Tag Archives: research

Collaboration is the Key to Success in Publishing Your Work

As an Assistant Professor, you are under a lot of pressure to teach new classes, perform service and of course publish. Often times you do not have a mentor to guide you and you are off on your own pathway to tenure. While I had many good ideas about some teaching research I wanted to perform with my students I needed help in executing a study and publishing my work. While the goal was clear, the plan and the execution were not. Where to start was the biggest and most difficult hurdle.

I assumed incorrectly that the best way to be successful in publishing was to do it on my own. After all, I would only be accountable to myself and need not worry about collaborators who might be hard to reach and would take a long time to complete their portion of a manuscript. I tried this path initially and it was incredibly difficult as I could only work on one project at a time. The turning point came when I attended an Experimental Biology (EB) meeting Teaching Section symposium several years ago; I vividly recalled an excellent presentation where the speaker showed us an elegant study of how he used active learning and student grades improved. This talk inspired me and I got excited to try this with my class by performing a similar study. The excitement abruptly ended when he stated the two sections of students he used for his study had 250 and 300 students respectively. My own classes are between 12-20 students, quite small in comparison and I was completely disheartened thinking it would take years of study before I surveyed that many students. After the talk, I went up to him to ask a question, there was someone in front of me that asked the question that I had planned to ask. She said “I have small classes and for me to do a study of significance would take years”. I chimed in “I am in the same situation”. He answered us both with one word “Collaborate”. I walked away disheartened as I did not know anyone that I could collaborate with on a study.

After some time to reflect that this course of action was what I needed I developed an active plan to execute at the next EB meeting. At the Claude Bernard Lecture, I introduced myself to Barb Goodman. This was an excellent choice, as Barb knows everyone and she was kind enough to introduce me to everyone who approached her. From there my confidence grew. The next smart decision I made was to sit in the front during the lecture and all future Teaching Section Symposia. Do not hide in the back as people sometimes come in late and this can be distracting. In the front of the room are the friendly people who are very happy to talk with you and share ideas.

The next step was to follow the program and attend the Teaching Section luncheon. At this event, a small group of people dedicated to teaching and student success sit and talk about the different classes they teach and share ideas about teaching challenges. The tables are small and round so you can meet everyone at your table. Another key event to attend at EB is the Teaching Section Business meeting and dinner. At the dinner, you get a chance to meet more people in a relaxed setting. Some of the attendees have attended the other events and this is a great way to practice your recall and talk with them on a first name basis.

The final step in meeting people with whom to collaborate is to participate in an Institute on Teaching and Learning (ITL). There have been three of these meetings so far (2014, 2016 & 2018) and the meeting actively encourages you to meet new people at each meal and form new collaborations. Through this meeting, I met many of my collaborators and successfully published abstracts and papers (listed below), received one grant, was a symposium speaker, and chaired a symposium. The meeting is energizing as the program is packed with new ideas and teaching strategies to try in your classroom. It is easy to ask questions and be an active participant in the discussions.  Thus, taking advantage of a number of opportunities for physiology educators through the American Physiological Society can be just the push you need to get going on a successful promotion and tenure process.  Join the APS and its Teaching Section to keep up-to-date on what is going on in physiology education.

 

References

  1. Aprigia Monteferrante G,  Mariana Cruz M, Mogadouro G, de Oliveira Fantini V,  Oliveira Castro P, Halpin PA, and Lellis-Santos C (2018). Cardiac rhythm dance protocol: a smartphone-assisted hands-on activity to introduce concepts of cardiovascular physiology and scientific methodology. Advances in Physiology Education, 42: 516-520, doi:10.1152/advan.00028.2017.
  2. Blatch, SA, Cliff W., Beason-Abmayr, B. and Halpin PA. (2017).The Artificial Animal Project: A Tool for Helping Students Integrate Body Systems. Advances in Physiology Education. 41: 239-243 DOI: 10.1152/advan.00159.2016
  3. Gopalan C., Halpin PA and Johnson KMS (2018). Benefits and Logistics of Non-Presenting  Undergraduate Students Attending a Professional Scientific Meeting. Advances in Physiology Education. 42: 68-74. DOI.org/10.1152/advan.00091.2017
  4. Halpin PA, Golden L, Zane Hagins K, Waller S, and Chaya Gopalan C. (2018). SYMPOSIUM REPORT ON “Examining the Changing Landscape of Course Delivery and Student Learning;” Experimental Biology 2017. Advances in Physiology Education, 42: 610–614. doi:10.1152/advan.00096.2018.
  5. Lellis-Santos, C and Halpin PA (2018).”Workshop Report: “Using Social Media and Smartphone Applications in Practical Lessons to Enhance Student Learning” in Búzios, Brazil (Aug. 6-8, 2017). Advances in Physiology Education, 42: 340–342. https://doi.org/10.1152/advan.00011.2018.
Patricia A. Halpin is an Associate Professor in the Life Sciences Department at the University of New Hampshire at Manchester (UNHM). Patricia received her MS and Ph.D. in Physiology at the University of Connecticut. She completed a postdoctoral fellowship at Dartmouth Medical School. After completion of her postdoc she started a family and taught as an adjunct at several NH colleges. She then became a Lecturer at UNHM before becoming an Assistant Professor. She teaches Principles of Biology, Endocrinology, Cell Biology, Animal Physiology, Global Science Explorations and Senior Seminar to undergraduates. She has been a member of APS since 1994 and is currently on the APS Education committee and is active in the Teaching Section. She has participated in Physiology Understanding (PhUn) week at the elementary school level in the US and Australia. She has presented her work on PhUn week, Using Twitter for Science Discussions, and Embedding Professional Skills into Science curriculum at the Experimental Biology meeting and the APS Institute on Teaching and Learning.
Aligning the Stars: Reflections on Integrating Research into the Teaching Lab

reaching-for-the-starsThis summer and fall has been a tumultuous season: I moved halfway across the country to start my first tenure-track job, and promptly embarked on the challenges of unpacking my house while setting up my research lab and preparing to teach two brand-new classes to a brand-new group of students I’d never met before. It’s been a period of happy chaos.

One of the biggest adjustments from my visiting-faculty life to my tenure-track life has been the new need for me to balance teaching and research. For the past two years, I’ve been focusing almost exclusively on building my teaching skills, conducting research only during the summer. In my new position at a small liberal-arts college, teaching remains at the heart of my job, but it’s again important for me to build and maintain an active research profile. Because I work with cell culture and neonatal rodents, and because I want to offer research experiences to students during the academic year, I’m now running my lab year-round while teaching three lab sections per semester. I’d already learned over the past few years that my research can inform my teaching, giving me plenty of interesting examples and anecdotes to share with my classes. Now I’m working on the next step of learning to successfully function as a teacher/scholar: developing strategies to merge my research life with my teaching life. Here’s what I’d suggest based on my experiences so far:

  • Do the crucial groundwork yourself. I’m incorporating an ongoing research project on neuronal differentiation into a neurobiology course this fall. However, my research students and I are plating the cells, and making and sterilizing the proliferation and differentiation media, ourselves. This lets the lab students get valuable experience working with cultured cells (on the first lab day of this project, they replace the proliferation medium with the differentiation medium and harvest a plate of control cells), but is relatively low-risk.
  • Simplify the experiments. Many of my experiments require multiple expensive growth factors to be administered at precise time points. I’m paring down my teaching lab differentiation protocol to a single-step protocol, using inexpensive reagents and only one media change. This still gives the students an authentic experience, but saves time, trouble, and money.
  • Focus on different aspects of your research in different classes. In my neurobiology class, students will be spending a great deal of time examining the morphology of their differentiated and undifferentiated cells using fluorescence microscopy. However, for a developmental class next semester, I’m planning on using the same cell line but running an inquiry-based lab, asking students to predict the outcome of various differentiation protocols based on their knowledge of developmental signaling pathways. This means that the students and I can continue to benefit from the interplay between research and teaching, but students who take multiple classes with me won’t be doing the same project (or even similar projects!) for each class. This strategy might also help students draw links between material presented in different courses, but connected by labs using the same model system.
  • Fit the research-based project to the class. My upper-level students generally know how to pipet, how to use a microscope, and how to comport themselves around scientific equipment. Students in classes at the 100- and 200-level can’t really be expected to work with cells in culture, or to pipet accurately enough to perform qPCR. However, examples drawn from your research can still be used even at the introductory levels. Fixed and stained slides of my neuron-like cells can show introductory students some key differences between mitotic cells and cells in Go Genomic DNA and cDNA from my cell lines could form the basis of a lab teaching budding molecular biologists about the differences between PCR and RT-PCR.

Incorporating your scientific research into your teaching isn’t necessarily a question of waiting for the stars to align until you’re offered the opportunity to teach an upper-level class in your exact area of research with only 6 enrolled students. Instead, you may very well have the potential to pull the stars into alignment yourself, designing labs that draw on the science that excites you the most, and connecting that passion to diverse sub-disciplines within physiology and biology.

 

pecop-bartlow

 

 

 

Kat Bartlow received her Ph.D. in Neurobiology from the University of Pittsburgh. Currently, she is an assistant professor in the Biology department at Lycoming College, in Williamsport, PA. Her current courses include Human Anatomy for majors and non-majors, Neurobiology, and Developmental Biology; she’s looking forward to developing an upper-level neurophysiology course so she can rejoin the world of physiology education. Her research focuses on dopaminergic neuronal development and neurotransmission within the dorsal striatum. She is also interested in using undergraduate-led physiology and neuroscience outreach as a teaching tool.

 

Education Research: A Beginner’s Journey

Why does it seem so hard to do education research? I have never been afraid to take on something new – what is stopping me?  These thoughts were burning in my mind as I sat around in a circle with educators at the 2016 Experimental Biology (EB) meeting. During this session, we discussed how we move education research forward and form productive collaborations. Here are my takeaways from the meeting:

EDUCATION RESOURCES

Here are some tips to get started on education research that I learned from the “experts”.

1. Attend poster sessions on teaching at national conferences such as Experimental Biology.

2. Get familiar with published education research and design.

3. Attend the 2016 APS Institute of Teaching and Learning

4. Reach out to seasoned education researchers who share similar interests in teaching methodologies.

6. Get engaged in an education research network such as APS Teaching Section – Active learning Group

“Doubt is not below knowledge, but above it.”
– Alain Rene Le Sage

As seasoned research experts discussed education research in what sounded like a foreign tongue, I began to doubt my ability to become an education researcher. However, the group quickly learned that we had a vast array of experience in the room from the inspiring new education researchers to the seasoned experts. Thus, the sages in the room shared some valuable resources and tips for those of us just starting out (see side bar).

“We are all in a gutter, but some of us are looking at the stars”
– Oscar Wilde

You may already have all the data you need to actually publish a research study. In my mind, education research had to involve an intervention with a placebo and control group. However, it can also be approached like a retrospective chart review. To proceed, you should consult with your local Institutional Review Board to see if you will need informed consent to utilize existing data or if it qualifies for exemption.

“Setting out is one thing: you also must know where you are going and what you can do when you get there.”
– Madeleine Sophie Barat

It became clear at our meeting that the way forward was collaboration and mentorship. A powerful approach that emerged is taking a research idea and implementing it across a number of institutions in a collaborative research project. By doing this, we would have a network of individuals to discuss optimal research design and implementation strategies and increase statistical power for the study.

At the end of my week at EB, I reflected on my experiences and realized that education researchers are a unique group – in that, we are all passionate about the development of others. Collaborating with individuals who seek the best of each other will lead to great friendships and good research.

If you are interested in joining the APS Teaching Section “Active Learning Group”, please contact Lynn Cialdella-Kam.

Resources:

Suggested Readings:

Alexander, Patricia A, Diane L Schallert, and Victoria C Hare. 1991. “Coming to terms: How researchers in learning and literacy talk about knowledge.”  Review of educational research 61 (3):315-343.

Matyas, M. L., and D. U. Silverthorn. 2015. “Harnessing the power of an online teaching community: connect, share, and collaborate.”  Adv Physiol Educ 39 (4):272-7. doi: 10.1152/advan.00093.2015.

McMillan, James H, and Sally Schumacher. 2014. Research in education: Evidence-based inquiry: Pearson Higher Ed.

Postlethwaite, T Neville. 2005. “Educational research: some basic concepts and terminology.”  Quantitative research methods in educational planning:1-5.

Savenye, Wilhelmina C, and Rhonda S Robinson. “Qualitative research issues and methods: An introduction for educational technologists.”

Schunk, Dale H, Judith R Meece, and Paul R Pintrich. 2012. Motivation in education: Theory, research, and applications: Pearson Higher Ed.

PECOP Lynn Cialdella Photo

 

Lynn Cialdella Kam joined CWRU as an Assistant Professor in Nutrition in 2013. At CWRU, she is engaged in undergraduate and graduate teaching, advising, and research. Her research has focused on health complications associated with energy imbalances (i.e. obesity, disordered eating, and intense exercise training). Specifically, she is in interested in understanding how alterations in dietary intake (i.e., amount, timing, and frequency of intake) and exercise training (i.e., intensity and duration) can affect the health consequences of energy imbalance such as inflammation, oxidative stress, insulin resistance, alterations in macronutrient metabolism, and menstrual dysfunction. She received her PhD in Nutrition from Oregon State University, her Masters in Exercise Physiology from The University of Texas at Austin, and her Masters in Business Administration from The University of Chicago Booth School of Business. She completed her postdoctoral research in sports nutrition at Appalachian State University and is a licensed and registered dietitian nutritionist (RDN).