Tag Archives: teaching

How to motivate students to come prepared for class?

The flipped classroom is a teaching method where the first exposure to the subject occurs in an individual learning space and time and the application of content is practiced in an interactive guided group space. Freeing up class time by shifting traditional lecture outside of class allows the instructor more time for student-centered activities and formative assessments which are beneficial to students. The flipped teaching model has been shown to benefit students as it allows self-pacing, encourages students to become independent learners, and assists them to remain engaged in the classroom. In addition, students can access content anytime and from anywhere. Furthermore, collaborative learning and peer tutoring can be integrated due to freed-up class time with this student-centered approach. Given these benefits, the flipped teaching method has been shown to improve student performance compared to traditional lecture-based teaching. Compared to the flipped classroom, the traditional didactic lecture is considered a passive type of delivery where students may be hesitant to ask questions and may omit key points while trying to write or type notes.

There are two key components in the flipped teaching model: pre-class preparation by students and in-class student-centered activities. Both steps involve formative assessments to hold students accountable. The importance of the pre-class assessment is mainly to encourage students to complete their assignments and therefore, they are better prepared for the in-class application of knowledge. In-class activities involve application of knowledge in a collaborative space with the guidance of the instructor. Although the flipped teaching method is highly structured, students still come to class unprepared.

Retrieval practice is yet another powerful learning tool where learners are expected to recall information after being exposed to the content. Recalling information from memory strengthens information and forgetting is less likely to occur. Retrieval of information strengthens skills through long-term meaningful learning. Repeated retrieval through exercises involving inquiry of information is shown to improve learning.

The use of retrieval strategy in pre-class assessments is expected to increase the chance of students completing their pre-class assignment, which is often a challenge. Students attending class without having any exposure to the pre-class assignment in the flipped classroom will drastically affect their performance in the classroom. In my flipped classroom, a quiz consisting of lower level of Bloom’s taxonomy questions is given over the pre-class assignment where the students are not expected to utilize any resources or notes but to answer questions from their own knowledge. Once this exercise is completed, a review of the quiz and the active learning portion of the class occurs. I use a modified team-based learning activity where the groups begin answering higher order application questions. Again, no resources are accessible during this activity to promote their preparation beforehand. Since it is a group activity, if one student is not prepared, other students may fill this gap. The group typically engages every student and there is a rich conversation of the topic being discussed in class. The classroom becomes a perfect place for collaborative learning and peer tutoring. For rapid feedback to the students, the group answers to application questions are discussed with the instructor prior to the end of the class session.

Student preparation has improved since the incorporation of the flipped teaching model along with retrieval exercises in my teaching, but there are always some students who are not motivated to come prepared to class. It is possible that there are other constraints students may have that we will not be able to fix but will continue to be searching for and developing newer strategies for helping these students maximize their learning.

Dr. Gopalan received her PhD in Physiology from the University of Glasgow, Scotland. After completing two years of postdoctoral training at Michigan State University, she began her teaching endeavor at Maryville University where she taught Advanced Physiology and Pathophysiology courses in the Physical Therapy and Occupational Therapy programs as well as the two-semester sequence of Human Anatomy and Physiology (A&P) courses to Nursing students. She later joined St. Louis Community College where she continued to teach A&P courses. Dr. Gopalan also taught at St. Louis College of Pharmacy prior to her current faculty position at Southern Illinois University Edwardsville where she teaches Advanced Human Physiology and Pathophysiology for the doctoral degrees in the Nurse Anesthetist and Nurse Practitioner programs. Besides teaching, she has an active research agenda in teaching as well as in the endocrine physiology field she was trained in.
Teaching High Level Learning Goals in Science Classes: A Lesson from Librarians

Bloom’s Taxonomy provides a way to classify learning outcomes into lower order and higher order goals. On the lower end of the spectrum we ask students to remember, understand, and apply by doing tasks such as define, list, explain, and interpret. On the higher end of the spectrum, we want students to analyze, evaluate, and ultimately create by doing tasks such as organize, compare, critique, and design (1). As educators, we all want to push our students toward the highest levels of Bloom’s Taxonomy, but how do you teach someone to create? It feels like a daunting task. I don’t think anyone ever attempted to directly teach me these higher-level skills, but instead I somehow learned them in graduate school by trial and error (in the form of a lot of red writing on drafts that I submitted to my thesis advisor). This is why I was so excited to discover the synthesis matrix. A synthesis matrix is a table that is set up to extract relevant information from sources, which can include non-scholarly, scholarly, and even student generated data. It provides a way to organize research that allows for easy comparison of the key information from many sources (3, 4, 5). I first learned about the synthesis matrix when I was teaching First Year Seminar (FYS) at Dickinson College. Learning outcomes for FYS include the ability to critically analyze information from multiple perspectives and use that information to create clear academic writing (2). Using class time to teach these skills was very different from what I typically do in my biology classes where it is a struggle just to keep up with the vast amount of content. Therefore, it is an understatement to say that I was out of my element teaching FYS. Fortunately, each FYS class at Dickinson is assigned to librarians. I was fortunate to have Dickinson librarians Nick Lonergan and Jessica Howard help design assignments and teach methods that help students achieve the FYS learning goals. Nick and Jessica designed a synthesis matrix assignment to help students find relevant non-scholarly and scholarly sources and extract information from the sources to help them compare viewpoints on different concepts found in each reference. In this case, the synthesis matrix was used as a homework assignment to prepare students to organize and synthesize information from multiple references in future writing assignments. The power of the synthesis matrix immediately hit me as I realized that this is what experts do in their heads. Many years of reading and analyzing both the work of others and our own research leads to the formation of a mental synthesis matrix that we can pull from as needed in our respective fields. I think my life would have been a lot easier if I knew about the concept of a paper synthesis matrix in graduate school. Since my discovery of the synthesis matrix in FYS, I have used it in different ways in all of the biology classes I teach at Dickinson College including Introductory Biology (Biology 132), Physiology (Biology 333), and Molecular Pathophysiology, which is a research and writing intensive class (Biology 433). Some ways I have used it include:

 

  • Homework assignment: On the simplest level, the synthesis matrix can be used to assess student ability to find appropriate references and extract relevant information from those references. An example of this is described above for FYS and I can easily see this working well in Introductory Biology classes. I have also done this in Molecular Pathophysiology (Biology 433) as a homework assignment prior to assigning a literature review writing assignment.

 

  • Classroom Activity: In Physiology (Biology 333), I have lab groups (6 groups of 4 students each) find a primary publication on a topic related to an upcoming lab project and analyze it for specific information related to research methods and results. In order to avoid overlap and make sure they found the right type of paper, I have the students email the paper they found for approval. If two groups found the same paper or if it is not the right type of source (for example, some students will try to use a review), I will ask them to find another paper. In lab I draw a synthesis matrix on the board and distribute blank handouts of the same synthesis matrix. We then go around the room and as students report their findings, I fill in the synthesis matrix. When it is done, I demonstrate how to use the matrix to synthesize the results of multiple references to come to overarching conclusions and design new experiments. We use this to guide the design of a class research project and in future writing assignments.

 

  • Model Creation: The most complex way I have used the synthesis matrix is in Molecular Pathophysiology (Biology 433). As a research based Writing in the Discipline (WID) class, we focus all of our attention on analyzing primary literature and doing novel experiments in lab. Throughout the semester, I encourage students to draw their own textbook style models of what data show. This can be done by synthesizing results from a single primary publication (if the authors did not already generate a model), multiple primary publications (as seen in review articles), and even by incorporating student lab results with published results. The synthesis matrix can be set up to accommodate all of these approaches. For example, instead of labeling columns by reference #, columns can be labeled by figure # for a single primary publication. Similarly, a column for class lab results can be added to incorporate class results (Figure 1). This is my favorite way of using the matrix. It is so powerful for students to see how one small experiment they did fits in with the big picture of what others have published.

Of all the teaching methods I have tried over the years, the synthesis matrix is the closest I have come to teaching students how to think like an expert. It has also allowed me to do a better job of breaking the research and writing process down into component parts. If you tell a college senior to write a one page introduction section of a scientific paper with 5 references, many of them think they can produce one page of writing in a couple of hours (I know I thought that as a senior in college!). However, if you force them to do a synthesis matrix that includes analysis of the relevant information in 5 primary papers prior to writing about them, they quickly realize how much work is involved.

 

Ultimately, the most important lesson I learned though all of this is that teaching in science classes can benefit greatly from methods used in classes outside of our discipline. If you Google “synthesis matrix”, it is a commonly used method promoted on Library, Academic Coaching, and Writing Center websites at many colleges and universities (3, 4, 5). However, I never heard of it until librarians introduced me to it while teaching FYS. Interacting with scholars outside of my discipline has helped me to integrate the teaching of higher level learning goals alongside lower level learning goals related to content in my classes.

 

References

  1. Vanderbilt University, Center for Teaching, Bloom’s Taxonomy. https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/. 2018 Vanderbilt University, Accessed December 28, 2018.
  2. Dickinson, First-Year Seminar. https://www.dickinson.edu/homepage/99/first_year_seminars . Accessed December 28, 2018.
  3. Ashford University, Synthesis Matrix. https://writingcenter.ashford.edu/synthesis-matrix . 2017 Bridgepoint Education. Accessed December 28, 2018.
  4. Johns Hopkins Sheridan Libraries, Write a Literature Review. http://guides.library.jhu.edu/lit-review/synthesize . 2017 Johns Hopkins Sheridan Libraries. Accessed December 28, 2018.
  5. Academic Coaching and Writing, A Synthesis Matrix as a Tool for Analyzing and Synthesizing Prior Research. https://academiccoachingandwriting.org/dissertation-doctor/dissertation-doctor-blog/iii-a-synthesis-matrix-as-a-tool-for-analyzing-and-synthesizing-prior-resea . 2018 Academic Coaching and Writing LLC. Accessed December 28, 2018.

 

Tiffany Frey is an Assistant Professor of Biology at Dickinson College in Carlisle, PA. She received her Ph.D. in Molecular Medicine from Johns Hopkins University School of Medicine and also has a certificate in Adult Learning from Johns Hopkins University School of Education. She teaches Introductory Biology, Physiology, and Molecular Pathophysiology at Dickinson College. Her research interests are focused on understanding the cellular and molecular basis of autoinflammatory disease and incorporating and assessing the effects of scholarly teaching methods in her courses. Outside of work, she enjoys spending time with her family (husband, 2 children, and dog Charlie), reading, participating in exercise classes, and running in local races.
Graduate Student Ambassadors: An APS Effort to Increase Involvement in Professional Societies

The Graduate Student Ambassador (GSA) program was organized by the American Physiological Society’s (APS) Trainee Advisory Committee in 2015. The goal of the program is to train graduate students to act as liaisons between APS and local undergraduate and graduate students. GSAs visit schools in their local area to share their experiences as graduate students, discuss physiology careers and the benefits of an APS membership, and encourage students to consider becoming a member of APS. The program has a unique, symbiotic relationship in that GSAs learn valuable outreach, public speaking, and leadership skills, while APS receives promotion of their awards, programs, and memberships. One particular goal of the GSA program is to recruit and retain individuals from under-represented communities. This is the aim that attracted me to the program.

 

As a first-generation college student, I was raised in a very low socioeconomic background. My exposure to careers was limited and like countless other young girls, I grew up with a short supply of role models who looked like me. While most of my public school teachers were female, the science labs and principal’s offices were considered masculine domains. In my mind, a scientist was that image we all remember of the mad chemist brewing his potions in a lab, hair all in disarray. Although I got the messy hair right, I couldn’t picture myself as this version of a scientist. I didn’t know anything about college because nobody in my life had ever been to one. I certainly didn’t know what a Ph.D. was at the time. By luck and happenstance, I wound up at the University of Kentucky for my undergraduate studies as a nontraditional student following community college. UK is a Research 1 institution, so I was exposed to the scientific method from the start. However, looking back, I’ve always wondered what if I had attended a different university? Would I have ever found my niche in research? And, thus, is the goal of the GSA program: to expose students to careers in research and promulgate the ways in which APS can assist them in these pursuits.

 

When I first got wind of the new GSA program, I was quick to apply. From the beginning, I was excited by the prospect of sharing my experiences as a graduate student with undergraduates. I knew I wanted to visit less research-intensive universities and try to reach under-represented students, first-generation college students, and students from low socioeconomic backgrounds. I recognized the need for diversity in STEM and wanted to contribute to efforts being made to increase it. According to the National Science Foundation, while blacks and Hispanics constitute 36% of the US resident population ages 18-24, they only represent 17% of enrolled graduate students. There is even less representation at the level of doctorate holders (Figure 3). Ethnic and cultural representations in science do not match their share in the US population. However, it is absolutely essential to the growth of STEM to sample from all groups of people.

 

Science is meant to be an objective process, but much of science has been shaped by individuals of a similar background. This not only halts progress but can actually hurt it. For example, the standard medical treatment for breast cancer used to be radical mastectomies. It wasn’t until female voices were welcomed that alternative treatments were implemented—treatments that allowed women to keep their breasts and have been shown to be just as, if not more, effective. Progress was made because of a different perspective. The same is true of drug development, our understanding of sex differences in cardiovascular disease, even air-bag design which was initially tailored to a man’s height and thus not as effective for women. A diverse and inclusive program can promote widely applicable and lifelong learning so that historically under-represented groups can contribute to future breakthroughs with a new perspective. If fields are not diverse and inclusive, we are not cultivating potential but instead losing talent.

 

Berea College, the first coeducational and interracial college in the south, is an example of an ongoing effort to increase inclusion. This school, located in Berea, Kentucky, is a 4-year university that offers a tuition-free education to every single student. They enroll academically promising, economically challenged students from every state in the U.S. and 60 other countries. Over one third of their student population are of color, 8% are international, and 70% are from the Appalachian region and Kentucky. They are inclusive regardless of sexual orientation, gender identity, disability, race, citizenship status, etc. Despite not being a research intensive university, they have an excellent science program with a newly built Natural Sciences and Health building featuring state-of-the-art teaching laboratory equipment. They also encourage students to participate in the Kentucky Biomedical Research Infrastructure Network, a program designed to support undergraduate students in biomedical research, promote collaboration, and improve access to biomedical facilities.

 

I wanted to visit Berea to share my experiences as a graduate student, discuss the different career paths within physiology, and provide interested students with information about beneficial awards and programs offered through APS. Many of the students I spoke with didn’t know much about graduate school or obtaining a Ph.D. They seemed intrigued by my experience as a teaching assistant to fund my program. Berea College offers a unique work program at their school where students work as part of their tuition-free enrollment. Some act as teaching assistants in their courses, giving these students the experience they need to enter a funded graduate program with a teaching component. A lot of the students didn’t realize, though, that you could simply apply to a doctoral program with a bachelor’s degree—they thought you needed to obtain a master’s degree first. Most of the students were particularly interested in the undergraduate summer research programs offered through APS, such as the STRIDE fellowship. They wanted to know more about the Porter Physiology Development Fellowship for graduate students. I was also very excited to share with them the Martin Frank Diversity Travel Fellowship Award to attend the Experimental Biology conference.

 

I had a meaningful and productive visit to Berea College. My next step will be visiting a local community college, another area where efforts to promote diversity and inclusion are progressing. Community colleges are also an excellent place to reach nontraditional students, such as myself. These students sometimes transfer to larger universities to finish their bachelor’s degree, but being a transfer student often doesn’t allow for exposure to research as an undergraduate. I hope to encourage these students to pursue careers in physiology.

 

If you’re interested in contributing to this mission, consider applying to become a GSA. The position is a 2 year term and requires you to attend Experimental Biology each year of your term. The applications for 2019 are currently under review.

 

References

National Science Foundation, National Center for Science and Engineering Statistics. 2017. Women, Minorities, and Persons with Disabilities in Science and Engineering: 2017. Special Report NSF 17-310. Arlington, VA. Available at www.nsf.gov/statistics/wmpd/.

 

Chelsea C. Weaver is a fourth year PhD candidate at the University of Kentucky where she studies hypertensive pregnancy disorders in African Green Monkeys. She has served as a teaching assistant for Principles of Genetics and Animal Physiology for undergraduates. She also guest-lectured for graduate level Advanced Physiology courses. Chelsea is interested in pursuing a postdoctoral position in STEM education research in K-16 upon graduation.
Affective Teaching and Motivational Instruction: Becoming More Effective Educators of Science

As educators, we’re intimately familiar with learning objectives such as, “Using Fick’s principle, calculate the diffusion of a substance across a membrane.” Also, as scientists, we are familiar with technical objectives such as, “Using a micropipette, transfer 5μL of Solution A into the chromatography chamber.” In terms of learning conditions, the first is an intellectual skill and the second is a motor skill.1 One area in which we don’t often give much thought is the third type of skill that was identified by Gagné and Medsker — the affective skill. This is the area that is most often neglected by educators because it is the hardest to evaluate and quantify. We can’t explicitly say to a student, “By the end of the semester you will develop a love of physiology.” We can hope to achieve this through the semester, but as educators, the best that we can do is hope to instill these attitudes, choices, and values in our learners that persist beyond our brief time with them in the classroom.

Instilling attitudes in our learners is a complex goal. This is, in part, because stating an affective goal is at times counterproductive to the goal and interferes with learning. In the example above, it is clearly ridiculous to expect that all students will leave our classrooms with a true passion for our subject matter. Some clearly will, but others will not. That will be shaped by the attitudes with which students enter our classrooms. Those attitudes consist of the knowledge that a learner has about a subject – the cognitive aspect, how the person feels about the subject — the affective aspect, and how the person behaves in response to those influences — the behavioral aspect.2 So despite our best interests to instill a care for the animal and human models we frequently use in experiments, it is completely beyond our ability to control the behavior of our learners outside of the classroom. That doesn’t mean that we shouldn’t still try because the majority of our students will come away with those lessons intact. Additionally, affective learning is difficult to assess. We can test the knowledge and skills necessary and ask about student feelings3, but at the end of the day, our students will make a choice on their behaviors on their own. For that reason, we should not make affective learning objectives part of our formal instruction plan. Because there are so many methods that depend on the affect you might want to influence, I’m going to focus on two areas that are most common: attitude and motivational instruction.

 

Katz and Stotland identified five types of attitudes.4 These types of attitudes vary with differing levels of affective and cognitive components, but the key takeaway is that individual experiences and the results and consequences of previous choices dramatically shape the attitudes with which our learners enter our classrooms. Reward for behavior not only reinforces the behavior, but also the cognitive and behavioral components that drive that behavior.1 When we focus purely on the cognitive and the motor skill aspects of learning, we can often get away with a fair amount of do-as-I-say-not-as-I-do-style instruction. The problem with this is that students look to the faculty and other instructors for role model behavior.  Thus, the more accurately that we reflect the attitudes that we want to instill in our learners, the more the students will reflect those ideals.3 One of the easiest ways to bring about these changes of attitudes are through in-class discussions.5 This positive benefit is most likely due to differences that are raised during discussion, sometimes prompting the discovery of a discrepancy between existing attitudes in a learner and new facts that are being presented. The learners then have a choice on how to adapt to the new desired attitudes. Most importantly, never underestimate group acceptance of attitudes, as immediate social reinforcement can be a powerful driver in solidifying attitudes.

 

Having discussed attitude, motivational instruction is another key area that is relevant to affective learning. No two students enter the classroom with the same motivation. One student may be enrolled in your class because of a deep passion for your subject matter while another is there simply to satisfy a requirement for their major. This mix of intrinsic and extrinsic motivations will drive the overall outcomes of affective learning. The student who is highly motivated by an intrinsic interest in your subject or the student who is extrinsically driven by the reward of a good grade (or fear of a bad grade) will generally excel in class, albeit for different reasons. The student who is there out of obligation to meet a requirement may have very little motivation to do anything beyond what is required of them to get by. To help with those students who are lacking in motivation, JM Keller broke motivational instruction into four components: attention, relevance, confidence and satisfaction.6 Gaining the attention of students through demonstrations, discussions, and other active learning techniques may help keep student motivation high. Practical application of concepts and ideas will generally inspire higher motivation than abstract or arbitrary examples.7 Keeping the material relevant will generate motivation for intrinsic learners by providing self-improvement and for the extrinsic learners by providing a reward, such as doing well on the exam. Confidence is a harder area to approach, as students must first believe they are capable of meeting the stated objectives. Making the material too easy will not lead to feelings of accomplishment, while making the material too challenging will undermine confidence in all learners.1 Finally, satisfaction can be achieved by learners of all types, regardless of motivation type when outcomes match objectives. Keeping motivation high by providing opportunities to apply learning will drive further motivation to continue learning.

Last week I completed a comprehensive review of our capstone thesis writing course, which has changed dramatically over the past year and a half while I have been the course director. Initially, the goal of the course was to have students write a literature research paper on a physiological topic of their choosing where their grade was entirely dependent upon the finished paper. The students were frequently frustrated with a lack of guidance in the course and the faculty regularly complained about the burden of reading papers of sometimes-questionable quality. Clearly there were issues with the affective components of this course from both the student and faculty side. I’ve de-emphasized the actual paper and refocused the course on the process of writing with stated learning outcomes such as: 1) Develop the language that helps us talk about science; 2) Strengthen research skills to become educated consumers of science; and 3) Gain specialized knowledge in a selected area of physiological research. Focusing the course in this way has yielded measurable results in course evaluations and faculty perceptions of paper quality from the students. By focusing on the affective components of writing and giving students more opportunities to apply their new skills, overall satisfaction has improved. Like all works of science, though, this course continues to evolve and improve. In short, to be effective teachers, we need to go beyond the intellectual and motor skills and make sure we address the affective learning of our students as well.

1 Gagné RM and Medsker LK. (1996). The Conditions of Learning. Training Applications. Fort Worth: Harcourt Brace College Publishers.

2 Baron RA and Byrne D. (1987). Social Psychology: Understanding Human interaction. 5th ed. Boston: Allyn and Bacon.

3 Dick W and Carey L. (1996). The Systematic Design of Instruction. 4th ed. New York: HarperCollins Publishers.

4 Katz D and Stotland E. (1959). A preliminary statement to a theory of attitude structure and change. In Psychology: A Study of Science. vol 3. New York: McGraw-Hill.

5 Conrad CF. (1982). Undergraduate Instruction. In Encyclopedia of Educational Research. 5th ed. New York: The Free Press.

6 Keller JM. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development. 10;3. 2-10.

7 Martin BL and Briggs LJ. (1986). The Affective and Cognitive Domains: Integration for Instruction and Research. Englewood Cliffs, New Jersey: Educational Technology Publications.

Ryan Downey is an Assistant Professor in the Department of Pharmacology & Physiology at Georgetown University. As part of those duties, he is the Co-Director for the Master of Science in Physiology and a Team Leader for the Special Master’s Program in Physiology. He teaches cardiovascular and neuroscience in the graduate physiology courses. He received his Ph.D. in Integrative Biology from UT Southwestern Medical Center. His research interests are in the sympathetic control of cardiovascular function during exercise and in improving science pedagogy. When he’s not working, he is a certified scuba instructor and participates in triathlons.
Questioning How I Question

For some, “assessment” is sometimes a dirty word, with visions of rubrics, accreditation reports, and piles of data.  Readers of this blog hopefully do not have this vantage point, thanks in part to some great previous posts on this topic and an overall understanding of how assessment is a critical component of best practices in teaching and learning.  Yet, even as a new(ish) faculty member who values assessment, I still struggle with trying to best determine whether my students are learning and to employ effective and efficient (who has time to spare?!) assessment strategies.  Thus, when a professional development opportunity on campus was offered to do a book read of “Fast and Effective Assessment: How to Reduce Your Workload and Improve Student Learning” by Glen Pearsall I quickly said “Yes! Send me my copy!”

 

Prior to the first meeting of my reading group, I dutifully did my homework of reading the first chapter (much like our students often do, the night before…).  Somewhat to my surprise, the book doesn’t start by discussing creating formal assessments or how to effectively grade and provide feedback.  Rather, as Pearsall points out “a lot of the work associated with correction is actually generated long before students put pen to paper. The way you set up and run a learning activity can have a profound effect on how much correction you have to do at the end of it.” The foundation of assessment, according to Pearsall is then questioning technique. 

 

Using questions to promote learning is not a new concept and most, even non-educators, are somewhat familiar with the Socratic Method.  While the simplified version of the Socratic Method is thought of as using pointed questions to elicit greater understanding, more formally, this technique encourages the student to acknowledge their own fallacies and then realize true knowledge through logical deduction[1],[2].  Compared to the conversations of Socrates and Plato 2+ millennia ago, modern classrooms not only include this dialectic discourse but also other instructional methods such as didactic, inquiry, and discovery-based learning (or some version of these strategies that bears a synonymous name).  My classroom is no different — I ask questions all class long, to begin a session (which students answer in writing to prime them into thinking about the material they experienced in preparation for class), to work through material I am presenting (in order to encourage engagement), and in self-directed class activities (both on worksheets and as I roam the room).  However, it was not until reading Pearsall’s first chapter that I stopped to question my questions and reflect on how they contribute to my overall assessment strategy.

 

Considering my questioning technique in the context of assessment was a bit of a reversal in thinking.  Rather than asking my questions to facilitate learning (wouldn’t Socrates be proud!), I could consider my questions providing important feedback on whether students were learning (AKA…Assessment!).  Accordingly, the most effective and efficient questions would be ones that gather more feedback in less time.  Despite more focus on the K-12 classroom, I think many of Pearsall’s suggestions[3] apply to my undergraduate physiology classes too.  A brief summary of some strategies for improving questioning technique, separated by different fundamental questions:

 

 

How do I get more students to participate?

  • We can “warm up” cold calling to encourage participation through activities like think-pair-share, question relays, scaffolding answers, and framing speculation.
  • It is important to give students sufficient thinking time through fostering longer wait and pause times. Pre-cueing and using placeholder or reflective statements can help with this.

How do I elicit evidentiary reasoning from students?

  • “What makes you say that?” and “Why is _____ correct?” encourages students to articulate their reasoning.
  • Checking with others and providing “second drafts” to responses emphasizes the importance of justifying a response.

How do I sequence questions?

  • The right question doesn’t necessarily lead to better learning if it’s asked at the wrong time.
  • Questions should be scaffolded so depth and complexity develops (i.e. detail, category, elaboration, evidence).

How do I best respond to student responses?

  • Pivoting, re-voicing, and cueing students can help unpack incorrect and incomplete answers as well as build and explore correct ones.

How do I deal with addressing interruptions?

  • Celebrating good practices, establishing rules for discussion, making it safe to answer and addressing domineering students can facilitate productive questioning sessions.

 

After reviewing these strategies, I’ve realized a few things.  First, I was already utilizing some of these techniques, perhaps unconsciously, or as a testament to the many effective educators I’ve learned from over the years.  Second, I fall victim to some questioning pitfalls such as not providing enough cueing information and leaving students to try their hand at mind-reading what I’m trying to ask more than I would like.  Third, the benefits of better questioning are real.  Although only anecdotal and over a small sampling period, I have observed that by reframing certain questions, I am better able to determine if students have learned and identify what they may be missing.  As I work to clean up my assessment strategies, I will continue to question my questions, and encourage it in my colleagues as well.

 

1Stoddard, H.A. and O’Dell, D.A. Would Socrates Have Actually Used the Socratic Method for Clinical Teaching? J Gen Intern Med 31(9):1092–6. 2016.

2Oyler, D.R. and Romanelli, F. The Fact of Ignorance Revisiting the Socratic Method as a Tool for Teaching Critical Thinking. Am J of Pharm Ed; 78 (7) Article 144. 2014.

3A free preview of the first chapter of Pearsall’s book is available here.

Anne Crecelius (@DaytonDrC) is an Assistant Professor in the Department of Health and Sport Science at the University of Dayton where she won the Faculty Award in Teaching in 2018.  She teaches Human Physiology, Introduction to Health Professions, and Research in Sport and Health Science. She returned to her undergraduate alma mater to join the faculty after completing her M.S. and Ph.D. studying Cardiovascular Physiology at Colorado State University.  Her research interest is in the integrative control of muscle blood flow.  She is a member of the American Physiological Society (APS), serving on the Teaching Section Steering Committee and will chair the Communications Committee beginning in 2019.  In 2018, she was awarded the ADInstruments Macknight Early Career Innovative Educator Award.
Teaching for Learning: The Evolution of a Teaching Assistant

An average medical student, like myself, would agree that our first year in medical school is fundamentally different from our last, but not in the ways most of us would expect. Most of us find out that medical school not only teaches us about medicine but it also indirectly teaches us how to learn. But what did it take? What is different now that we didn’t do back in the first year? If it comes to choosing one step of the road, being a teaching assistant could be a turning point for the perception of medical education in the long run, as it offers a glimpse into teaching for someone who is still a student.

At first, tutoring a group of students might seem like a simple task if it is only understood as a role for giving advice about how to get good grades or how to not fail. However, having the opportunity to grade students’ activities and even listen to their questions provides a second chance at trying to solve one’s own obstacles as a medical student. A very interesting element is that most students refuse to utilize innovative ways of teaching or any method that doesn’t involve the passive transmission of content from speaker to audience. There could be many reasons, including insecurity, for this feeling of superficial review of content or laziness, as it happened for me.

There are, in fact, many educational models that attempt to objectively describe the effects of educating and being educated as active processes. Kirkpatrick’s model is a four-stage approach which proposes the evaluation of specific aspects in the general learning outcome instead of the process as a whole (1). It was initially developed for business training and each level addresses elements of the educational outcome, as follows:

  • Level 1- Reaction: How did learners feel about the learning experience? Did they enjoy it?
  • Level 2- Learning: Did learners improve their knowledge and skills?
  • Level 3- Behavior: Are learners doing anything different as a result of training?
  • Level 4- Results: What was the result of training on the business as a whole?

Later, subtypes for level 2 and 4 were added for inter-professional use, allowing its application in broader contexts like medicine, and different versions of it have been endorsed by the Best Evidence in Medical Education Group and the Royal College of Physicians and Surgeons of Canada (1) (2).  A modified model for medical students who have become teachers has also been adapted (3), grading outcomes in phases that very closely reflect the experience of being a teaching assistant. The main difference is the inclusion of attitude changes towards the learning process and the effect on patients as a final outcome for medical education. The need for integration, association and good problem-solving skills are more likely to correspond to levels 3 and 4 of Kirkpatrick’s model because they overcome traditional study methods and call for better ways of approaching and organizing knowledge.

Diagram 1- Modified Kirkpatrick’s model for grading educational outcomes of medical student teachers, adapted from (3)

These modifications at multiple levels allow for personal learning to become a tool for supporting another student’s process. By working as a teaching assistant, I have learned to use other ways of studying and understanding complex topics, as well as strategies to deal with a great amount of information. These methods include active and regular training in memorization, deep analysis of performance in exams and schematization for subjects like Pharmacology, for which I have received some training, too.

I am now aware of the complexity of education based on the little but valuable experience I have acquired until now as a teacher in progress. I have had the privilege to help teach other students based on my own experiences. Therefore, the role of a teaching assistant should be understood as a feedback process for both students and student-teachers with a high impact on educational outcomes, providing a new approach for training with student-teaching as a mainstay in medical curricula.

References

  1. Roland D. Proposal of a linear rather than hierarchical evaluation of educational initiatives: the 7Is framework. Journal of Educational Evaluation for Health Professions. 2015;12:35.
  2. Steinert Y, Mann K, Anderson B, Barnett B, Centeno A, Naismith L et al. A systematic review of faculty development initiatives designed to enhance teaching effectiveness: A 10-year update: BEME Guide No. 40. Medical Teacher. 2016;38(8):769-786.
  3. Hill A, Yu, Wilson, Hawken, Singh, Lemanu. Medical students-as-teachers: a systematic review of peer-assisted teaching during medical school. Advances in Medical Education and Practice. 2011;:157.

The idea for this blog was suggested by Ricardo A. Pena Silva M.D., Ph.D. who provided guidance to Maria Alejandra on the writing of this entry.

María Alejandra is a last year medical student at the Universidad de Los Andes, School of Medicine in Bogota, Colombia, where she is has been a teaching assistant for the physiology and pharmacology courses for second-year medical students. Her academic interests are in medical education, particularly in biomedical sciences.  She is interested in pursuing a medical residency in Anesthesiology. Outside medical school, she likes running and enjoys literature as well as writing on multiple topics of personal interest.
In Defense of the “Real” Thing

Society has moved into the age of virtual reality.  This computer-generated trend has wide-sweeping implications in the classroom.  Specific to anatomy, impressive 3D modeling programs permit students to dissect simulated bodies pixel by pixel.  It is exciting and often more cost-effective.  Virtual dissection, without doubt, can play a significant role in the current learning environment. However, as stated by Rene Descartes, “And so that they might have less difficulty understanding what I shall say about it, I should like those who are unversed in anatomy to take the trouble, before reading this, of having the heart of a large animal with lungs dissected before their eyes (for it is in all respects sufficiently like that of a man)”. This idea leads me to my argument; there is no replacement for the real thing.

 

We as teachers must incorporate a variety of learning tools for a student to truly understand and appreciate anatomical structure. Anatomical structure also needs to be related to physiological function. Is there anyone reading this that has not repeated the mantra “form determines function” hundreds or thousands of times during their teaching?  The logistical and financial restrictions to human cadavers, necessitates the frequent incorporation of chemically preserved specimens into our laboratory curriculum. Course facilitators often employ a cat or a pig as a substitute for the human body. I am not advocating against the use of preserved specimens or virtual programs for that matter (and kudos to my fellow facilitators who have learned the arduous techniques required to dissect a preserved specimen). However, it is my opinion that it is a time consuming assignment with limited educational end points. Not to mention the rising specimen costs and limited vendor options. The cost of a preserved cat is now ~$40, while the average cost of a live mouse is only ~$5. Two very important components necessary to understand the concept that form determines function are missing from preserved specimens (even cadavers). These two components are: texture and color. With respect to color, the tissues of preserved specimens are subtle variations of gray, completely void of the Technicolor show of the living organism. Further, texture differences are extremely difficult to differentiate in a preserved specimen. Compare this to a fresh or live specimen and the learning tools are innumerable. You might argue that mice are much smaller, but dissecting microscopes can easily enhance the dissection and in my experience far outweigh the noxious experience of dissecting a chemically preserved organism.

 

To further convince you of the value of dissecting fresh tissue I would like to present a couple of examples. First, why is the color of tissue important? One of the most important bodily pigments is hemoglobin. Hemoglobin, as we all know, is the pigment that gives blood its red color. Therefore the color of a tissue often reflects the level of the tissue vascularity and often (but of course not always) in turn the ability of that tissue to repair or regenerate. Simply compare the color of the patellar tendon (white) to the red color of the quadriceps. Muscles being highly vascularized have a much greater ability to regenerate than non-vascular connective tissue such as the patellar tendon. In addition, muscles contain myoglobin, a red protein very similar to hemoglobin. Two clear examples of teaching opportunities that would be missed with the traditional use of preserved specimens.

 

Texture is completely lost with chemical preservation as tissues become hardened and rubbery. My students are always blown away by the fact you can completely eliminate the overall structure of the brain by pressing it between their two fingers. The tactile experience of holding the delicate brain allows students to explore how form begets function begets pathology. Traumatic brain injury (TBI) has become a hot topic in our culture. We no longer see children riding bicycles without helmets, the National Football League has new rules regarding tackle technique and my 8-year-old soccer player is penalized for headers during game play. What better way to educate a new generation of students just how delicate nervous tissue is than by having them “squash” a mouse brain? Regardless, of the amazing skull that surrounds the brain and the important fluid in which it floats, a hit to the head can still result in localized damage and this tactile experience emphasizes this in a way no virtual dissection could ever accomplish.

 

Finally, I would like to discuss a topic close to my heart that does require a non-preserved large animal specimen. The function of arteries and veins is vastly different based on the structure of elastic or capacitance vessels, respectively. For example, the deer heart allows easy access to the superior or inferior vena cava (veins that are thin and easily collapsed) and the aorta (thick and elastic artery) permitting valuable teaching moments on vessel structural variability for divergent physiological function. These structures on a preserved specimen are usually removed just as they enter the heart making them very difficult to evaluate.

 

These are just some elementary examples. Numerous concepts can be enhanced with the added illustrations of texture and color. When presented with both options, my students always choose the fresh tissue!  The wonder and excitement of handling fresh tissue has become a hallmark of our Anatomy and Physiology course and is regularly mentioned as student’s favorite example of hands-on learning in the classroom.

 

I have to end this with a special shout-out to my dear lab adjunct Professor Elizabeth Bain MSN, RN. Liz has made access to deer heart and lungs an easy task for me.

April Carpenter, PhD is an Assistant Professor in the Health and Exercise Physiology Department at Ursinus College. She received her PhD in Molecular and Cellular Physiology at Louisiana State University Health Sciences Center and completed two postdoctoral fellowships at the Hospital for Special Surgery in New York and Cincinnati Children’s Hospital Medical Center. Her research interests include the molecular regulation of endothelial function and its impact on all phases of skeletal muscle injury.  Dr. Carpenter currently teaches Anatomy and Physiology, Research Methods and a new Pathophysiology course.
Paradigm Shifts in Teaching Graduate Physiology

From years of experience teaching physiology to graduate students, I found students learn best when they have a good grasp of basic concepts and mechanisms. As we are well aware, the lecture format was used to disseminate knowledge on various topics.  Students took notes and were expected to reinforce their knowledge by reading recommended texts and solving related questions that were assigned.  Some courses had accompanying laboratories and discussion sessions where students learned about applications and gained practical experience.  The term “active learning” was not in vogue, even though it was taking place in a variety of ways!  Successful teachers realized that when students were able to identify the learning issues and followed through by searching for what they needed to understand, this process enhanced learning.  The idea of a “flipped” classroom had not been described as such, but was occurring de facto in rudimentary ways with the ancillary activities that were associated with some courses.  As you are reading this, you are incorrect if you think it is an appeal to go back to the way things were.

 

By coincidence, one evening after work, I was listening to the radio about the story of a professor at an elite college.  My colleagues and I had just been discussing new teaching ideas and technologies!  As an acclaimed and accomplished educator he was surprised to learn that his students did not do as well as he expected on a national exam in comparison to other students being tested on the same subject. I was mesmerized and had to stop and listen to this teacher’s thoughts about how he changed his methods to improve student learning and their ability to apply knowledge.  This is also when I heard the expression, “if it was good enough for Galileo, it is good enough for me.”  This humorously illustrates an extreme case of someone who doesn’t want to incorporate new ideas, different knowledge and new developments.  As you are reading this, you are incorrect if you think it is an appeal to go back to the way things were.  Obviously, we can and do find new ways to teach, but this doesn’t mean abandoning methods that work.  In listening to debates on topics such as integrating the curriculum, we acknowledge that other systems also work if used properly.  However, they should be well thought-out and appropriate for the group of students you are teaching.  So, how does this apply to teaching graduate physiology to today’s students?

 

Creative teachers have always found a way to engage their students. From what I have come to understand, today’s students seem to prefer a classroom environment that combines lectures with some form of a multimedia presentation and exercises such as team-based learning, where they can interact with fellow students and instructors.  This keeps their attention and works well with students who grew up with technology.  While technology also makes it easier for instructors to make slides and use multimedia, care must be taken to avoid oversimplifying.  A tendency of modern media is to compress information into sound-bytes and that is a dangerous mindset for a graduate level course.

 

Instead of just acquiring knowledge for its own sake, today’s students want to learn what is relevant for their future endeavors.  In my opinion, it is very important to show them how and why what they are learning relates to practical “real world” applications.  I like to develop concepts, discuss mechanisms whenever possible, and show examples of how the knowledge is applied and useful.  A plus is that these students like to work cooperatively and enjoy problem solving as a group exercise with a common goal in mind.  However, in-class activities sometimes become too social and groups have to be kept on track.  Another pitfall stems from the fact that in many courses, lectures are recorded and notes are distributed in the form of a syllabus that student’s rely on as their sole source of material.  Too often, students copiously read the prepared notes and listen to the recorded lectures instead of more actively reviewing and connecting with the material that was presented.

 

The internet is a useful resource where information can easily be looked up.  While this is helpful, I find that they may miss the larger context even though it was presented in class.  This is where another comprehensive source of information such as a textbook (on-line or in print) can be used to reiterate material and reinforce what was discussed in class. Students would benefit more by using other resources to accompany notes and lectures. The “flipped” classroom works well if students come to class having prepared by reading, reviewing and analyzing the subject matter.  This type of preparation also makes lectures more interactive and enjoyable by fostering class discussion.  Therefore, I would conclude by stating it is the preparation by student and teacher that makes even the traditional lecture format more engaging and effective.

Andrew M. Roberts, MS, PhD is an Associate Professor in the Department of Physiology at the University of Louisville School of Medicine in Louisville, Kentucky.  He received his PhD in Physiology at New York Medical College and completed a postdoctoral training program in heart and vascular diseases and a Parker B. Francis Fellowship in Pulmonary Research at the University of California, San Francisco in the Cardiovascular Research Institute. His research focuses on cardiopulmonary regulatory mechanisms with an emphasis on neural control, microcirculation, and effects of local endogenous factors.  He teaches physiology to graduate, medical, and dental students and has had experience serving as a course director as well as teaching allied health students.
Medical Physiology for Undergraduate Students: A Galaxy No Longer Far, Far Away

The landscape of medical school basic science education has undergone a significant transformation in the past 15 years.  This transformation continues to grow as medical school basic science faculty are faced with the task of providing “systems based” learning of the fundamental concepts of the Big 3 P’s: Physiology, Pathology & Pharmacology, within the context of clinical medicine and case studies.  Student understanding of conceptual basic science is combined with the growing knowledge base of science that has been doubling exponentially for the past century.  Add macro and microanatomy to the mix and students entering their clinical years of medical education are now being deemed only “moderately prepared” to tackle the complexities of clinical diagnosis and treatment.  This has placed a new and daunting premium on the preparation of students for entry into medical school.  Perhaps medical education is no longer a straightforward task of 4 consecutive years of learning.  I portend that our highest quality students today, are significantly more prepared and in many ways more focused in the fundamentals of mathematics, science and logic than those of even 30 years ago.  However, we are presenting them with a near impossible task of deeply learning and integrating a volume of information that is simply far too vast for a mere 4 semesters of early medical education.

 

To deal with this academic conundrum, I recommend here that the academic community quickly begin to address this complex set of problems in a number of new and different ways.  Our educators have addressed the learning of STEM in recent times by implementing a number of “student centered” pedagogical philosophies and practices that have been proven to be far more effective in the retention of knowledge and the overall understanding of problem solving.  The K-12 revolution of problem-based and student-centered education continues to grow and now these classroom structures have become well placed on many of our college and university campuses.  There is still much to be done in expanding and perfecting student-centered learning, but we are all keenly aware that these kinds of classroom teaching methods also come with a significant price in terms of basic science courses.

 

It is my contention that we must now expand our time frame and begin preparing our future scientists and physicians with robust undergraduate preprofessional education.  Many of our universities have already embarked upon this mission by developing undergraduate physiology majors that have placed them at the forefront of this movement.  Michigan State University, the University of Arizona and the University of Oregon have well established and long standing physiology majors.  Smaller liberal arts focused colleges and universities may not invest in a full majors program, but rather offer robust curricular courses in the basic medical sciences that appropriately prepare their students for professional medical and/or veterinary education.  Other research 1 universities with strong basic medical science programs housed in biology departments of their Colleges of Arts and Sciences may be encouraged to develop discipline focused “tracks” in the basic medical sciences.  These tracks may be focused on disciplines such as physiology, pharmacology, neuroscience, medical genetics & bioinformatics and microbiology & immunology.  These latter programs will allow students to continue learning with more broad degrees of undergraduate education in the arts, humanities and social sciences while gaining an early start on advanced in depth knowledge and understanding of the fundamentals of medical bioscience.  Thus, a true undergraduate “major” in these disciplines would not be a requirement, but rather a basic offering of focused, core biomedical science courses that better prepare the future professional for the rigors of integrated organ-based medical education.

 

In the long term, it is important for leaders in undergraduate biomedical education to develop a common set of curriculum standards that provide a framework from which all institutions can determine how and when they choose to prepare their own students for their post-undergraduate education.  National guidelines for physiology programs should become the standard through which institutions can begin to prepare their students.  Core concepts in physiology are currently being developed.  We must carefully identify how student learning and understanding of basic science transcends future career development, and teach professional skills that improve future employability.  Lastly, we must develop clear and effective mechanisms to assess and evaluate programs to assure that what we believe is successful is supported by data which demonstrates specific program strengths and challenges for the future.  These kinds of challenges in biomedical education are currently being addressed in open forum discussions and meetings fostered by the newly developed Physiology Majors Interest Group (P-MIG) of the APS.  This growing group of interested physiology educators are now meeting each year to discuss, compare and share their thoughts on these and other issues related to the future success of our undergraduate physiology students.  The current year will meet June 28-29 at the University of Arizona, Tucson, AZ.  It is through these forums and discussions that we, as a discipline, will continue to grow and meet the needs and challenges of teaching physiology and other basic science disciplines of the future.

Jeffrey L. Osborn, PhD is a professor of biology at the University of Kentucky where he teaches undergraduate and graduate physiology. He currently serves as APS Education Committee chair and is a former medical physiology educator and K12 magnet school director. His research focuses on hypertension and renal function and scholarship of teaching and learning. This is his first blog.
Why Teaching? Why a Liberal Arts school?

Why Teaching? Why at a Liberal Arts school? These are two questions that I am often asked. I used to give the standard answers. “I enjoy working with the students.” “I didn’t want to have to apply for funding to keep my job.” “A small, liberal arts school allows me to get to know the students.” But more recently those answers have changed.

A year or so ago, I returned to my undergraduate alma mater to celebrate the retirement of a biology faculty member who had been with the school for almost 50 years. As I toured the science facilities—which had been updated and now rival the facilities of many larger research universities—I reflected on where I had come from and how I came to be a biology professor at a small liberal arts school in Iowa.

I was born and raised in the suburbs of Harrisburg, Pennsylvania. In fact my parents still live in the house they purchased before I was born. My parents valued education and believed it was their job to provide their three children with the opportunity to go to college. Because there were three of us, it was expected that we would attend college in Pennsylvania. At that time, the way to learn about colleges was to go to the guidance counselor’s office or to sift through all of the mailings that came to the house. One of the schools I chose to visit was Lebanon Valley College (LVC),  a small, private, liberal arts institution in Annville, PA (central Pennsylvania). LVC had a strong biology program but my reasons for choosing LVC were I liked the campus, the school was neither too big nor too small, and it was far enough from home but not too far from home. That is how I ended up at LVC.

I was a biology major, pre-med my entire four years at LVC. The biology department at LVC was fantastic. The professors had high expectations, held students to these high expectations, and helped the students to reach those expectations. The professors gave me a solid background in the sciences and opportunities to work in a lab. Both the knowledge I gained and the lab experiences I had allowed me to succeed as a scientist. However, during my journey at LVC, I found that there was more to me than being a biology major or a Pre-Med student. From the beginning of my time at LVC, my professors saw something in me that I could not and chose not to see. My professors saw a person who loved to learn, a person who loved to explore, and a person who loved to share information. They saw an educator, a leader, and a communicator. But regardless of what they saw or what they said, I had to find these elements on my own and for myself.

 

During my time at LVC, I did not understand what the liberal arts meant or what the liberal arts represented. Back then if you had asked me if I valued the liberal arts, I probably would have said I have no idea. Even when I graduated from LVC, I did not realize the impact that my liberal arts education would have on me. It is only now when I reflect on my time at LVC that I can appreciate and value the impact that my liberal arts education had on the achievement of my goals. It was the courses that were required as a part of the liberal arts program and the professors who taught them that made me a better scientist. The writing and speech classes provided the foundation for my scientific communication skills that continued to develop after graduation. It was in these classes that the professors provided constructive feedback which I then incorporated into future assignments. The leadership, language, literature, philosophy, and art courses and professors provided opportunities to develop my ability to analyze, critique, and reflect. The religion courses taught me that without spirituality and God in my life, there was little joy or meaning to what I accomplished. The liberal arts program provided me with skills that were not discipline specific but skills utilized by many academic fields. These courses allowed the person who loved to learn, the person who loved to explore and ask questions, and the person who loved to share information to flourish. These courses taught me to value all experiences as opportunities to learn and to become a better person. Lebanon Valley College, through the people I met and the education I received, put me on the path to finding the elements that form my identity.

After graduation from LVC, I explored. I accepted a position as a research technician in a laboratory where I remained for three years. During that time, I improved my science skills, but I also had the opportunity to use and improve those other abilities I learned at LVC. After three years, I decided I wanted to go to graduate school. I loved asking new questions, performing experiments, and the feeling I had when an experiment worked and provided new information. I also liked working with students. I loved sharing information and guiding students through the process of learning. I applied to graduate school, was accepted, earned my Ph.D, and then completed two postdoctoral fellowships. My graduate advisor and postdoctoral advisors were supportive of me and allowed me to teach in addition to my research. After two successful postdoctoral fellowships, I had to decide where to go next. I chose teaching and I chose Clarke University. I chose teaching and specifically Clarke because I wanted to go back to my roots. I wanted to take the knowledge and skills I had attained and share them. I chose Clarke University because I saw similarities between it and LVC. I chose Clarke University because of its liberal arts heritage and its focus on the students.

Now, 10 years later, I am a guide for a new generation of students at Clarke University. While there are so many differences between my generation and this generation, I still see similarities. I see students eager to come to class so they can learn. I see students excited when they understand a difficult concept. I see students who want to make a difference in this world. I do not know what a student would say if I asked them if they valued their liberal arts education or me as their teacher. My guess is that many of them are just like I was and do not know what the liberal arts represent. Some might even say they do not value the liberal arts or the professors. I can only hope that one day, when the students I teach reflect on their undergraduate careers, they can recognize and appreciate the influence Clarke University, the liberal arts program, and their professors had on them. I know that without my professors and without my liberal arts experience at Lebanon Valley College, I would not be me—the educator, the scientist, the author, the leader, the life-long learner. Nor would I be me—the mother, the wife, the daughter, the sister, the friend, the colleague. Lebanon Valley College and my liberal arts education helped me become the person I am today.

Melissa DeMotta, PhD is currently an Associate Professor of Biology at Clarke University in Dubuque, IA. Melissa received her BS in biology from Lebanon Valley College. After working for three years at Penn State’s College of Medicine in Hershey, PA, she received her PhD in Physiology and Pharmacology from the University of Florida in Gainesville. Following postdoctoral fellowships at the University of Arizona and Saint Louis University, Melissa joined the Biology Department at Clarke University. Melissa currently teaches Human Physiology and Exercise Physiology to physical therapy graduate students and undergraduates. She also enjoys teaching non-majors life science courses as well.