Tag Archives: rubric

Grading student lab reports (while keeping your sanity)

I love teaching undergraduate labs and watching students grow as scientists. However, I’m not at all excited by the prospect of grading student writing. There are three strategies I wish I had known about before giving my first lab report assignment.

  • Full-rubrics should be written for each writing assignment before the term starts
  • Students need practice and feedback. This can be achieved with short, low-stakes writing assignments, peer-review and scaffolded assignments, which require minimal grading on my part.
  • The biggest sanity and time saver of all was telling students that I am not their editor or proofreader.

Each of those is probably worthy of its own blog post, so this is a brief overview of strategies I’ve adopted to save my sanity while grading lab reports (and other student writing assignments).

 

1) Full-rubrics

A lab report is usually a long, high-stakes assignment, that is worth a substantial portion of the final grade. A full-rubric is invaluable for streamlining the grading process and communicating expectations to students. A full rubric is not just a check-list of presence or absence of criteria needed to complete the assignment. Instead, for each criteria there is a detailed description of different levels of mastery or quality. Rubrics can be used to give formative or summative feedback, analytical or holistic assessments, or a combination. Another advantage of rubrics is that they help standardize grading across multiple sections of a course that are taught by graduate teaching assistants.

A good rubric is very time-consuming to create, but it has potential to save you many hours when it comes time to assess student writing. [This is especially true if you use an online course management system that has a built-in grading tool (e.g. Canvas Speed Grader). You can link your rubric to the assignment, and give comments and numerical scores for each criterion on the rubric. The tool will add the scores and put them directly into the online grade book. Hooray!]

Here is an example of a summative grading rubric from the methods section of a lab report.

Excellent Average Inadequate No Effort
Contains sufficient detail for the audience to validate the experiments Contains clear descriptions of all necessary steps for the reader to be able to validate the experiments without having to contact the author for more explanations. Descriptions of the experimental methods are provided, but some minor steps are missing so the reader will not be able to validate the experiments without further assistance. Descriptions of the experimental methods are provided, but one or more key steps are missing so the reader will not be able to validate the experiments without major further assistance. Descriptions of methods are so poor that the reader cannot grasp what experiments were done OR no description included at all.
Includes brief description of how data were analyzed (equations, statistics etc.) A clear description of how data were analyzed, including all relevant steps and calculations. A description of how data were analyzed but is missing some steps or calculations. A poor description of how data were analyzed and is missing substantial steps or calculations. Reader is unable to understand how data were analyzed OR no description is given at all.

 Resources to help you get started on your own rubrics

 

2) Practice and feedback

Students sometimes tell me that they are “not very good at writing”. My reply is that writing is a skill and as a skill, it requires practice, practice, practice. To this end, I use a mix of short, low-stakes writing assignments and scaffolding.

Low-stakes writing assignments are short, informal assignments that are designed to help students reflect on what they have been learning or doing, but don’t require much grading effort from the instructor. It’s important to give students the rationale for the assignment and present it as equally important as larger assignments, even though it’s worth fewer points. One popular example is a “minute paper.” These are brief in-class written responses to an instructor-posed question. Some sample prompts that align with writing a lab report:

  • What was the most surprising result from your experiment?
  • In your opinion, what would be a good follow-up experiment to yours?
  • What relationship did you see between ____ and ____?
  • Would you agree or disagree with this statement __________?
  • List the keywords, phrases and databases that you are going to use to search for references for your lab report.

Examples of other low-stakes, minimal grading assignments are timed “free-write” (write everything that comes to mind about the topic from memory for 5-10min), journals (separate from lab notebooks), outlines, or concept maps.

Scaffolding refers to taking a larger assignment and breaking it into smaller parts. I have my students write their lab reports in stages over five weeks. Each stage they receive formative feedback from me and/or go through peer-review. At each stage they are also required to explain how they incorporated feedback from the previous stage. By breaking a large assignment into stages, I can provide more detailed feedback so that their final lab report is more polished and easier to read.

Resources to help you with low-stakes assignments and scaffolding:

 

3) You are not the editor or the proofreader

Fixing spelling, punctuation and grammar are the student’s responsibility, not yours. Yes, students need to know when they have made technical errors, but it shouldn’t consume all of your time. One strategy is to simply make an X or other mark at the end of each line that contains an error. It is then the student’s job to analyze their writing and find the error. Another is to edit one paragraph and then instruct the student to look for similar errors throughout their writing.

Focus your time on making meaningful comments about content, especially on early drafts. Some of the most helpful comments are actually questions. For example, rather than tell a student to delete a sentence, ask the student how that sentence helps their argument. It is easy to overwhelm students with too many comments, so prioritize which comments to give. Don’t forget to give students positive feedback about the strengths of their writing! We tend to focus too much on the weaknesses.

Finally, plan ahead for how much time you realistically have for grading, and how much time you’ll need to grade each submission. Set a timer to keep yourself on track. If you find that one submission is taking too long, set it aside and take a break.

Resources to help responding effectively to student writing

 

AguilarRoca

 

 

Nancy Aguilar-Roca is an assistant teaching professor at the University of California, Irvine in the Department of Ecology and Evolutionary Biology. She studied respiratory and cardiovascular physiology of air-breathing fishes for her PhD at Scripps Institution of Oceanography and did a postdoc in evolutionary genomics of E. coli at UCI. She currently runs the high-enrollment upper division human physiology labs and is in the process of revamping the course with flipped lab protocols and more inquiry based activity (instead of “cookbook”). She also teaches freshman level ecology and evolutionary biology and is interested in using online ecology databases for creating inquiry-based computer activities for this large lecture course. Her other courses include Comparative Vertebrate Anatomy, Marine Biology, Physiology of Extreme Environments and non-majors physiology. At the graduate level, she co-organizes a seminar series for graduate students  and postdocs who are interested in learning evidence-based teaching techniques.  She was recently appointed Director of the Undergraduate Exercise Sciences Major and welcomes any advice about developing curriculum for this major.

Course Preparation for a First Timer – Tips and Example Steps to Take

 


idea
This summer has been a uniquely exciting time for me as I prepare to teach my very first course, Human Physiology! What are the steps you take for preparing your courses? If it is your first time teaching, preparation seems overwhelming, and a challenge to figure out where to even begin. In this blog, I will be describing the steps I’ve taken to get ready for teaching my first course at our nearby minority-serving community college this fall. Full disclosure — I am definitely not an expert in course preparation, but I’ve included some tips and resources for what has worked for me.

Step 1: Reflection and determining my teaching philosophy

Reflecting on my time as an undergraduate student, I realize that learning how to learn did not come easy. It took me more than half way through my undergraduate years to figure out how to do it, and it was not until I was a graduate student that I mastered that skill. Thinking about my future students, I sought training opportunities to aid me in becoming a teacher who effectively facilitates student learning. I especially am interested in teaching practices that foster learning in first-generation college students who are not yet experienced with knowing how to learn and study. I want to make sure that my teaching style is inclusive of as many diverse student populations as possible. To do this, I have to educate myself on learning theories and effective teaching methods.

Early this summer, I attended the West Coast National Academies’ Summer Institute on Scientific Teaching to educate myself on teaching methods, and went home with understanding of the practices that fit my style and my philosophy. I highly recommend others to take advantage of these types of events or workshops (such as those offered by CIRTL) to familiarize yourself with various techniques. Aside from formal workshops, informal meetings with teaching mentors or experienced teachers gives valuable insight into the kinds of things to expect, things to avoid, suggestions and tips, teaching experiences, and inspirational words of wisdom. Use your network of mentors! Overall, inward reflection, formal workshops, and informal conversations with experienced mentors are ways that have helped me formulate the teaching practices that I will use for the course.

Step 2: Book and technology selection for the course

This sounds like an easy task, however, it can be a challenge if it is the first time you learn how to deal with choosing a book and the technology for your course. Luckily, one of my teaching mentors introduced me to the publisher’s local representative who met with me for several hours to discuss various book options and the technological tools that could be combined with my order. The rep helped me register my course in their online tool (Mastering A&P) and trained me to use this technology for creating homework, quizzes, interactive activities, rosters and grading. Thus far, I’ve spent countless hours exploring and learning how to use this technology before class starts. After all, I can’t expect my students to maneuver it if I can’t do it myself!

Step 3: Creating a syllabus, alignment table, and rubrics

The most important, hence time-consuming, task thus far is selecting the major topics and level of depth for the course while deciding the most important concepts, ideas, and skills for students to take away from the course. In order for students to meet expectations and become successful learners in the course, both the instructor and students should have this information clearly written out and understood at the very start of the course. The course syllabus is the first place where overall learning goals, outcomes, and expectations for the students for this course is presented. Furthermore, the syllabus should include information about grading, and any institutional policies on attendance, add/drop deadlines, and disability services.

Fortunately, the course that I am preparing has been offered multiple times previously, and thus I do not need to completely design a new course from scratch. However, I am re-designing and modifying sections of the course to include active and interactive teaching techniques. To guide this process during the semester, creating an alignment table for the course is beneficial to effectively execute learning activities and teach key concepts, ideas and skills. The components included in this table are: course learning goals, daily learning objectives, assignments, summary of activities, and assessments for each class period.

Take note that assessments should be determined first in order to prepare the content and activities for the class period accordingly (backwards design). Assessments could include an in-class activity, post-class assignments, exam and quiz questions. Rubrics of assessments should be made without ambiguity to formally assess students and to make sure the class period addresses the major points that students will be expected to learn. Preparing each class period, with flexibility for modifications based on gauging student grasp of the material, will help the semester run more smoothly and with less difficulties.

Step 4: Preparing content presentation and materials for activities

The last step I will take for course preparation is making and uploading any PowerPoint slides, handout materials, assignments, quizzes and exams, and any other material required for activities. With an alignment table already made, this portion of preparation should be relatively easy, but it will still take a significant amount of time.

Final Tips

Overall advice, plan ahead!! At minimum, it should take an entire summer to successfully prepare for a new course. With a well-planned course ahead of time, the hope is to be able to spend more energy throughout the semester to transfer and translate faculty enthusiasm for teaching into student enthusiasm for learning physiology!

Additional resource: Course Preparation Handbook by Stanford Teaching Commons

HernandezCarretero_9231

 

 

 

Angelina Hernández-Carretero is an IRACDA Postdoctoral Fellow at UC San Diego and is an adjunct faculty member at San Diego City College. She earned her Ph.D. in Cellular & Integrative Physiology from Indiana University School of Medicine. Her research interests involve diabetes, obesity, and metabolism. Angelina has a passion for mentoring, increasing diversity in STEM education and workforce, and inspiring the next generation through outreach.

 

 

 

Teaching Toolbox: Tips and Techniques for Assessing What Students Know

GanzImage.What has to shift to change your perspective? Thomas Kuhn coined the term paradigm shift and argued that science doesn’t progress by a linear method of gathering new knowledge, rather, a shift takes place when an anomaly subverts the normal practice, ideas and theories of science. Students learn through interaction with the surrounding environment mediated by prior knowledge from new and previous interactions with family, friends, teachers, and other sociocultural experiences (Falk & Adelman, 2003). Deep understanding of concepts depend on the interaction of prior experience with new information. As Kuhn stated in his 1962 book The Structure of Scientific Revolutions, “The challenge is not to uncover the unknown, but to obtain the known.”

In order to assess what students know, you need to find out what they already knew. An assessment can only provide useful information if it is measuring what it is intended to. In the medical field, assessments are used all the time, for example, an MRI is a useful diagnostic tool to determine the extent of tissue damage but it is not necessarily useful for establishing overall health status of an individual. Assessing what a student knows with a multiple choice test may also not be useful in establishing an overall picture of what knowledge a student possesses or how that knowledge is applied, especially if the items are not measuring what they are supposed to. Construct validity provides evidence that a test is measuring the construct it is intended to. How to measure construct validity is beyond the scope of this article, for information, see the classic work by Messick (1995). Outside of the psychometrics involved in item or assessment construction, I’ll provide some quick tips and techniques I have found useful in my teaching practice. What can you do to separate real learning with deep understanding from good test taking skills or reading ability? How can you assess what students know simply and effectively?

Instruction in a classroom environment needs to be connected with assessment rather than viewing instruction and assessment as separate activities. Understanding student thinking can be done with formative assessment which benefits students by identifying strengths and weaknesses and gives instructors immediate feedback regarding where students are struggling so that issues can be addressed immediately. By providing students with context in the form of a learning goal at the start of a class, the clear objective of the lesson allows them to begin making connections between what they already know and new information. When designing or preparing for a class, ask yourself:

  1. What do I assume they already know?
  2. What questions can I ask that will help me confirm my assumptions?
  3. What are the most common misconceptions related to the topic?

Tips for checking students background knowledge

  • On a whiteboard or in a presentation, begin with one to three open ended questions and/or multiple choice questions. Ask students to respond in two to three sentences, or circle a response. It’s important to let them know that the question(s) are not being graded, rather, you are looking for thoughtful answers that will help guide instructional decisions. Share the results at the start of the next class or with a free tool like Plickers for instant feedback.
  • Short quizzes or a survey with Qualtrics, Google Forms, or Doodle Poll can be used via Black Board prior to class. Explain that you will track who responded but not what the individual student responded at this point. Share the results and impact on course design with students.
  • Group work. Using an image, graph, or some type of problem regarding upcoming course content, have students come up with a list of observations or questions regarding the material. Use large sheet paper or sticky notes for them to synthesize comments then review the themes with the class.

Formative assessment is used to measure and provide feedback on a daily or weekly basis. In addition to learning goals communicated to students at the beginning of each class and warm up activities to stimulate thinking about a concept, formative assessment can include comments on assignments, projects or problem sets, asking questions that are intentional towards essential understanding rather than a general, “Are there any questions?” at the end of a lesson. To add closure and summarize the class with the learning goal in mind, provide index cards or ask students to take out a piece of paper and write in a couple of sentences what the most important points of the lesson were and/or ask them to write what they found most confusing so that it can be addressed in the next class. Formative assessments provide tangible evidence for you to see what your students know and how they are thinking and they provide insight and feedback to students in improving their own learning.

Summative assessment includes quizzes, tests and projects that are graded and used to measure student performance. Creating a well-designed summative assessment involves asking good questions and using rubrics. In designing an assessment that will accurately measure what students know, consider:

  1. What do you want your students to know or be able to do? This can also be used in each lesson as a guiding objective.
  2. Identify where you will address the outcomes in the curriculum.
  3. Measure what they know with your summative assessment.
  4. Based on the measurement, what changes can be made in the course to improve student performance?

Good questions

  • Measure what you intend for them to measure.
  • Allow students to demonstrate what they know.
  • Discriminate between students who learned what you intended versus those that did not.
  • Examine what a student can do with what they learned versus what they simply remember.
  • Revisit learning goals articulated at the beginning of a topic, unit or course.
  • Use a variety of questions such as multiple choice, short answer and essay questions.

Rubrics

  • Used for oral presentations, projects, or papers.
  • Evaluate team work.
  • Facilitate peer review.
  • Provide self-assessment to improve learning and performance.
  • Motivate students to improve their work.

Online rubric resources for educators include, Rubistar, Online Instruction Rubric, and Value Rubrics.

Students do not enter your classroom as a blank slate. Assessing and determining what students know targets gaps in knowledge. By incorporating an activity or a question in a small amount of time at the start and end of a class, you can check on potential and actual misconceptions so that you may target instruction for deep understanding. Background checks of prior knowledge provide awareness of the diversity of your students and their experiences further designing and improving instruction for active, meaningful learning. Creating a bridge between prior knowledge and new material provides a framework for students for a paradigm shift in learning and makes it very clear for them and for you to see what they learned by the end of a lesson or the end of a course.

 

References

Falk JH, Adelman, L.M. Investigating the Impact of Prior Knowledge and Interest on Aquarium Visitor Learning. Journal of Research in Science Teaching. 2003;40(2):163-176.

Kuhn TS. The Structure of Scientific Revolutions. 4th ed. Chicago: The University of Chicago Press; 1962.

Messick, S. (1995). Standards of validity and the validity of standards in performance assessment. Educational measurement: Issues and practice,14(4), 5-8.

 

PECOP Gatz picture

 

 

Jennifer (Jen) Gatz graduated from Ithaca College in 1993 with a BSc in Exercise Science and began working as a clinical exercise physiologist in cardiac and pulmonary rehabilitation. Jen received her MS in Exercise Physiology from Adelphi University in 1999, founded the multisport endurance training company, Jayasports, in 2000, and expanded her practice to include corporate health and wellness for Brookhaven National Laboratory, through 2012. Along the way, Jen took her clinical teaching practice and coaching experience and returned to school to complete a Master of Arts in Teaching Biology with NYS teaching certification from Stony Brook University in 2004. A veteran science teacher for 12 years now at Patchogue-Medford High School in Medford, NY, Jen is currently teaching AP Biology and Independent Science Research. A lifelong learner, Jen returned to Stony Brook University in 2011 and is an advanced PhD candidate in Science Education anticipating the defense of her dissertation in the fall of 2016. Her dissertation research is a melding of a love of physiology and science education focused on understanding connections among cognitive processes, executive functioning, and the relationship to physical fitness, informal science education, and environmental factors that determine attitudes towards and performance in science. In 2015, Jen was a recipient of a Howard Hughes Medical Institute Graduate Research Fellowship.