Monthly Archives: July 2018

A Team Approach for a PhUn Experience that Applies Curriculum-Based Concepts

In the beginning:

From the time my children were in primary school, I visited K1-12 classes and engaged students in various science activities ranging from demonstrations to hands-on activities. In addition to presenting science demonstrations and explaining scientific principles, I wanted to share the discovery process with them and usually concluded my visit by talking about diversity of science careers and explaining how “the lesson” related to subjects they learned everyday in their classrooms.  My science “outreach” continued with sporadic visits to schools, either by myself or with colleagues.  Sometimes, they were in response to requests for faculty to speak to various groups or to help with a science fair.  It was enjoyable to share my interests while working with a wider educational community, hoping to increase awareness of science and what physiology encompasses.  The enthusiasm of the students and teachers made my outreach experiences fulfilling and fun!  As PhUn Week came into existence, it was a natural extension to my classroom activities.  It opened new vistas by providing a network of people, classroom lessons, educational resources and supportive information to increase awareness of physiology careers.

 

New vistas:

In addition to finding teachers and administrators that welcomed PhUn Week, it was essential to first meet with the teachers to develop a physiology-oriented activity. One of my goals was to work in parallel with the classroom teacher to get students to apply science and math they were being taught to the physiology that was presented.  I had not done this to any extent previously and found that it worked very well with teachers who actively participated in the lesson with me.  I introduced myself to the class, explained what physiology is and described various careers physiologists and other scientists have.  A popular topic was how the lungs and heart function together.  We constructed a model with a plastic bottle, tubing and balloons to demonstrate how the lungs inflate and deflate during normal breathing and formulated inquiry-based questions such as, “what causes air movement during normal inspiration and expiration.”  This enabled us to illustrate the relevance of Boyle’s Law and discuss principles of pressure-volume relationships, airflow, ventilation, diffusion, gas exchange and even Bernoulli’s Principle using demonstrations, physical laws and basic math.  Videos with animations downloaded from the internet were used to show gas exchange and how the lungs function together with the heart and vascular system.  Students were divided into groups and guided to develop and discuss a hypothesis related to flow, velocity and pressure relationships in the lungs.  The heart as a source of pressure for blood flow was discussed along with its role in systemic and pulmonary circulation.  In a hands-on group activity, students were taught how to measure blood pressure and to calculate heart rate and breathing frequency.  They speculated about changes they would expect with exercise, measured changes in heart rate and breathing frequency that occurred, and summarized data.  We concluded by discussing benefits of a healthy life style and exercise on heart and lung function.

 

 

 

 

 

 

Following up:

A subsequent follow-up quiz comparing the ability to correctly answer curriculum-based concept questions (without reference to physiology) to questions based on our inquiry activity indicated a positive correlation. We also experimented with  “Before” and “After” questions as a way to get students to apply what they learned to the solution of questions that they formulated.  Responses to the questions were used to assess understanding of physiology and scientific principles that were presented. Scores indicated that hands-on activity increased the classes’ overall performance.  Quizzes also helped to identify concepts that needed further explanation. Teachers provided perspective of the curriculum and accommodated our activity into their lesson plans.  Our team gained new perspectives for developing ways to think about and teach physiology and enjoyed interacting with teachers and students.  Students were very enthusiastic about their PhUn Week experience.  The overall model that we used can provide experience with the scientific method, inferential reasoning, formulating questions, making observations, and collecting data while introducing students to future STEM careers.  Our model is flexible and allows concepts to be taught in interesting ways that hold student’s interest and are relevant to every day life.  It can be scaled up or down depending on the grade level and we learned that collaboration is important for developing and coordinating appropriate activities and questions for the grade level.

 

The strength of collaboration:

In addition to the classroom teachers, our Phun Week activity depended on the collaborative efforts of a diverse team consisting of a physiologist, a physiology graduate student, a graphic artist experienced with information technology and an experienced K1-12 teacher who has participated in APS teacher workshops and poster presentations, taken high school students through the exhibit hall at Experimental Biology meetings, talked to students and got them to talk about career plans. This team approach greatly supported and enhanced the transitions between demonstrations, video presentations and hands-on group activities.  It also made it possible to work with three different classes sequentially on the day of the activity.  The different perspectives of our team members helps to show that science careers also depend on effective communication skills and knowledge of the arts and humanities as well as science, technology, engineering and mathematics.  The University of Louisville is supportive of our community outreach.  At the end of the school year, our PhUn Week activity was followed up by a field trip to the University where three classes visited my laboratory for a demonstration related to our activity and toured educational facilities in the Health Sciences Center.

Our experienced K1-12 teacher (Ann C. Roberts, who is also my wife) provided insight into teaching and learning styles, motivational techniques, incorporating PhUn Week lessons into school curricula, and co-authored our PhUn week perspective. She has good rapport with students and classroom teachers which helps to direct and guide students during presentations and group activities. Ann received her B.S. and M.S. degrees in education at Western Connecticut State College in Danbury, Connecticut.  She received certification in New York, California and Kentucky, has many years of classroom experience in public and private schools and co-authored our PhUn week perspective.

Dr. Andrew M. Roberts received a Ph.D. in Physiology from New York Medical College. He completed postdoctoral training in heart and vascular diseases and a Parker B. Francis Fellowship in pulmonary research at the Cardiovascular Research Institute of the University of California San Francisco, School of Medicine. Afterwards, he was recruited by the University of Louisville, School of Medicine and is an Associate Professor in the Department of Physiology.  Dr. Roberts’ research focuses on integrative cardiopulmonary physiology, neural control mechanisms, alterations in microvascular regulation and inflammation.  He has served on the Education and Careers Committees of the American Physiology Society and is a Fellow of the APS.

 

 

PhUn is What You Make It!

Each year, we celebrate PhUn (Physiology Understanding) Week at a local elementary school in Georgia. Reaching out to elementary-aged students allowed us to surprise and excite young students about the role of physiology in their daily lives. Our goal was to inspire them to have an open mind about who can become a scientist. Studies show that between the ages of 6 and 15, women and minorities lose confidence in their ability to thrive in mathematics and the sciences (1, 2). Therefore, our goal was to demonstrate, to a diverse group of students, that PhUn is what you make it!

 

Our PhUn consisted of 4 phases: 1) Draw a Scientist, 2) Dress a Scientist, 3) Meet a Scientist and 4) The Scientist Within.

 

Phase 1: Draw a Scientist. This phase served as our “Scientific Bias Screening”. The goal was to dispel assumptions about who was and could be scientists.

  • Prior to our arrival, we requested teachers to encourage students to draw whatever they considered a scientist.
  • When we arrived, we allowed students to describe their pictures to the class.

 

This phase was necessary, as it is important to encourage teacher participation since teachers are on the forefront of motivating students daily. Teachers are responsible for shaping and encouraging students to pursue various career opportunities, so having an entire community of teachers to encourage students of all backgrounds (gender, race, socioeconomic, etc.) to pursue STEM fields is critical to promoting awareness of the opportunities and needs within STEM. Furthermore, allowing students to confront their implicit biases about scientists provided a teachable moment.

 

 

 

Phase 2: Dress a Scientist. This phase was important to de-mystify scientific tools and make them relatable.

  • Prior to our arrival, we assembled a “science” bag with laboratory tools (conical tubes, beakers, pipettors, etc.), personal protective equipment (gloves, lab coat, eye googles) and fun items (“crazy” wig). We included items that are used in the typical physiology lab – we decided to leave heavy analysis equipment out of the bag!
  • The teacher selected a volunteer student to be dressed as a scientist.
  • Classmates were asked to name items that the volunteer student needed to “look” like a scientist.
  • After removing the named items from the bag, students were then asked to guess the utility/function of said items. Guiding questions were used to assist.
  • We explained how each item is used and what other purposes it could serve.
  • The item was given to the student scientist to put on or hold.
  • After emptying the bag, students take group pictures with the scientist they dressed.

 

Many students feel overwhelmed and ignorant because they haven’t been exposed to laboratories. Our goal was to allow students to touch and learn about these tools. As a result, science became a lot less foreign and intimidating.

 

Phase 3: Meet A Scientist. The phase served to motivate students to consider themselves capable of contributing to scientific discovery.

  • We introduced ourselves as scientists and explained our areas of research.
  • A picture of a “Mad Scientist” was projected. Students were asked if we looked like mad scientists.
  • Pictures of scientists from diverse backgrounds were then projected.
  • We described our journey to becoming scientists from high school to college to graduate school. We also shared personal stories of our experiences at each level, explaining that determination is the key to success.
  • We posed the question “Do you ever ask why…why…but why?”
  • We explained that scientists use the scientific method to answer the “whys” and that each of them possessed the important quality of being inquisitive and that they were indeed “Scientists in Training”.

 

We were aware that there are multiple reasons students may not be excited about science and scientists – namely it can be seen as nerdy or dangerous. As we clearly do not typify what a “Mad Scientist” appears to be, we aimed to expand the definition what scientist appear to be. The goal was to help them realize that anyone with an interest in learning how things worked can be a scientist.

 

Phase 4: The Scientist Within. This phase was crucial for helping student internalize their ability to be scientists.

  • We described the cardiovascular system in health and disease.
  • Students were then instructed to form a hypothesis regarding blood flow in a healthy blood vessel versus and unhealthy blood vessel.
    • Step 2- Measure 60 ml of the liquid into the cup.
    • Step 3- Start the timer and use the coffee stirrer to suck up and drink all of the liquid from the cup. Be sure you drink until you reach the bottom of the cup. Do it as quickly as you can but only suck the liquid through the coffee stirrer. Stop the timer as soon as the liquid is gone.
    • Step 4- Record the amount of time it took to drink the 60 ml of liquid.
    • Step 5- Repeat steps 2-5 again but this time use the drinking straw to suck up the water.
    • Step 6- Repeat steps 2-5 two more times so you have run each experiment three times. Record the amount of time it took to drink the 60 ml of liquid.
    • Step 7- When you have recorded your data, go to the APS Physiology Understanding Week website (www.phunweek.org) and share your findings with other APS Junior Physiologists.
  • We assisted the students in performing the Healthy Heart Experiment II: Does What We Eat Matter to Our Hearts? http://www.the-aps.org/phun/pdfs/PhizzyPostcard.pdf

 

The students certainly enjoyed this Phase the most! This phase served to teach students about the cardiovascular systems and how science is already an active component of their lives. By showing the students a fun way to perform experiences, we removed some negative stereotypes about scientists and sparked interests in science we hope are lifelong. Most importantly, students were able to identify themselves as scientists and internalize their abilities to thrive in STEM.

Ultimately, we received plenty of participation and interaction with the students and teachers. We were able to surprise and excite students to re-evaluate who could be a scientist all the while, we were also able to encouraged students to believe that they all have the potential to become scientists themselves. Beyond being rewarding, this event was critical to demonstrating how diversity in STEM is critical for recruiting the next generation of scientists. Seeing two minority women be confident, capable, and qualified inspired the students to ask questions they may not have felt comfortable with in other environments. It also allowed them to believe that being a scientist is possible and that PhUn is what you make it!

References:

  1. http://money.cnn.com/2017/02/28/technology/girls-math-science-engineering/index.html
  2. http://www.latimes.com/science/sciencenow/la-sci-sn-girls-boys-brilliant-20170126-story.html

PURPOSE

Expose elementary students to scientist from diverse backgrounds

Debunk the myth of who a scientist is and looks like

Empower students to view themselves as scientists-in-training

Phase 1: Draw-A-Scientist – Scientific Bias Screening

Prior to arrival

Teachers will instruct students to draw a picture of a scientist

At arrival

Select students to describe their drawings

Phase 2: Dress-A-Scientist

  1. Assemble a science bag
  2. Select a volunteer
  3. Ask ‘What items does he/she need to look like a scientist”
  4. Select a student to provide an answer
  5. Collect item from science bag
  6. Give item to volunteer
  7. Explain purpose/function of item
  8. REPEAT
  9. If items remain in science bag, pull item out…explain

Phase 3: Mad Scientist – Compare and Contrast

Show picture of mad scientist on PowerPoint

Introduction yourself as a scientist

Ask “Do I look like this?”

Explain that scientist look like the average person.

Show pictures of diverse scientists

Encourage students to view themselves as scientists

 

Dr. Clintoria R. Williams is a renal physiologist. She is a 2001 graduate of Clark University, where she completed a BS in biology. Dr. Williams continued her education at the University of Alabama at Birmingham (UAB), earning her PhD in physiology in 2008. She returned to Atlanta and joined the Emory University School of Medicine as a postdoctoral fellow, where she established her research program.

Dr. Williams’ research interest focuses on the pathophysiology of kidney disease. Her work has identified a key functional difference in the two isoforms of calcineurin, a family of ubiquitious calcium-dependent enzymes. These enzymes contribute to the regulation of sodium channels in the distal nephron and subsequently blood pressure. Notably, patients that take calcineurin inhibitors for immunosuppression frequently develop hypertension. Since current drugs that inhibit calcineurin do not discriminate between the isoforms of the enzyme, there is an opportunity to refine pharmacological interventions to selectively target calcineurin isoform(s) implicated in the immune system versus isoform(s) involved in salt regulation in the kidney. Her work is currently funded by the American Heart Association.

Dr. Williams has been recognized as an outstanding early career scientist by the American Physiology Society, where she has been an active member of several committees. In addition, she was a founding member of the Minority Postdoctoral Council at Emory University and is a passionate mentor of undergraduate and graduate student scientists.

Sherry Adesina received her B.S. from the University of Georgia and her PhD in Molecular and Systems Pharmacology from Emory University in 2015. As an R&D BIOMEDICAL SCIENTIST with 10+ years experience in academic and industrial settings, Sherry is solution-oriented and currently specializes in front-end preclinical technology innovation within the medical device industry. Her excellent public speaking, written, and verbal communication skills have been published in top scientific journals and presented at national and international conferences. She is a strategic thinker with extensive experience leading multi-functional teams composed of peers, key opinion leaders, and stakeholders. Sherry believes that it is a privilege to demonstrate the importance of science and science education in her daily life with students at all levels of education. In her spare time, she volunteers with Women in Bio, ASPET Education Division, and APS.