-ElSayed, VMD, MVSc, PhD, received her bachelor of Veterinary Medicine and Masters of Veterinary Medical Sciences from Assiut University, Egypt. She earned her PhD from Biomedical Sciences Department at School of Medicine in Creighton University, USA. She considers herself a classroom veteran who has taught physiology for more than two decades. She has taught physiology to dental, dental hygiene, medical, nursing, pharmacy and veterinary students in multiple countries including Egypt, Libya and USA. Suzan’s research interests are in bone biology and medical education. She has published several peer reviewed manuscripts and online physiology chapters. Currently, she is an Associate Professor in Department of Foundational Medical Studies in Oakland University William Beaumont School of Medicine (OUWB) where she teaches physiology to medical students in organ system courses. Suzan is a co-director of the Cardiovascular Organ System for first year medical students. Suzan also is a volunteer physiology teacher in the summer programs, Future Physicians Summer Enrichment Program (FPSP) and Detroit Area Pre-College Engineering Program (DAPCEP) Medical Explorers that are offered for middle and high school students. She has completed a Medical Education Certificate (MEC) and Essential Skills in Medical Education (ESME) program through the Association for Medical Education in Europe (AMEE) and Team-Based Learning Collaborative (TBLC) Trainer- Consultant Certification. She is also a member in the OUWB Team-Based Learning (TBL) oversight team. Suzan is an active member in several professional organizations including the American Physiological Society (APS); Michigan Physiological Society (MPS); International Association of Medical Science Educators (IAMSE); Association of American Medical Colleges (AAMC); Team Based Learning Collaborative (TBLC); Egyptian Society of Physiological Sciences and its Application; Egyptian Society of Physiology and American Association of Bone and Mineral Research (ASBMR).

An inventory of meaningful lives of discovery

by Jessica M. Ibarra

I always had this curiosity about life. Since the very beginning, always wanting to understand how animals’ breathe, how they live, how they move. All that was living was very interesting. – Dr. Ibarra

“I always had this curiosity about life and I wanted to become a doctor, but my parent told me it was not a good idea,” Lise Bankir explained in her interview for the Living History Project of the American Physiological Society (APS).  The video interview (video length: 37.14 min.) is part of a rich collection over 100 senior members of the APS who have made outstanding contributions to the science of physiology and the profession. 

The archive gives us great insight into how these scientists chose their fields of study.  As Dr. Bankir, an accomplished renal physiologist, explain how she ended up “studying the consequences of vasopressin on the kidney.”  She describes her work in a 1984 paper realizing “high protein was deleterious for the kidney, because it induces hyperfiltration,” which of course now we accept that high protein accelerates the progression of kidney disease. Later she describes her Aha! moment, linking a high protein diet to urea concentration, while on holiday. 

“It came to my mind that this adverse effect of high protein diet was due to the fact that the kidney not only to excrete urea (which is the end product of proteins), but also to concentrate urea in the urine.  Because the plasma level of urea is already really low and the daily load of urea that humans excrete need that urea be concentrated about 100-fold (in the urine with respect to plasma).” 

Other interviews highlight how far ahead of their time other scientists were.  As is the case when it comes to being way ahead of teaching innovations and active learning in physiology with  Dr. Beverly Bishop.  In her video interview, you can take inspiration from her 50 years of teaching neurophysiology to physical therapy and dental students at SUNY in New York (video length: 1 hr. 06.09 min.).  Learn about how she met her husband, how she started her career, and her time in Scotland.  Dr. Bishop believed students could learn better with experimental laboratory activities and years ahead of YouTube, she developed a series of “Illustrated Lectures in Neurophysiology” available through APS to help faculty worldwide.

She was even way ahead of others in the field of neurophysiology.  Dr. Bishop explains, “everyone knows that they (expiratory muscles) are not very active when you are sitting around breathing quietly, and yet the minute you have to increase ventilation (for whatever reason), the abdominal muscles have to play a part to have active expiration.  So, the question I had to answer was, “How are those muscles smart enough to know enough to turn on?” Her work led to ground breaking work in neural control of the respiratory muscles, neural plasticity, jaw movements, and masticatory muscle activity.

Another interview shed light on a successful career of discovery and their implications to understanding disease, as is the case with the video interview of Dr. Judith S. Bond. She describes the discovery of meprins proteases as her most significant contribution to science (video length: 37.38 min.), “and as you know, both in terms of kidney disease and intestinal disease, we have found very specific functions of the protease.  And uh, one of the functions, in terms of the intestinal disease relates to uh inflammatory bowel disease.  One of the subunits, meprin, alpha subunit, is a candidate gene for IBD and particularly ulcerative colitis. And so that opens up a window to – that might have significance to the treatment of ulcerative colitis.”

Or perhaps you may want to know about the life and research of Dr. Bodil Schmidt-Nielsen, the first woman president of the APS (video length: 1 hr. 18.07 min.) and daughter of August and Marie Krogh.  In her interview, she describes her transition from dentistry to field work to study water balance on desert animals and how she took her family in a van to the Arizona desert and while pregnant developed a desert laboratory and measured water loss in kangaroo rats.  Dr. Schmidt-Nielsen was attracted to the early discoveries she made in desert animals, namely that these animals had specific adaptations to reduce their expenditure of water to an absolute minimum to survive. 

The Living History Project managed to secure video interviews with so many outstanding contributors to physiology including John B. West, Francois Abboud, Charles TiptonBarbara Horwitz, Lois Jane Heller, and L. Gabriel Navar to name a few.  For years to come, the archive provides the opportunity to learn from their collective wisdom, discoveries, family influences, career paths, and entries into science. 

As the 15th anniversary of the project approaches, we celebrate the life, contributions, dedication, ingenuity, and passion for science shared by this distinguished group of physiologists.  It is my hope you find inspiration, renewed interest, and feed your curiosity for science by taking the time to watch a few of these video interviews. 

Dr. Jessica M. Ibarra is an Assistant Professor of Physiology at Dell Medical School in the Department of Medical Education of The University of Texas at Austin.  She teaches physiology to first year medical students.  She earned her B.S. in Biology from the University of Texas at San Antonio.  Subsequently, she pursued her Ph.D. studies at the University of Texas Health Science Center in San Antonio where she also completed a postdoctoral fellowship.  Her research studies explored cardiac extracellular matrix remodeling and inflammatory factors involved in chronic diseases such as arthritis and diabetes.  When she is not teaching, she inspires students to be curious about science during Physiology Understanding Week in the hopes of inspiring the next generation of scientists and physicians. Dr. Ibarra is a native of San Antonio and is married to Armando Ibarra.  Together they are the proud parents of three adult children – Ryan, Brianna, and Christian Ibarra.

Teaching for Learning: The Evolution of a Teaching Assistant

An average medical student, like myself, would agree that our first year in medical school is fundamentally different from our last, but not in the ways most of us would expect. Most of us find out that medical school not only teaches us about medicine but it also indirectly teaches us how to learn. But what did it take? What is different now that we didn’t do back in the first year? If it comes to choosing one step of the road, being a teaching assistant could be a turning point for the perception of medical education in the long run, as it offers a glimpse into teaching for someone who is still a student.

At first, tutoring a group of students might seem like a simple task if it is only understood as a role for giving advice about how to get good grades or how to not fail. However, having the opportunity to grade students’ activities and even listen to their questions provides a second chance at trying to solve one’s own obstacles as a medical student. A very interesting element is that most students refuse to utilize innovative ways of teaching or any method that doesn’t involve the passive transmission of content from speaker to audience. There could be many reasons, including insecurity, for this feeling of superficial review of content or laziness, as it happened for me.

There are, in fact, many educational models that attempt to objectively describe the effects of educating and being educated as active processes. Kirkpatrick’s model is a four-stage approach which proposes the evaluation of specific aspects in the general learning outcome instead of the process as a whole (1). It was initially developed for business training and each level addresses elements of the educational outcome, as follows:

  • Level 1- Reaction: How did learners feel about the learning experience? Did they enjoy it?
  • Level 2- Learning: Did learners improve their knowledge and skills?
  • Level 3- Behavior: Are learners doing anything different as a result of training?
  • Level 4- Results: What was the result of training on the business as a whole?

Later, subtypes for level 2 and 4 were added for inter-professional use, allowing its application in broader contexts like medicine, and different versions of it have been endorsed by the Best Evidence in Medical Education Group and the Royal College of Physicians and Surgeons of Canada (1) (2).  A modified model for medical students who have become teachers has also been adapted (3), grading outcomes in phases that very closely reflect the experience of being a teaching assistant. The main difference is the inclusion of attitude changes towards the learning process and the effect on patients as a final outcome for medical education. The need for integration, association and good problem-solving skills are more likely to correspond to levels 3 and 4 of Kirkpatrick’s model because they overcome traditional study methods and call for better ways of approaching and organizing knowledge.

Diagram 1- Modified Kirkpatrick’s model for grading educational outcomes of medical student teachers, adapted from (3)

These modifications at multiple levels allow for personal learning to become a tool for supporting another student’s process. By working as a teaching assistant, I have learned to use other ways of studying and understanding complex topics, as well as strategies to deal with a great amount of information. These methods include active and regular training in memorization, deep analysis of performance in exams and schematization for subjects like Pharmacology, for which I have received some training, too.

I am now aware of the complexity of education based on the little but valuable experience I have acquired until now as a teacher in progress. I have had the privilege to help teach other students based on my own experiences. Therefore, the role of a teaching assistant should be understood as a feedback process for both students and student-teachers with a high impact on educational outcomes, providing a new approach for training with student-teaching as a mainstay in medical curricula.

References

  1. Roland D. Proposal of a linear rather than hierarchical evaluation of educational initiatives: the 7Is framework. Journal of Educational Evaluation for Health Professions. 2015;12:35.
  2. Steinert Y, Mann K, Anderson B, Barnett B, Centeno A, Naismith L et al. A systematic review of faculty development initiatives designed to enhance teaching effectiveness: A 10-year update: BEME Guide No. 40. Medical Teacher. 2016;38(8):769-786.
  3. Hill A, Yu, Wilson, Hawken, Singh, Lemanu. Medical students-as-teachers: a systematic review of peer-assisted teaching during medical school. Advances in Medical Education and Practice. 2011;:157.

The idea for this blog was suggested by Ricardo A. Pena Silva M.D., Ph.D. who provided guidance to Maria Alejandra on the writing of this entry.

María Alejandra is a last year medical student at the Universidad de Los Andes, School of Medicine in Bogota, Colombia, where she is has been a teaching assistant for the physiology and pharmacology courses for second-year medical students. Her academic interests are in medical education, particularly in biomedical sciences.  She is interested in pursuing a medical residency in Anesthesiology. Outside medical school, she likes running and enjoys literature as well as writing on multiple topics of personal interest.
A Fork in the Road: Time to Re-think the Future of STEM Graduate Education

“Rather than squeeze everyone into preordained roles, my goal has always been to foster an environment where the players can grow as individuals and express themselves creatively within a team structure” –Phil Jackson (1)

Recently, I was reading the PECOP blog “Paradigm Shifts in Teaching Graduate Physiology” by Dr. Andrew Roberts.  His discussion focused on how we need to change the way physiology is taught to graduate students as technology has evolved.  But, one particular line caught my eyes as I was preparing my blog:  “if it was good enough for Galileo, it is good enough for me.”   Many university faculty members believe the “If it was good enough for Galileo, it is good enough for me” approach is the major issue with the current biomedical graduate student training system, which stands at a crossroad and is threatening its own future if appropriate corrections are not made (2, 3).

The document I read for this blog, Graduate STEM Education for the 21st Century (4) is an updated version of the report published in 1995 (5).  It is rather large (174 total pages) and contains information on various topics about the current status of STEM graduate education and a call for systematic change. I will limit my discussion to the current status of the PhD training system and recommendations for changes in the programs.

Issues at the heart: Gap between the Great Expectation and Hard Reality

Both the 1995 and the current documents list several issues associated with the STEM graduate training programs in the U.S.  However, the common thread that runs through both documents is associated with the gap between how our graduate students are trained and what has been happening in the job market.  The current STEM graduate program still is designed with the general expectation that students will pursue a career in academia as a tenure-track faculty member at a research institution.  However:

  1. The majority of growth in the academic job market has come from part-time positions, adjunct appointments, and full-time non-tenure-track positions (i.e. instructors, lecturers, research associates) rather than tenure-track positions in research-intensive institutions.
  2. The employment trend for STEM PhDs is shifting away from academia to non-academic positions.

The gap in the expectation of the training programs and the reality of job market creates several problems, including:

  1. Those who wish to pursue a career in academia often require a longer time to secure permanent employment and often work in positions that under-employ them (i.e. part-time, non-tenure track) and/or under-utilize their training (i.e. positions that do not require a PhD).
  2. Graduates who pursue non-academic positions, especially in the private sector, lack adequate preparation to enter their positions and become successful.

Many non-academic employers have voiced concerns that current STEM education is no longer acceptable for the current job market, as it does not provide sufficient training to make students more attractive and versatile to be employed outside of academia, which is becoming more international and diverse.  In particular, employers are concerned that current STEM graduates lack skills in areas such as:

  1. Communication
  2. Teaching and mentoring
  3. Problem solving
  4. Technology application
  5. Interdisciplinary teamwork
  6. Business decision making
  7. Leadership
  8. The ability to work with people from diverse backgrounds in a team setting

Changes needed for the system: Let students discover their destiny

The major change needed in the current STEM education system is that we need to let students figure out which career path is for them and provide appropriate training opportunities, rather than trying to force them to fit into one mold. Phil Jackson, whom I quoted earlier, writes: “Let each player discover his own destiny. One thing I’ve learned as a coach is that you can’t force your will on people.” (1). Jackson goes on to say: “On another level, I always tried to give each player the freedom to carve out a role for himself within the team structure.  I’ve seen dozens of players flame out and disappear not because they lacked talent but because they couldn’t figure out how to fit into the cookie-cutter model of basketball that pervades the NBA.”   We need to foster a graduate training environment that encourages each student to discover their role without any pressure, stigma, or discouragement.

Dr. Keith Yamamoto from the University of California San Francisco says that graduate training needs to be student-centered so that graduates can find their roles and meet the needs of the society (3). Faculty mentors have the responsibility of training students so that students become successful in what they choose to do.  Faculty mentors, academic departments, and institutions also need to make a concerted effort to provide opportunities for students to develop additional skills necessary to become successful in what they choose to do.  This includes teaching, especially if they want to work in a teaching-intensive institution (like the one in which I work). Faculty mentors may fear that allowing students to work on skills unrelated to the research area may hinder student success.  They may also fear that students serving as graduate teaching assistants may extend the time needed to complete their degree.  However, students need opportunities to develop these other skills, along with discipline-specific skills to become competitive in the job market and competent employees.  Again, the focus needs to be on the students and what they want to pursue, as well as what is needed for them to succeed after they walk out of the laboratory.  And, we need to trust students that they will find their paths on their own.  Dr. Yamamoto concludes his seminar by saying: “Inform/empower students to make appropriate career decision…. Students will get it right.” (3)

References and additional resources:

  1. Jackson P, Delehanty H (2013). Eleven Rings: The Soul of Success (Penguin, New York).
  2. Alberts B, Kirschner MW, Tilghman S, Vermus H (2014) Rescuing US biomedical research from its systemic flaw. Proc Natl Acad Sci USA 111(16):5773-5777.
  3. Yamamoto K (2014) Time to rethink graduate and postdoc education. https://www.ibiology.org/biomedical-workforce/graduate-education/
  4. The National Academies of Science, Engineering, and Medicine (2018) Graduate STEM Education for the 21st Century (The National Academics Press, Washington DC).
  5. The National Academies of Science, Engineering, and Medicine (1995) Reshaping the Graduate Education of Scientists and Engineers (The National Academics Press, Washington DC).
Yass Kobayashi is an Associate Professor of Biological Sciences at Fort Hays State University in Hays, KS.   He teaches a human/mammalian physiology course and an upper-level cellular biology course to biology majors, along with a two-semester anatomy and physiology sequence to nursing and allied health students.   He received his BS in agriculture (animal science emphasis) with a minor in zoology from Southeast Missouri State University in 1991.  He received his MS in domestic animal reproductive physiology from Kansas State University in 1995.  After a brief stint at Oklahoma State University, he completed his Ph.D. at the University of Missouri-Columbia in domestic animal molecular endocrinology in 2000.  He was a post-doctoral research associate at the University of Arizona for 2 years and at Michigan State University for 4 years before taking an Assistant Professor of biology position at Delta State University in Cleveland, MS in 2006.  He moved to Fort Hays State in 2010 and has been with the institution ever since.
Why do you teach the way that you do?

Have you ever stopped to think about why you do something the way that you do it? We educators are often very good at describing what we do or have done. I was recently reviewing some CVs for a teaching position; all the CVs were replete with descriptions of what content was taught in which course at which institution. However, I feel that we educators often fail to capture why we teach in a certain way.

 

 

In my extra-curricular life, I am an educator on the soccer field in the form of a coach. Through coaching education, I have been encouraged to develop a philosophy of coaching. This is a description of why I coach the way I do. To develop a coaching philosophy, coaches should think about three central aspects (see: https://www.coach.ca/develop-a-coaching-philosophy-in-3-easy-steps-p159158 for more details):

 

  1. Purpose: why do you coach?

  2. Leadership style – what methods do you use to coach? Are you more ‘coach-centered’ or more ‘player-centered’ in your approach? Or somewhere in between? Why?

  3. Values: what is most important to you? How does it affect the way you coach?

 

If ‘coach’ is replaced by ‘teach’ or ‘teacher’ in the above list, and ‘player’ is replaced by ‘student’, we can use this framework to develop a philosophy of teaching. I have found that putting ‘pen to paper’ in forming a philosophy helps to crystallize your beliefs about teaching that may have been seemingly random, disparate thoughts previously. It can be insightful to synthesize your beliefs about teaching, as it provides some structure and guidance when planning future teaching.

 

It is time to nail my colors to the mast. I teach because I want to help my students be successful diagnosticians in their profession (medicine) and understand why their patient’s bodies are responding in the way that they do in order to help them treat them effectively. I do believe in the benefit of having an expert instructor, especially when you have novice students, so I am probably more teacher-centric than is the current fad. However, I don’t like lectures for the most part, because from my perspective, lectures principally focus on information transfer rather than using and applying the important information. This is not to say that lectures are all bad, but I prefer ‘flipped classroom’ methods that require students to gather the necessary knowledge before class, and then during class, demonstrate mastery of material and apply it to clinical scenarios (with the aid of the instructor). But, that’s me. What about you?

 

If you are applying for positions that will require teaching, having both a teaching philosophy and a teaching portfolio will provide the appropriate evidence to the search committee about how you plan to teach.  The following resources might be useful to you:

Preparing a Teaching Portfolio http://www.unco.edu/graduate-school/pdf/campus-resources/Teaching-Portfolio-Karron-Lewis.pdf

Writing Your Teaching Philosophy https://cei.umn.edu/writing-your-teaching-philosophy

  Hugh Clements-Jewery, PhD is currently Visiting Research Associate Professor at the University of Illinois College of Medicine in Rockford, Illinois. He teaches medical physiology in the integrated Phase 1 undergraduate medical curriculum at the University of Illinois College of Medicine. He is the College-wide leader for the Circulation-Respiration course. He has also recently taken on the role of Director of Phase 1 curriculum at the Rockford campus.
Writing—Work in Progress

As a scientist and educator over the years, I have had the good fortune and pleasure to write and edit many manuscripts and documents, especially in collaborations with mentors, colleagues, and students. As most of us in the business know, writing doesn’t always come easy. It is often very challenging to convey information, thoughts, and ideas in a coherent and straightforward manner, and leave little room for misinterpretation, confusion, and ambiguity. In addition, it can be hard to convey excitement in writing. Writing is an art and deserves time and effort to create a masterpiece. Realistically though, time is rarely on our side for routinely creating works of art. However, we should still try!

 

Writing for me is work in progress, but very enjoyable. I know that I can always improve. Consequently, I seek better and more creative ways to express myself. I certainly wasn’t always enthusiastic about writing. Graduate students and postdoctoral fellows please take note! As a graduate student writing my early manuscripts, I would often string a few sentences together that seemed reasonable and whisper to myself, “This is close and good enough.” It rarely was. My doctoral mentor, Dr. Walter F. Boron (presently at Case Western Reserve University) almost always caught those good enough sentences when we sat together meticulously reviewing every sentence when editing a manuscript. This experience was humbling, yet highly educational, and certainly one of the high points of my graduate school years. I have continued this tradition in my own lab— enduring the occasional sighs of annoyance from my students.

 

The extra effort in writing can be a wonderful and rewarding experience. Many helpful resources are available. Don’t be afraid to pull out that composition/grammar book when needed. I am particularly fond of The Random House Handbook (1), which remains dust-free on my office bookshelf. Also, make use of that Thesaurus tab in Microsoft® Word! Finally, learn from the creativity of others in their writing prose, sentence structure, and expression usage.

I leave you with a list of some of my favorite writing points and guides from over the years.

I acquired most of these from my former advisor, Dr. Boron; I owe him a great deal of gratitude. I also used Ref. 1 to supplement my understanding. Write on and become my fellow artists!

1. Tell a story with the goal of exciting your readers (yes, even with a scientific manuscript).

2. Assemble outlines.

3. Write rather than stare at a blank screen/page for too long. You can always edit a mess later.

4. Edit exhaustively, but spaced out over time.

5. Get input from others.

6. Scrutinize every sentence.

7. Ask the following for every sentence:

“Does it say what I want it to say?”

“How can I make it clearer and/or shorter?”

8. Write active sentences. For example, “Compound X caused effect Y” is better than, “The effect Y was caused by compound X.”

Writing active sentences also holds when citing the work of others. For example, “Smith et al. showed that…” is stronger than, “It has been shown that… (Smith et al.).”

9. Use parallel construction in multi-part sentences. For example, “Compound X caused an increase in Y, and Compound A caused a decrease in B.”

Use parallel construction for multiple sentences that are clearly linked. For example, if you are making three points and you start the first sentence with, “First,…,” then you should have a “Second,…” and a “Third,…”

10. Give the direction of an effect whenever possible. Using the example above, “Compound X caused an increase in Y” is better than, “Compound X had an effect on Y.” Sentences should be as informative as possible.

11. Use present tense when discussing a universal truth.

12. Be consistent in using declarative or non-declarative statements in main headings, in-line headings, figure legends, etc. throughout a body of work.

13. Be careful assigning an action to an inanimate object such as an experimental result. For example, “Experiment X showed Y.” Did the experiment really perform an action?

14. Use caution when starting a sentence with This or These. The reference needs to be clear.

15. Use then in if/then statements. Many writers leave out the then. For example, “If you add media A, then the cells will die” flows better than, “If you add media A the cells will die.” If you use if in an if/then sentence, then hunt for the expected then.

16. Use more gerunds, which are refreshingly active. For example, “Applying X increased Y” is more appealing than, “Application of X increased Y.”

17. Experiment with less frequently used forms of punctuation, e.g., the semicolon and em dash. It’s fun!

18. Don’t confuse that and which clauses. That is used in a restrictive clause to understand sentence meaning. Which is used in a nonrestrictive clause to present additional information; which follows a comma.

19. Use because instead of since in many cases. Since refers to time.

20. Minimize split infinitives. Some will argue with me on this one. For example, “to argue incessantly” is better than, “to incessantly argue.” It is sometimes difficult to avoid splitting up to-base verb pairs because they then sound clumsy. Some will reason that a split is acceptable in those cases. My Father’s response: “No. Rewrite the sentence.”

21. Be careful with generic terms such as numerous, many, variety of, etc. Ask yourself, “Is the term accurate? How many exactly?” Consider giving an appropriate example to the reader.

22. Use respectively sparingly. For example, “The results from experiments A, B, and C were 5.6, 8.9, and 4.3, respectively” is hard to follow and tedious. A good general rule: Avoid sentences that require the reader to match up terms in different parts of the sentence.

23. Remember the neither…nor combination.

24. Know the difference between i.e. and e.g.

25. Consider abandoning the old-fashioned, two-space rule between sentences that was popular with typewriter use. We’re in the age of computers with line justification.

Mark O. Bevensee, PhD is an Associate Professor in the Department of Cell, Developmental & Integrative Biology at the University of Alabama at Birmingham. His laboratory focuses on studying the cellular and molecular physiology of acid-base transporters involved in regulating intracellular pH in health and disease. Dr. Bevensee also teaches— primarily cell and renal physiology to graduate and professional students. He has served as the Director of the Renal Module for medical students since 2006, and currently serves as the Co-Director & Interim Director of the Master of Science in Biomedical and Health Sciences post-baccalaureate program. He is a member of many education committees, including the Medical Education Committee of the University of Alabama School of Medicine. He serves on the editorial board of Advances in Physiology Education (American Physiological Society, APS) and Medical Science Educator (International Association of Medical Science Educators, IAMSE), as well as the Membership committee of IAMSE. He has been a member of the APS for over 20 years, and is the newly elected Awards Councilor of the Cell and Molecular Physiology Section (CaMPS) Steering Committee of the APS.

Reference:

1. Crews, F. C. (1992). The Random House Handbook, 6th Ed. McGraw-Hill, Inc., New York.

Sound Off! What is YOUR PECOP Wish List? 

2014 was a notable year for physiology education:  APS launched both the Institute on Teaching and Learning (ITL) (1) and the Physiology Educators Community of Practice (PECOP) (2, 3, 4, 5). Since then, the ITL has become a regular, recurring meeting (2016 and 2018), attracting a growing attendance.

 

 

 

Similarly, PECOP has grown in both depth and breadth: 

  • supporting more than two dozen PECOP Fellows and Thought Leaders to attend the 2014 ITL and develop a strong foundational network;  
  • holding regular networking sessions at the ITL and Experimental Biology; 
  • engaging the PECOP community in writing more than 70 blog entries on a range of education topics in the Life Science Teaching Resource Community (LifeSciTRC); 
  • promoting research collaborations among PECOP participants; and 
  • engaging physiology educators in leadership roles (6, 7) such as:
    • PECOP Blog Coordinator – Barbara Goodman, Sanford School of Medicine of The University of South Dakota;
    • PhUn Week Blog Coordinator – Patricia Halpin, University of New Hampshire at Manchester;
    • LifeSciTRC Community Review Editor – Lynn Diener, Mount Mary University;
    • ITL Program Committees led by Barbara Goodman and Thomas Pressley, Texas Tech Univ. Health Sciences Center School of Medicine. 

PECOP was supported initially by a one-year planning grant from the National Science Foundation Research Collaboration Network-Undergraduate Biology Education (RCN-UBE) Incubator program (Grant No. 1346220). In 2018, APS plans to submit a proposal for a five-year RCN-UBE grant to grow the PECOP network and activities. This growth will be guided and driven by the PECOP network of educators so we need to hear from YOU about what the PECOP community should do in the coming years. We have gathered three major ideas from previous PECOP networking sessions and ITL meeting discussions: 

  1. Help new educators get a good start.  

At the 2014 ITL, we pilot tested a new APS Professional Skills Training program, “Becoming an Effective Teacher.” Results were excellent and, using our new Schoology LMS for online professional development, APS staff can adapt these excellent materials for online use. However, this would be a community-driven program that needs experienced educators to share their expertise and guide new educators onto the “evidence-based teaching” path.  

          2. Help experienced educators use “evidence-based teaching” more effectively.  

Many of the ITL sessions and articles in both the PECOP blog and Advances in Physiology Education focus on using teaching methods that have strong evidence of their broad effectiveness. Other articles describe studies that compare methods or assess the effectiveness of methods in new teaching scenarios (diverse students, institutions, and courses). How can the PECOP community help colleagues who seek to increase the “evidence-base” of their teaching? The PECOP Fellows program helped a number of educators start on this path. Should we continue this program? 

          3. Help educators participate in scholarship of teaching and learning (SOTL). 

While we are often adept at designing (or helping students design) experiments at the bench, we are often genuinely perplexed when designing an experimental study involving the uber-tricky subject, the classroom student. Students differ widely so what can serve as the “control” group for my class? How many subjects do I need? What IS the unit of study? The student? The class? The course? What should I measure? Is that measure reliable? Is it valid? And what are the appropriate statistical tests to use? A good way to being engaging in SOTL is the same way we learned about bench research…we collaborated with and learned from someone with greater expertise. Our PECOP community has already fostered research collaborations among members. How can we grow the number of research collaborations in our community? 

 

What are YOUR ideas? 

These are just THREE of the many goals we could set for PECOP. Now share YOUR thoughts! How should PECOP support the growth and development of the physiology education community in the coming years?  

 

Reply to the discussion below or send your comments (by December 15) directly to me. Join us as we grow the PECOP community and support physiology educators! 

Marsha Matyas is a biologist, educator, and science education researcher. For nearly 30 years, she has worked at scientific professional associations (AAAS and now APS) to promote excellence in science education at all levels and to increase diversity within the scientific community. Marsha’s research focuses on factors that promote science career interest and success, especially among women and underrepresented minorities. At the APS, Marsha directs the Education Office and programs, which span from pre-Kindergarten to professional development and continuing education for Ph.D. and M.D. scientists.

 

References:

  1. What is the American Physiological Society’s ITL and who are the members of PECOP?

Barbara E. Goodman, Marsha Lakes Matyas, Advances in Physiology Education Jun 2016, 40 (2) 239-242; DOI:10.1152/advan.00045.2016. 

  1. Harnessing the power of an online teaching community: connect, share, and collaborate

Marsha Lakes Matyas, Dee U. Silverthorn, Advances in Physiology Education Dec 2015, 39 (4) 272-277; DOI: 10.1152/advan.00093.2015. 

  1. How do the Institutes on Teaching and Learning (ITLs) nurture the members of the Physiology Educators Community of Practice (PECOP)?

Barbara E. Goodman, Advances in Physiology Education Sep 2017, 41 (3) 354-356; DOI:10.1152/advan.00050.2017. 

  1. The pipeline of physiology courses in community colleges: to university, medical school, and beyond

Jenny McFarland, Pamela Pape-Lindstrom, Advances in Physiology Education Dec 2016, 40 (4) 473-476; DOI:10.1152/advan.00141.2016.  

  1.  The Physiology Education Community of Practice (PECOP) wants YOU!

Goodman, B. (2014, November 1).  Retrieved from: http://www.lifescitrc.org/resource.cfm?submissionID=11213. 

  1. Lurk or lead? The benefits of community participation

Marsha Lakes Matyas, Advances in Physiology Education Mar 2017, 41 (1) 145-148; DOI:10.1152/advan.00200.2016. 

  1. Educational leadership: benefits of stepping outside the classroom

Thomas A. Pressley, Advances in Physiology Education Sep 2017, 41 (3) 454-456; DOI:10.1152/advan.00083.2017.