Category Archives: Outreach planning

Human Diseases Graphic Novels

Over my 23 years as an educator, I have noticed that students have an inherent student fear of written assessments, and this when combined with the procrastination and poor management typical of the teenage years, creates a perfect recipe for frustration. Students who do well in class tend to gravitate toward visual and very hands-on techniques to enhance their learning. I have been fortunate enough to create my own curriculum for my Physiology classes, and have implemented many hands-on activities into my classes. I constantly explore different options for assessments which will enable students to learn while at the same time taking responsibility for their own learning. Some examples of these assessments are the creation of heart models to study the cardiovascular system and measurement of heart rate using student-built Arduino based heart rate monitors.

Students were receptive to my innovative assessments. Yet there was a general lack of enthusiasm when it came to listening to peer presentations on common nervous system diseases. Since the material was important for them to assimilate, I tried various techniques to engage them during these presentations, including offering extra credit, but it was not as successful as I had hoped because some students stubbornly refused to pay attention.

Last year, I was selected as a Teacher Fellow and when the time for planning Phun week came around, I decided to implement the use of graphic novels in my class to solve the problem of student engagement. Accordingly, I gave students 2 weeks to research 2 diseases of any organ system in the body. The requirement was that they create graphic novels of their disease, and represent through their art, the inputs and outputs of systems leading to pathological conditions. Initially, students stared at me. What, they thought, could this crazy woman possibly be thinking? Who ever heard of graphic novels in biology? I listened to my students’ concerns, and reiterated that this assignment was replacing their unit exam on the nervous system. And that did it……

Suddenly students were chatting, brainstorming and throwing out ideas. Some asked me clarification questions, others wanted to know if their chosen diseases were acceptable. Giving students class time to complete their assignment, while I circled around asking

and answering questions, seemed to help student engagement. Everyone was on task, and their graphic novels grew and finessed.

When everyone was done, I contacted our Technical Services Supervisor and Digital

Commons Manager, who digitized student graphic novels on the digital commons.

Student graphic novels were evaluated on the basis of creativity, accuracy and connections to other organ systems. This assessment was a success because students realized that they had to take responsibility for their own learning,and therefore worked harder and faster than before. Working in groups of 3-4 also helped them discuss and finesse ideas and research.

Sowmya Anjur received her doctorate in Biochemistry and Molecular Biology from Iowa State University, Ames. She also has two Masters degrees in Clinical Biochemistry and Agricultural Biochemistry from Bharathiar University, India. She is currently is a Science Faculty member at the Illinois Mathematics and Science Academy, a residential school for students gifted in math and science. During her 23 years as an educator, she has developed her classes to be mostly student-centered with many hands-on activities to develop and nurture student creativity and enhance articulation. She incorporates high tech, challenging and inter-disciplinary projects such as the construction of heart models, Arduino heart rate and blood pressure monitors and other bioengineering

topics into her Physiology classes. She has been a member of the American Physiological

Society for several years and was selected as an APS Teacher Fellow in 2018.

 

PhUn in the Country

My professional philosophy is that an important part of my job is to expose the public to science. A big part of that involves getting my face out in the community and talking to them about what science is. I use PhUn week as an opportunity to open the door to the public and invite them into the world of science. In my reflections on my own progression through the educational system I felt that there was not much information given about careers in science. As I went through my scientific training in graduate school, I came to feel a personal conviction that it was my professional obligation to educate the next generation about what science is and what career opportunities exist in science.

What value do you see this providing to the community?

I see this as being valuable to the scientific community, in that it actively exposes students to biomedical science and gives a human face to the abstract notion of ‘scientific research’. It is also a valuable experience for the community I worked in as they are a small rural district and might not otherwise have access to this type of experience/programming.

Who was involved?

To set up the activity I contacted the STEM teacher for the Carlisle, IA school district. The activity was tailored to grades K-3 and took place at Carlisle elementary school. They only have one teacher for the whole district, so this made coordination and scheduling relatively easy. I used the built-in schedule for science education and visited every single classroom in the school over the course of ~ 1 week. I taught in 4, 50-minute classes a day for 8 days. In total this PhUn week activity reached 650 students.

What were your educational objectives?

I had several educational objectives I considered when planning the activity. I wanted to help students develop an understanding of what blood vessels are and how they work. I also wanted to introduce some concepts about how preventative measures such as exercise could improve cardiovascular fitness. Finally, I wanted to engage students in an activity that would give them an appreciation for application of the scientific method.

What activities did you design?

I started each class by spending some time talking about the basics of what blood vessels are and the important function they serve in the body. I also talk a little bit about how abnormal function of blood vessels plays a role in different diseases. To illustrate some of the principles that pertain to blood flow and vascular resistance I designed an activity where students measure transit of a volume of water through pipes (straws) of different diameters. The students formulated hypotheses prior to their experiments, collected and tabulated data, and then we discussed how their results fit with their hypothesis. The students enjoyed the opportunity to role-play being a scientist and were all very engaged throughout the activity. After the discussion of results and hypotheses I brought the discussion back to the effect of blood vessels on health and talked about how regular exercise could affect health by affecting the relative size (degree of constriction) in blood vessels.

Did your prior experiences with PHUN week shape your approach this time?

In prior PhUn week activities I noted that we often had difficulty completing everything we had planned. In the course of planning this activity I decided that I wanted to accomplish everything on my agenda in time frame given. This helped to shape the nature and number of activities that I did for this particular year. Another consideration in designing the activity was that it would be accessible and adaptable for different grade levels from K through 3.

How were the activities received by the students?

The students really loved the activities. My perception was that they were very engaged in what was happening. Part of this engagement stemmed from building a competition into the activity, but it also helped that students are intrigued by the notion of a scientist. The activity of doing what a scientist does was enough of a hook for a lot of students. All the students seemed to be eager to plot their data and see how it compared to findings from other groups. The excitement of discovery and the unknown is an innate trait that we tap into to make this activity a success.

What if anything would you change if doing it again?

Even with all the planning, I think I bit off a bit more than I could chew. Going forward I think I would either need to scale things down or enlist additional help if I was going to do the same thing again. I think also that in the future I’d like to try to find more specific tie-ins to curriculum that the STEM teacher is trying to build so as to augment their curriculum rather than depart from it.

Sarah Clayton, Ph.D. is an Assistant Professor in the department of Physiology and Pharmacology at Des Moines University Medicine and Health Sciences, in Des Moines, Iowa.

 

Interactive exercises to learn about our muscles and heart for 4th and 5th graders

Often times I think back to one of the joys of elementary school recess, which allowed us to run around the playground, hang off monkey bars, hopscotch, jump rope, and engage in other fun activities with our friends. Unfortunately, many schools have reduced or removed recess time from elementary schools despite the documented positive benefits of physical activity and unstructured play time. When I learned about the PhUn week program and the opportunity to teach kids about physiology and better understand how their bodies work I “jumped” at the opportunity. I have coordinated a PhUn week activity for the past three years for 4th and 5th graders at a local school with a teacher who was already involved in numerous STEM related projects for her students. She was very enthusiastic since while she had introduced her students to different aspects of STEM she was lacking a physiology component.

When I began planning my first PhUn week activity, I wanted to provide interactive, hands-on activities and give additional meaning to the term “active” learning. My own research has focused on skeletal muscle and exercise physiology so it was logical to use my expertise in this area. I also knew I would need other faculty or students to help implement my plans. Two of my undergraduate students quickly volunteered, and they recalled their own memories of elementary school and knew we could make a positive impact on these students. The plan was to spend one full class period with the 4th graders and another period with 5th graders. We began by asking the students if they knew how their muscles worked and why they got tired. Several students explained that we had nerves that made our muscles work, but did not know how nerves and muscles communicated. All students agreed that when they ran or carried heavy backpacks their muscles got tired.

We had 3 stations to study muscle strength and fatigue. The first helped the students see how their brains turned on their muscles by measuring electrical activity in their muscles with electrodes on their skin. To visualize how their nerves controlled their muscles we used iWorx to measure forearm electromyographic activity (EMG) while gripping a force transducer with increasing force. On the computer each student saw how when they gripped harder there was more EMG. To study muscle strength, they measured grip strength with a handgrip dynamometer and compared strength between their left and right hands and among classmates. To experience muscle fatigue, they squeezed the spring handgrip exercisers until they could not squeeze anymore. They also measured their grip strength after the handgrip exercise and saw how their strength decreased with fatigue. They were enthusiastic about all activities and wrote notes about what they learned such as, “We learned our muscles have electricity” and “When you grip something hard your muscles are tired”. I can definitely say that I was tired after several hours of keeping up with active elementary students, but it was so rewarding to see the passion with which the students performed the activities.

My Second PhUn Week For my second year, we used the same activities as year one, but added a station to teach heart physiology and utilize the PhUn Week squeezy hearts as a teaching tool. We talked about how the students can use a stethoscope to listen to their hearts beating and pumping blood to their muscles. The students enjoyed using the stethoscopes to listen to their own hearts and their classmates’ hearts. All the students had used “play” stethoscopes growing up, but were excited to use real doctor’s stethoscopes. We also explained how our hearts worked using the PhUn Week squeezy hearts. In addition the students learned about the location of blood vessels and importance of blood flow. As in the past year, they eagerly told us and their teacher what they had learned about their heart and muscles. As this was the second year, the teacher noted how it inspired her students and throughout the year she had her students reflect back on these activities when talking about how our bodies function. I was encouraged by many students mentioning having remembered material from the previous year’s PhUn Week activity, and were also able to draw parallels between family member’s health and learned content (e.g., “my dad has high blood pressure!”).

My Third PhUn Week For our third year, I decided to switch up the activities to learn about our skeletal muscles while keeping the heart/stethoscope activity. The goals were to help the students learn about how their skeletal muscles provide power and balance and how their hearts work harder during exercise. To learn the importance of muscle power, we used a vertical jump test (Just Jump Mat) to record jump height. Top performer’s jump heights were recorded on a white board to crown the “jump champion”, which fostered friendly competition and motivation for the activity. Next, students learned about how their muscles and vestibular system helps their balance ability.

To learn about balance ability, students performed a Y balance test (YBT™) in which they stood on one leg on a center platform and reached the alternative leg as far as possible in 3 directions (anterior, posterior medial, posterior lateral). They also stood on split foam rollers to learn how their muscles contracted to maintain their balance and keep them from falling. As in the past year, students used stethoscopes to listen to their own hearts and classmates’ hearts at rest and after they had jumped around for several minutes. We explained how their hearts beat faster during exercise to send blood and oxygen to their working muscles. They enthusiastically told us about their plans to practice their jumping power so next year they would be crowned jump champion. Students remembered material from the previous year’s PhUn Week when they measured muscle EMG and were also able to draw parallels that jumping higher was powered by higher muscle EMG. I am planning more fun physiology activities for next year. I continue to see the positive impact we are having on potential future scientists and making physiology accessible to all. It is also extremely rewarding to see the passion and unbridled energy of the students. I have gained even greater respect for our elementary school teachers who create the best learning environment they can while keeping so much active energy in check! I would recommend we all incorporate jump championships and physical activity into our classes (even college) since we know that activity increases brain blood flow which improves learning not to mention a little friendly competition!

Kimberly A. Huey received a Ph.D. in Biomedical Sciences from the University of California, San Diego and completed postdoctoral training in skeletal muscle physiology at the University of California, Irvine. She is currently a Professor of Physiology in the Department of Health Sciences at Drake University. Dr. Huey’s research focuses on contractile and cellular adaptations in skeletal muscle to changes in loading and activation such as exercise or disuse as well as the effects of medications on muscle function. Within the American Physiology Society, she has served on the Education Committee and Women in Physiology Committee and is currently serving on the Communications Committee. She is a Fellow in the American Physiological Society and American College of Sports Medicine.

From the College to the Elementary School Classroom

I have participated in the American Physiological Society’s (APS) Physiology Understanding Week (PhUn Week) for eight years now. Each year I have visited pre-school, kindergarten, or first grade classrooms. I have been teaching at the college level for over 20 years and I do not have children of my own. Therefore, adapting to teaching children has been a challenge. The first thing I learned (the hard way, as usual) is that I need to be very careful with the words I choose. I stood there talking about “increases” and “decreases” assuming they were basic words. The teacher pulled me aside and suggested I switch to the terms “goes up” and “goes down”. I had no idea! Once I realized how much I was unable to judge the best words to use, I began sending a script to the teacher in advance for feedback. I have also learned that elementary school lessons often very structured. College instructors create course objectives and structure their courses to meet and assess them, but it is rare that we create highly structured lesson plans for each topic. One teacher introduced me to a simple way to structure my PhUn Week activities and it has helped me significantly. The components in the table below form a simple recipe for a successful lesson with young children. I usually have four different lessons that last about 12 minutes each and I have found this structure to work very well. Component Description Hook/Motivation/Engage Tell a story, show a video clip, show pictures, etc. Big Idea State what they are going to learn. “Today we are going to learn about …”. Teach Teach them what you want them to learn. Don’t ask, tell. Model Show them the activity they are about to do. Guided Practice/Check for Understanding Make sure they know what they are going to do. Independent Practice Students participate in the activity. Closure/Review Ask them to tell you what they learned. Hook/Motivation/Engage A big difference I have found between college and elementary school students is that the children have a lot of energy, and therefore it is important to find a way to reel them in. However, they are also very curious, so it is not hard to engage them with the right “hook”. Big Idea As I mentioned above, these children and very curious and I have found them to be very anxious to learn. I often wish more of my college students had this incredible drive to learn! It is important to be clear about what they are about to learn and state the “big idea” that will come out of the lesson. Teach In college, instructors often start by asking questions. I have found that when I ask children questions, almost all of them raise their hands and want to answer. I have also found that many of them do not have the right answer; they simply like to be called upon. Wow, what a contrast to college students who often have the right answer but still do not raise their hands! To ensure a smooth and efficient lesson, it is best to first teach them what you want them to learn. It helps to have the children repeat terminology and other information back to you, as they tend to enjoy that, it helps them learn, and makes the teaching more interactive. Model You do not want to spend too much time talking and teaching or you will lose the students’ attention. This is one thing elementary and college students have in common, but I have found that children have an even shorter attention span. It is important to get to the fun stuff, which includes actually seeing and doing something to engage their curiosity and facilitate learning. With the children though, it is particularly important to first model what they are going to do to ensure they understand the activity. Guided Practice/Check for Understanding Once you have modeled the activity, it is time to let them try it out on their own. However, you do not want to let them go completely on their own right away. It is important to have a transition period when you check that they understand what they are supposed to do. You can explicitly ask them, “now what are you going to do”? You can also have one or more of the students model for the class as you provide feedback. This will help ensure better success with the activity. Independent Practice Now they are ready to fully engage with the activity as you watch and help, as needed. I am always impressed by how well they do once they have been properly guided prior to the activity. They tend to be very creative and thoughtful and it is fun and rewarding to watch. Closure/Review Now is the ideal time to ask questions. As I stated above, children love to answer questions. At this point, they have the knowledge to answer correctly. This is often my favorite component of the lesson because it is rewarding to see how much they learned. Working with elementary school children has been a learning experience for me. I learned very quickly that you cannot simply “water down” college content and teach it to children. This lesson plan structure has been invaluable to me and the success of my PhUn Week lessons.

Kim Henige received her Ed.D. in Education (emphasis: Science Education) from the University of Southern California and her M.A. in Physical Education (emphasis: Exercise Physiology) from California State University, Northridge (CSUN). Kim is currently a Professor in the Department of Kinesiology at CSUN where she teaches exercise physiology and applied exercise physiology courses. In addition, she directs the CSUN Kinesiology Peer Learning Facilitator program and is the course director for CSUN’s Freshman Seminar. Kim’s scholarship is focused on improving student enjoyment and success through active learning and peer mentoring.

High School Students Experience a PhUn Week Presentation by Faculty and View the Simulation Center and Research Labs at the University of Arkansas for Medical Sciences

The 2017 PhUn week, sponsored and supported by the American Physiological Society was held at the University of Arkansas for Medical Sciences (UAMS) Campus on November 7, 2017. Forty students (grades 9-12), two teachers and four presenters participated in the session. The demographic breakdown of the students are as follows: six males and thirty-four females. Among the students group who participated in the program, there were three Hispanic/Latino students, four Asians, fourteen Black or African Americans, fourteen White students and three listed as other. The group received a warm welcome to UAMS campus from Mr. Nicholas Pettus, a diversity specialist from the Center for Diversity Affairs. This was followed by followed by a brief introduction of the faculty speakers from Dr. Chowdhury. Drs. Ware, Wight, and Lipsmeyer (all from the Department of Physiology & Biophysics) addressed the students about their research in various areas of Physiology, focusing on various models that they used to understand the mechanisms of many types of disease processes. After these presentations, the students were divided into two groups and were given a tour of the UAMS State of the Art Simulation Center. In the Simulation Center, students were given an opportunity to listen to heart and lung sounds of one another, experienced how to perform CPR and intubate the training dummy, ‘Manikin,’ and viewed Noel, the birthing mannequin. Then the students rotated through the research laboratories of Drs. Chowdhury and Lipsmeyer, where they were introduced to a range of facilities used for research in molecular and cell biology. The brief exposure to these state-of-the-art research facilities provided a means to foster the students’ interest in science, and to obtain hands-on-experience that may be useful in the students’ summer research projects. Mrs. Melissa Donham, Chair of the Science Department and Scientific Advisor for the Little Rock Central High School and the Science Club, spoke highly of the opportunities afforded to her students through the PhUn Week. Dr. Chowdhury has conducted this event for almost ten years with support from the American Physiological Society.

Dr. Chowdhury received his post graduate degree from McGill University in Montreal, Canada. His current research program is aimed at studying the mechanism/s of induction of pancreatic pathophysiology by nicotine in a rodent model. In addition, Dr. Chowdhury is also conducting NASA related research dealing with microgravity and its effects on brain and pancreatic physiology. Dr. Chowdhury is a participant in medical and graduate school teaching and serves as Course Director in several graduate level courses. Dr. Chowdhury mentors summer students from freshmen medical class, high schools of Central Arkansas Region and Arkansas School of Science and Mathematics. Dr. Chowdhury serves as science fair judge in local high schools, Central Arkansas Regional, State and Junior Academy of Science. He serves in various capacities to the Society Sigma XI both locally and at the national lev. Dr. Chowdhury served as President of American Scientists of Indian Origin in USA (ASIOA) for two years and also as President for the International Society for the Prevention of Tobacco Induced Diseases (ISPTID) for two years. Dr. Chowdhury serves as an Ad-hoc reviewer to numerous granting agencies, peer reviewed journals and is a member of the Editorial Boards of several journals. He is an author of over 135 peer reviewed publications including several book chapters and over 315 professional scientific meeting presentations

Teaching Kidney Physiology in Inner City Elementary Schools is PhUn!!

Children growing up in historically marginalized communities lack access to many resources that they need to thrive, and in many instances, these circumstances predict the opportunities that they will have in life. Some of the statistics that support these observations: “16 million children in the US live below the poverty line”, “Children of color are more than 2 times more likely to be born into poverty than white children” and “Only about 14% of children growing up in poverty will graduate from college”. These are some of the many reasons that experts believe to be behind the low diversity in the STEM field. I believe that early exposure to good role models could change this dreadful statistics.

When I was given the opportunity to start organizing science outreach efforts in the university department where I work, I wanted to marry two of my passions: physiology and reaching to underserved children. I work at the University of Alabama at Birmingham (UAB), which is located in downtown Birmingham. Most of the students at inner city schools here come from low-income families, and the majority of the students are African American or Hispanic. Many of them have no idea how a scientist looks like and do not realize that science is a possibility in their future.

I partnered with the Birmingham chapter of Teach for America, a national organization that is committed to ending educational inequality in the United States. They put me in contact with teachers at 3 inner city schools near UAB, and I worked with them to start coordinating our visits. The teachers jumped at the opportunity of having physiologists visiting their classrooms, as their students rarely have ever met a scientist in person. We started small, with 1 or 2 classrooms per school, but as we did these visits every year for the last 5 years, the rest of the teachers of that grade would also be interested in our visits. The result is that we now visit 5 classrooms per school, for a total of 3 schools, which means that we reach around 300 students every year. To make this possible, I recruit volunteers among postdocs, grad students, junior faculty members, research assistants and even administrative staff at our department.

On the day of the visit, I divide the volunteers into groups (as many as the classrooms that we will be visiting in the school). Each group has a leader scientist and 3-4 helper scientists that go into each classroom. We start our activities with a short PowerPoint presentation, where we talk about what scientists are, what their role in society is, and we highlight the fact that scientists are regular people, not different from the students in the class. We also briefly review the scientific method, and then, we tell the students about how the kidneys work. The students are divided into small groups (4-5 students/group) and start the hands-on activities. Our activities are focused on kidney damage because that is the focus of our department and our research.

A description of each of the 2 activities follows:

Activity 1: Purpose: to determine which glomerulus is damaged

Materials (per group of students): 2 plastic cups (one labeled “blood” and the other labeled “tubule”), 3 filters with different pore diameter (small, medium and big pores; these are the “glomeruli”), a bag of beads of 2 sizes (small beads are “protein” and big beads are “glucose”; note: the small beads need to be small enough to pass through the medium sized filter but big enough to not go through the small-pore sized filter; similarly, the big beads need to be big enough to go through the big pores of the biggest filter), paper tablecloth and paper towels.

Methods: One of the volunteers fills the cup labeled “blood” with some water and the students are instructed to place the beads into the water. Then, the students place one of the filters on top of the cup labeled “tubule” and then pour the water + beads over the filter. The students are instructed to write down what size of beads passes through that given glomerulus. They repeat the same process with the other 2 glomeruli/filters.

 

 

 

 

 

 

 

 

 

Discussion: Once they are done, the leader explains that normal urine does not contain any protein and that the glomerulus/filter that did not let any bead pass through is a normal glomerulus. Then we explain that when there are small beads in the water, that means that the glomerulus is damaged and that the patient has protein in the urine (we call this acute kidney damage). We also tell them that in a diabetic patient you would find both protein (small beads) and glucose (big beads) in the urine; thus, the filter with big pores is the diabetic glomerulus.

Activity 2: Purpose: Diagnose the kidney disease – Fake urine! The students have to determine which patient is normal, has acute kidney injury or is diabetic.

Materials: 3 small cups with covers labeled “patient 1”, “patient 2” and “patient 3” (we use small histology cups), protein and glucose urinalysis dipsticks (3/group of students), key color chart, Diet Cola soda, albumin, glucose or sugar. Not necessary, but PhUn: gloves and masks.

 

Teaching Kidney Physiology in Inner City Elementary Schools is PhUn!!

To prepare the fake urine (this can be done in advance and kept in the fridge until you take it to the school): For the normal urine – mix water and enough diet Cola to give a urine-like color; for the acute kidney injury urine – mix water, diet Cola for color and albumin; for the diabetic urine – mix water, diet Cola for color, albumin and glucose/sugar. Make each of the urines in big batches and then distribute in the appropriate cups.

Methods: The volunteer helpers distribute 3 cups filled with urine to each group of students, together with 3 dipsticks and a key color chart. The leader tells the students a story about having an MD friend that works at the hospital. The MD is extremely busy and has asked the leader for help to diagnose the patients. The leader tells the students that the urine is from patients at the hospital (there will be a huge “Eeeewwww” coming from the students at this moment). The leader tells the students that they need to wear the gloves and masks because they are doctors for the day and they are working with “human urine”. Instruct the students to dip the dipsticks in the cups one at a time, count to 10 and look at how they change color; with the help of the volunteers, the students write down their diagnosis.

 

 

Discussion: When all the groups are done, the leader summarizes the results for each patient and talks a little bit about how to keep healthy kidneys. Do not forget to tell the students at the end of the activity that the urine was fake!!!

We have found that this activity sparks a lot of interest in the students, since many of them know of somebody with kidney disease due to hypertension or diabetes. Students deeply engage in the activities and ask millions of questions, not only about the kidney and how it functions, but also about our path to science and how a regular day in the laboratory is. Our volunteers are a very diverse group, many of them minorities and from many different countries, so these visits also provide the students with diverse role models in the STEM field.

 

 

 

 

Carmen De Miguel, PhD, is an Instructor of Medicine in the Division of Nephrology at the University of Alabama at Birmingham. She is a basic scientist originally from Madrid, Spain. Carmen completed her B.S. in Biochemistry and Molecular Biology at the Universidad Autónoma de Madrid. She then moved to the U.S. to pursue a Master’s degree in Cell and Molecular Biology at St. Cloud State University, MN. Her experiences at St Cloud State led to a deep interest in physiology, and she decided to pursue doctoral studies in this discipline by joining the Department of Physiology at the Medical College of Wisconsin, WI. Her Ph.D. research, under Dr. David L. Mattson’s mentorship, focused on the role that renal T cell infiltration plays in the development of salt-sensitive hypertension and associated kidney damage. Dr. De Miguel is currently working in Dr. Jennifer Pollock’s lab at the University of Alabama at Birmingham, where she continues to investigate molecular pathways that lead to kidney damage during hypertensive and diabetic conditions. Carmen is very active in APS, having been member of the APS Education and Communications Committees and trainee leader in the Water and Electrolytes Homeostasis section. She is also very involved in science outreach activities and she has been an organizer and volunteer for PhUn week since 2011. In addition, she volunteers as mentor for the NEXT Program of the New York Academy of Sciences, supporting girls from minority backgrounds to stay in the STEM field.
PhUn week activities to a larger multi-level group after Hurricane Maria

A year ago Puerto Rico went through one of the most difficult and devastating events in our modern history, Hurricane Maria, after this category 5 hurricane hit our island we were left without water, electricity, communications and without other basic needs. The schools and universities suffered great damage and because of the slow recovery, the return to normalcy was an upstream battle. However, hope and desire to fight inspired a group of Puerto Ricans scientists, members of the American Physiology Society (APS) Chapter of Puerto Rico, to power through the devastation and personal issues and make sure that PhUn Week took place.

The APS Chapter of Puerto Rico usually develops PhUn week on the campus of several primary and secondary schools creating several activities throughout the week relating to the topic of that year. This activity always resulted in a great positive energy and amazing feedback from the participating students. This PhUn week came to be expected from the students in the participating schools and students would anxiously and excitedly wait for it to happen. Hurricane Maria instigated a change this year, due to the devastation and the damage that occurred to various participating schools. So, we decided to carry out PhUn Week in the laboratories and halls of the Pontifical Catholic University of Puerto Rico Ponce Campus with the purpose of being able to provide and exciting introduction to physiology simultaneously to a larger number of students from different grade levels (elementary, intermediate and higher levels for a total of 102 students).

A university environment gave us the ability to present the different sections of PhUn Week in both the classroom and a proper research laboratory environment, which provided a unique experience to the students. For PhUn Week, the theme of Neuroscience was selected, two sessions were prepared, one with an introductory information in a mini lecture format and a discussion session at the end of the activity to listen to the opinions of the students and provide information that summarized what was learned. In addition, five hands-on activities were held between these two sessions, which were: anatomy, histology, optical illusions, hippocampal function and cerebellum function. To properly work with the large number of students invited; different hands-on activities sessions were created to divide the students into small groups and therefore establishing an environment with more accessibility to the information being given.

We wanted the students to be able to see, listen and have a hands-on relationship with the chosen neuroscience topic. In order to facilitate their learning experience there was an emphasis on the varied hands-on activities. In the anatomy section students explored a human brain, the brain areas, and its function. The histology section, students learned how to use a microscope and viewed fluorescent staining of rat brain cells, such as neurons, astrocytes, and others. The third section showed Optical Illusions, which are images that appear to differ from the reality; in this case the brain captures the information and interprets it depending what had been stored. The next section activity explained the importance of the hippocampus in the process of learning and memory, in this activity, students saw a complex picture for ten seconds, then they were shown a second picture, and asked to explain the picture that makes the complex picture. Finally, in the cerebellum activity, important for motor function and coordination; we asked students to put on goggles with a prism effect and try to throw the balls into box 6 feet away, after about 20 attempts, the students were asked to remove the goggles and quickly throw more balls.

At the end of the activites we observed that the students were very excited, with a positive attitude towards physiology even though they recently went through a negative experience of the Hurricane. Changing students from an everyday school environment to an educational environment in a university campus, with laboratory areas and with different activities provided them with the joy and hope that everything could change in the future. Our goal as a group was for the students to have a day where the Hurricane would not be discussed, and to maintain a series of activities where everything would be normal and without the problems from Maria. In addition to bringing them happiness, we achieved a growth of interest in the areas of study of the university and laboratories, they asked about the facilities and what was done in each laboratory and its instruments. At the end of this activity, we observed that with great effort a bit of hope was achieved. The hurricane negatively impacted all who participated, Professors, researchers, graduate students and yet everyone helped make PhUn week a reality and a positive experience for the students.

We wish to thank all the people who organized this activity from Pontifical Catholic University of Puerto Rico, Ponce Health Sciences, and University of Puerto Rico Ponce Campus and special thanks to Dr. Gladys Chompre, Myrella Cruz, Dr. Dinah Ramos Ortolaza, Dr. Caroline Appleyard, Agnes González Charles, and Samuel Bronfen Quinones. Thanks to this post-hurricane Maria PhUn week we discovered that as a university community, when we come together, we make a difference and this activity will be one that will continue, no matter the events, we will offer education and happiness to the whole community.

Christine D. Rodriguez-Flores graduate student of the Biology Department at the Pontifical Catholic University of Puerto Rico (PUCPR). In addition to doing research, I am interested in providing scientific knowledge to the next generation of K-12 students. This is why I helped coordinate the Physiological Understanding Week in 2018. Even with the disaster of Hurricane Maria last year, we followed the plan of bringing the Phun week activity to our students giving them knowledge and hope. The data collected was presented at EB Conference 2018: Translation of Physiology Understanding (PhUn) Week Activities to a Larger Multi-Level Group of Students in a Scientific Environment following Hurricane Maria in the PhUn week and in the Teaching of Physiology sections. In the future, I am still interested in bringing to the students an experience with science in a simple manner and make them enjoy the full spectrum of scientific learning.

 

 

A decade of PhUn Week fun in Birmingham

Several of the physiologists at the University of Alabama at Birmingham (UAB) have provided considerable time and effort into making PhUn week a great learning experience for K-12 students and teachers in the area. Carmel McNicholas-Bevensee and Kathy Berecek were early PhUn week explorers, taking active learning experiences to the K-5 classrooms in the area, while Mike Wyss conducted both classroom sessions and sessions at the McWane Science Museum in Birmingham. More recently, David and Jennifer Pollock have joined the UAB PhUn week efforts and greatly enhanced its reach.

The original format of UAB PhUn week was to go out to area schools to teach relatively simple, albeit important lessons to K-5 students. Some of the first experiences were to simply take a cow heart to the schools. We quickly realized that the size and weight of a cow heart made the experience difficult, and thus changed to a pig heart-lung preparation, which was more manageable. A plastic tube was inserted into the lungs connected to a bicycle pump, with which the lungs could be expanded with air. For most students this was in itself exciting, but adding to the excitement, the presenter dressed in a white coat and Personal Protective Equipment (PPE) and told the students that as they participated in touch the heart, they too needed to don PPE. We kept the oral presentation short (< 10m), but provided enough background to help the students understand what they were about to experience. Models of the pumping heart, helped the students to gain insight into how blood flows through the pig heart and how the heart worked in them. For middle school students this expanded into 50-minute classroom sessions with human brains, in which the students began to touch the brains and identify major areas.

While many of these experiences were great, one of the most fun experiences is taking the Lung-O-Meter into a grade 2 or 3 classroom. The experience is relatively simple, but teaches several lessons that the teacher can build on. The ingredients are several empty, gallon milk jugs, a plastic tub that has about a > 2-gallon capacity, magic markers, a measuring cup (or graduated cylinder and a flexible plastic tube. The object is to have each team of about 3 students each mark gradations on the milk jug (hopefully in mL), cap the jug when completely filled, turn it upside down, place it in a tub of water remove the cap, place the plastic tube inside the jug, and then blow into the tube to determine lung capacity. The students then put their data points on a graph on the white board in front of the room relative to the student’s weight and height, to estimate whether there is a relationship between these variables. Thus, the lesson teaches them about measurements, scientific process, team work (each student in the group gets an assigned task) and individual differences. Mostly though, it teaches them science can be fun, and what is more fun than 30 7-9 year olds getting to splash around in water in their classroom.

With this or any other similar activity, it is very important to partner with the teacher and administrators in learning experience. Perhaps of prime concern to both groups is that the class time be used to address key learning objectives, typically linked to the Next Generation Science Standards and/or the state’s science course of studies. It is a great benefit for the visitors to explain to the teacher ahead of the visit, the first principles underlying the activity. Grade K-5 teachers often have relatively little formal science background, and thus these PhUn week experiences can be a great learning experience for them as well, as long as they are presented in a collegial way, remembering the visitors can learn much from the teacher about pedagogy of K-5 students. In general, it is best if the PhUn week teams include a faculty-level physiologist, who can help coordinate the activity, but recognizes that the best ideas for the activities likely will come from physiology students/postdocs who design them. Also, the faculty member can often assuage hard feelings when a school cancels an event at the last minute. This will happen and usually relates to emerging situations at the school that are not easily foreseeable.

Just a brief word about mass presentations versus classroom visits. Our presentations at McWane Science Center for both PhUn week and Brain Awareness Week reach a huge number of students in one week (>2,000), especially when they are scheduled for school break periods. However, these events typically do not link up the teachers to the physiologists. Often, once a teacher and physiologist link together in the classroom experience, the teacher is much more likely to engage the physiologist or join in other learning programs that are offered by the physiologist’s institution. Also, the science museum presentations are typically short (2-5 min.) and more focused on the excitement/wonder of science, while the classroom presentations can go more in depth. Over the 10+ years of UAB’s PhUn week, we have reached about >13,000 students in classrooms and >14,000 in the science center.

The engagement of the faculty physiologist also helps researchers address the Broader Impacts that NSF and in part NIH are demanding in applications for research grants. Both granting agencies want to encourage researchers to translate their science to the public, and PhUn week activities can do just that.

Mike Wyss, Professor of CDIB, Medicine, Neurobiology and Psychology and Director of the Center for Community OutReach Development and the UAB STEM Center received his Ph.D. in Neurobiology from Washington University in St. Louis. In his postdoctoral studies at Washington University School of Medicine under Larry Swanson and Max Cowan, he learned to apply cell biological methods to elucidate the roles of the limbic cortex in behavior and the hypothalamus in autonomic control. He served on the APS Council and is past Chair of the APS Education Committee.
Kathy Berecek received her Ph.D. from the Department of Physiology and Biophysics at the University of Michigan and subsequently was a postdoctoral scholar at the Universities’ of Michigan, Heidelberg and Iowa. Dr. Berecek is a Professor in CDIB, and a Senior Scientist in the Vascular Biology and Hypertension Program and the Cell Adhesion and Matrix Center. She is also is a Fellow of the AHA, the AHA Hypertension Council, the AHA Council for Atherosclerosis, Thrombosis, and Vascular Biology, and the APS Cardiovascular Section.
Dr. Carmel McNicholas-Bevensee received both her B.Sc. (Hons) degree (1989) and Ph.D. (1992) from the University of Manchester (England). After completing her postdoctoral training in the Department of Cellular and Molecular Physiology at Yale University in the laboratory of Dr. Gerhard Giebisch, she worked for Bristol-Myers Squibb Pharmaceutical Research Institute and then joined the UAB faculty where she is an Assistant Professor in Cell, Developmental and Integrative Biology (CDIB).
We’ve come a long way, but K-12 students still need exposure to physiology

   You know you are old when the elementary school part of your K-12 science education would likely disqualify a teacher if he/she tried the approach today. At the start of the week, my 8th grade teacher wrote about 10 science factoids on the blackboard.  On Friday morning, the blackboard was erased and we were given a quiz to see what we “learned” by reading these weekly science tidbits. Science was very boring, although I do recall one funny experience learning about the scientific process. We were asked to interpret some “data,” using inductive reasoning to discern a pattern, make a generalization, and come up with an explanation. We were told the following: “A man drank gin and tonic water and got drunk. He then drank vodka and tonic water and got drunk. And finally he drank rum and tonic water and again he got drunk.” The class enthusiastically and unanimously concluded that tonic water causes you to get drunk.

Despite these beginnings to my science experience, I chose to major in biology in college and learned about physiology thanks to a vertebrate physiology class I took my senior year. On my last day of college, I sat on the floor of the incredible instructor of this course and said, “What can you do with a degree in biology if you don’t want to go to medical school?” He quickly responded, “You seem to really like physiology, so you should get a PhD in physiology.” I blindly followed his advice even though I was clueless what this would entail, but I learned quickly and managed to get accepted into a graduate program where my passion for physiology grew, especially regarding neural control of the cardiovascular system.

The administration of several US Presidents since the late 1950’s has acknowledged that K-12 schools need to do more to educate our population in STEM fields by providing opportunities to ensure that tomorrow’s leaders have the skills needed to be innovative and to maintain a competitive economy. The acronym STEM was popularized in the 1990’s.  This is also the era when some national organizations developed opportunities to include exposure to science outside of the classroom and into public arenas. For example, in 1996 The Dana Foundation spearheaded the development of Brain Awareness Week to “to increase public awareness of the progress and benefits of brain research.” It has evolved into a global education initiative with more than 5,600 partners in 120 countries. When I was on the APS Council in 2005, the APS Education Committee promoted an event that would rely on APS members to reach out to their communities to help increase awareness about physiology. This was the beginnings of Physiology Understanding (PhUn) Week, an aptly named event since it was intended to show the public that physiology is fun. We were so lucky that APS Leadership saw a need and was willing to invest a relatively small amount of money (in recent years about $40,000 annually) to stimulate interest in physiology in what has become thousands of young children and hundreds of K-12 teachers each November.

Although I was an early advocate of the program (voting in favor of APS support for the event), my first time to be an active participant in a PhUn Week event was 2009. A teacher at a Jackson MI high school (Nancy Lefere, Lumen Christi High School) contacted APS after reading a notice about the program in a teacher’s magazine. She asked APS how she could find a physiologist who could come to her classroom to participate in PhUn Week, and APS contacted me, and I then reached out to Nancy.  I was surprised to learn that she actually teaches a high school physiology course! My colleague Stephanie Watts and I have been going to Lumen Christi High School every year since then. I may be biased, but I think everyone enjoys learning about things that control your blood pressure and heart rate, so we use that as the theme for our PhUn Week activity.

The activity we use at Lumen Christi High School is designed with three goals in mind. One, the students will learn some basic cardiovascular physiology. Two, the students will engage in experimental design. Three, the hands-on activity will educate the students about the cardiovascular effects of drinking caffeinated beverages and aerobic exercise, especially combining the two. Provided one has access to automatic blood pressure and heart rate monitors, the hands-on activity can be done with minimal investment of money (purchase of beverages), and it can be completed in a typical class period.

In the week leading up to the visit by Stephanie and me, Nancy uses the K-W-L- approach to learning as students make lists of things that they Know and Wonder about blood pressure and heart rate. The Learn items are shared with us after our visit to the classroom at the end of the week. Our visit provides students with a valuable opportunity to learn more about blood pressure and heart rate by a Power Point® presentation and the hands-on activity. Some examples of K-W-L items we have gathered over the years are shown in the accompanied K-W-L Chart.

For the hands-on activity, students work in pairs, one being a “researcher” (collects the data) and one is the “subject”. Students receive instructions on the proper way to take their blood pressure using automatic blood pressure cuffs (proper placement of the cuff, arm resting close to heart level, feet flat on floor, relaxed, breathe normally, no talking, etc.). The researchers take and record the blood pressure and heart rate of the subjects on a chart we have prepared in advance. Measurements are made three times: at rest, about 30 minutes after drinking a beverage, and immediately after doing 3-minutes of aerobic exercise (e.g., running, jumping jacks, push-ups). We routinely bring a graduate student with us, giving him/her an opportunity to get engaged in a lively outreach event. And the more hands on deck, the more organized we can be to make sure the students are making the blood pressure and heart arte measurements correctly.

Because the teacher submits the Know and Wonder items in advance of our classroom visit, the presentation can include answers to many of the questions the students posed. The presentation also engages the students by gathering their responses to a variety of questions about blood pressure and heart rate. We used iClicker® technology to gather responses, but if clickers are not available one can do a manual tally of responses to the questions. Typical questions include “Do you know anyone diagnosed with hypertension?”; “Which of the following has the highest blood pressure (or heart rate): a hypertensive man, blue whale, giraffe, or bird?”; “Do you know anyone who had a stroke (or heart attack)?”; “What effect does caffeine (or exercise) have on blood pressure (or heart rate)?”; “Do you think your blood pressure is higher when you are standing, sitting, lying down, or it makes no difference?”

We also talk about the components of experimental design: formulating a hypothesis, developing methods to test a hypothesis, identifying the controls and variables, collecting and recording data, and making a conclusion based on the experimental results. We ask the students what they expect to happen to their blood pressure and heart rate if they consume caffeine and if they exercise. Usually most of the students say that “Drinking caffeinated beverages and exercise will increase my blood pressure and heart rate.”

All students had been asked to refrain from consuming caffeinated beverages for at least 24 hours prior to class. Students are asked in advance if they are sensitive to caffeine and if so, they would not be asked to drink a caffeinated beverage. Parental consent is required to be a subject. Students are divided into groups based on the caffeine-content of the beverage they drink. At a minimum, the study can be done with two beverages: a caffeine-free (0 mg/oz) soft drink and a caffeinated energy drink. We have used either NOS® (10 mg caffeine/oz.) or Rockstar® (15 mg/oz.) energy drink. If possible, all of the beverages used should have the same sugar content so that variation in sugar level is not a factor in the results of the experiment. Also, all students should drink the same volume. It is convenient to use 12-oz as this is the amount in most soft drink cans. The temperature of all of the beverages should also be the same; we use beverages at room temperature.

An almost uniform response is that students who had consumed the energy drink comment that they felt their heart racing after 3-min of exercise. The Figure to the left shows the combined results from our last two visits in which we were able to analyze results from 11 students that drank the caffeinated soft drink and 13 students that drank an energy drink. Systolic pressure (SBP) and heart rate (HR) are both significantly increased after exercise compared to baseline levels in both groups of students. Perhaps surprisingly the results were not significantly greater in those drinking the caffeine-free (CF) beverage versus the caffeinated (C) beverage. One caveat is that blood pressure in these young kids probably begin to correct fairly quickly after they stop exercising. By the time they get back to their seats and settle down to get their pressure and heart rate taken again, it might begin to fall. Students often say they learn not to drink a caffeinated drink before exercising!

In summary, this week-long experience of studying blood pressure and heart rate is a form of active, discovery learning that uses the K-W-L approach in conjunction with a hands-on activity. This format is well-suited to peak the students’ interest in physiology and research because they see for themselves the results of their own study. It mattered more that the students got to be involved in experimental design and conducting the experiments than in the actual results of the experiment.  All participants – teachers and students – have PhUn!

The Future of PhUn Week

Many of the APS members who participate in PhUn Week events of other K-12 activities were disheartened to learn that the current APS Council has voted to halt the use of APS funds to support PhUn Week events beginning in 2019. I urge those interested to contact APS Council members to encourage them to reconsider this decision.  These events could likely continue with about $20,000 each year. We can bypass the distribution of PhUn Week T-shirts for the APS members and teachers participating in the event and the sports bags given to the students. The trading cards and squeezy hearts could continue to be given as reminders to the kids of the “PhUn” they had on that day in November when a physiologist visited their school. Another option for support of this event is getting dedicated individuals or groups who would be willing to endow the program. Maybe this blog can be used to find APS members willing to help regain support for PhUn Week.

Sue Barman received her PhD in physiology from Loyola University School of Medicine in Maywood, Illinois. Afterward she went to Michigan State University (MSU) where she is currently a Professor in the Department of Pharmacology/Toxicology and the Neuroscience Program. She has had a career-long interest in neural control of cardiorespiratory function with an emphasis on the characterization and origin of the naturally occurring discharges of sympathetic and phrenic nerves. She is also a Fellow of the APS and served as its 85th President. She has also served as a Councilor of APS and Chair of the Women in Physiology and Section Advisory Committees of the APS. She is active in the Michigan Physiological Society, a chapter of the APS. She established a jeopardy-style Michigan Physiology Quiz in which teams of undergraduate students compete in answering questions about physiology. Students that participate say it is a great way to study for the MCATs. Sue has had a passion for mentoring young physiologists. She is also a recipient of an MSU Outstanding University Woman Faculty Award, a Distinguished Faculty Award, and a Distinguished Service Award from the Association of Chairs of Departments of Physiology.
A PhUn Week Experience Influenced by Excitement

 

I was initially asked to participate in PhUn Week by a staff member within the American Physiological Society (APS) headquarters. Reluctantly, I agreed to put one more activity on my busy schedule.  As the time approached for the PhUn Week presentation to an elementary school group, an exceptional amount of thought came into what I would present to engage the students.  I don’t exactly remember the minute details of what my first PhUn Week presentation was about; however, I will never forget the enthusiasm and excitement shown by the elementary students once they became engaged and participated in the presentation.  I was immediately convinced that PhUn Week presentations delivered all over the United States were helping to dispel the myth that “science was boring and very difficult.”  As I recall, the PhUn Week presentation caused the students to ask a lot of relevant and also irrelevant questions.  The point was that they were not afraid to raise their hands and to make a comment or ask a question about cardiovascular or renal function.  One memorable moment was the excitement that the participants showed when the trace of their EKGs were displayed upon a screen and their heartbeats were magnified over a speaker system.  As the crowd watched the tracing and heard the sounds of the heartbeats from their brave classmate who volunteered, they simultaneously placed their hands over their heart to feel if their own hearts had a similar beat.  As a result, the number of volunteers tremendously increased and so did their heart rates. During this and other PhUn Week presentations, the initial “ice-breaking” moments opened up the excitement and many possibilities and understanding of physiology.

My PhUn Week presentation experience was not only unique with elementary students, the excitement and engagement was exhibited throughout elementary, middle and high schools. During the various educational stages of the participants, there was something that made them more curious about understanding physiology, which resulted in questions, or something they could relate to and wanted to share with the group.  The responses were observed in classrooms in Augusta, GA, the inner city of Washington, D.C and various suburbs in Maryland.  In my experience, the excitement and curiosity for physiology did not significantly vary, whether the PhUn Week presentations were given to a science interest group or to a gym full of elementary or high school students.  To my surprise, the PhUn Week presentations were also well-received by teachers and administrators.  One would think that the PhUn Week presentations would be an opportunity for the teachers to take a well-deserved break, grade papers or simply prepare for the next class.  Instead, the teachers watched intensely and on many occasions, interjected scientific principles previously discussed in the class.

My preparation and prompts utilized for PhUn Week have evolved over the years. Initially, the presentation depended upon WiFi connections to play videos, the transportation of electronic equipment that would display EKG tracings and speakers for the magnification of heart sounds, to the construction of a urinary system out of plywood, polyvinyl chloride (PVC) pipes and plastic containers. Out of all the PhUn Week presentations, the construction and transportation of the urinary system was the most eventful.  Although, the system was tested, which included pouring a “small amount” of water through a funnel, which was connected to the aorta and the water was divided at an intersection of the PVC pipe to depict the renal arteries and filtered through additional funnels connected to polyethelyne (PE) tubing, to depict the ureters.  The flow of the liquid through the kidneys (the filtering component) down into the ureters, which was connected by considerable amount of clay, was the area of most concern.  On the day of the presentation, and after a brief introduction, I asked for a volunteer to come up on stage to assist me with the process.  My instruction was: to please pour a “small amount” of water upon prompting.  Little did I know that the fourth grader was very excited, and he poured almost a half-gallon of liquid into the urinary system display at one time.  As expected, the ureters, which consisted of PE tubing, could not withstand the large of amount of volume and pressure exerted upon the system.  As a physiologist, we are trained to “think on our feet.” My first action was to stop the flow of fluid, the second was to reinforce the PE tubing funnel connection with more clay.  Paper towels were needed, of course, to clean up the “spill of excitement” on the floor.  During that demonstration, the students were able to successfully see how red “blood” goes through the urinary system to produce a clear or “light-yellow tinted urine.”  The class and teachers were very patient, excited, appreciative, and helpful during this certain PhUn Week presentation.  Now, I often think about other ways in which a hands-on urinary system could have been presented to a group of elementary school students.  Nevertheless, the excitement experienced by everyone that day will go down as one of my most memorable PhUn Week presentations in more ways than one.

Over the years, I have looked forward to the PhUn Week presentations and have been asked to return to certain sites on multiple occasions. The impact and appreciation exhibited by the students, teachers and administrators are tangible: you are making a lasting impression upon young students.  I received numerous e-mails from the PhUn Week participants expressing their gratitude of my presentations, and excitement for the learning of physiology.  My most prized possessions from the PhUn Week presentations are the hand-written cards and letters from the many students.  The most creative cards also include a drawing from the particular presentation, possibly including a spill during the constructed urinary system.  I must say that PhUn Week has generated an exposure to students of all ages for an excitement in the field/possibilities of physiology.  Activities such as PhUn Week are vital for developing and continuing the “pipeline” for the biomedical workforce.  Although the participation in these PhUn Weeks were considered an added event on my schedule, I am convinced that it is very important for the understanding and future of physiology.  I am also energized by the excitement exhibited by the PhUn Week participants, and students.

 

Dr. Dexter Lee graduated from Jackson State University with a Bachelor’s degree in Biology, proceeded to get a Masters’ of Sciences degree from University of Akron Ohio, and finally obtained a PhD from the University of Missouri-Columbia. His research focuses on the acquisition of hemodynamic data using mouse models of chronic hypertension to identify molecular markers and inflammatory cytokines that regulate blood pressure through renal-dependent mechanisms. Currently, his laboratory is studying the role of peroxisome proliferator activated receptor-alpha and its regulatory effect on inflammatory markers during hypertension.