Category Archives: Teacher physiologists partnerships

A PhUn Week with 1st Graders That Almost Wasn’t: Tips, Lessons, and Luck!

I hesitated to participate in PhUn week, because I wasn’t sure my undergraduate and teaching skills could translate to a K-12 setting and that I could find class for the activity. Luckily, several APS colleagues with amble PhUn Week experience were relentlessly encouraging.

            Start early to identify a teacher/class partner and don’t give up. My PhUn week nearly ended before it began. In July, APS emails out the annual announcement to complete and send in the PhUn week planner for the November event. This gives teachers the opportunity to squeeze the event into a busy Fall semester. Many PhUn Week leaders work with their own child’s class. Not having children, I talked to friends with children about PhUn Week and identified five candidate teachers. I sent each an email describing PhUn Week as an annual APS-sponsored educational outreach program and the Exercise & Nutrition themes; the PhUn Week Save the Date flyer and link to the website were also included. I named and CCed the person who referred them to me, and explained the event could be held another week in November.

Five invites – not one response. By this time school had just started. Where to find a K-12 teacher? Ask friends in non-science groups, community organizations, or hobby-based groups; home-owner association and neighborhood list serves; the school down the street; the Boys & Girls Club. I have a friend married to a pastor and asked whether she knew a teacher in the congregation who might be interested in PhUn Week. “Lisa B. – here’s her email.” I edited my PhUn Week email with the Save the Date flyer attached, hit ‘Send’, and crossed my fingers. Lisa, the lead teacher for 1st grade at a school near my house, quickly accepted. She asked if I’d be willing to include Sylvia P.’s 1st grade class; they regularly team-teach the combined group of thirty-six 1st graders. So relieved and excited, I replied, “Of course!”

            Logistics and assessment of student preparedness. When? Where? Resources? What are students prepared to learn? We ask similar questions when preparing lectures or seminars for our own students. By phone and email, Lisa and I made preliminary plans. We initially selected the Friday of PhUn Week, but due to a school event we changed the date to the following Friday. Flexibility and adaptability help maintain the spirit of outreach.

            With a big extended family, I have met many 1st graders. They are pure energy. Now multiply by 36! The theme from Jaws played in my head. “We’re gonna’ need a bigger boat.” Recruit colleagues and students. My husband Mike is an APS member and exercise physiologist with a bachelor’s in physical education. “I was wondering when you’d finally ask me?!” He had been secretly developing an activity. He thought it’d be fun to teach basic integrative physiology of heart, lung and blood vessels that ensures adequate oxygen delivery to organs and muscles during at rest vs. after a meal vs. exercise. Many topics address aspects of exercise or nutrition. Select a topic you are genuinely excited about and take an approach suitable for the students. Be confident knowing that their teacher has experience and expertise to guide you.

Six weeks before the event, we met Lisa and Sylvia in their classroom where the activity would be held. We explained the activity; they explained what 1st graders were ready to learn. The 1st grade health and science curriculum incorporates The Anatomy Apron that teaches the basic anatomy of major organs (e.g., heart, lungs, gut), concept that organs work together, and importance of good exercise and nutrition habits for all ages and physical abilities1. Students work through the module in spring; PhUn Week activity and timing worked well. They encouraged us to keep terminology simple but accurate; 1st graders are smart and developing a vocabulary. They gave us a copy of The Anatomy Apron. It provided examples of grade-appropriate terminology and illustrations, which helped us tailor the activity to complement the 1st grade health and science curriculum. The classroom had a large dedicated area where the combined group of students regularly met and could easily view a big Smart Board®. Finally, we’d have 50 minutes for the activity.

            Preparing for the activity. While preparedness and organization are critical, we had to consider word choice and account for questions and interjections. You ask a 1st grader a question – they will answer – right or wrong – succinctly or extensively. We patterned the activity after an American Heart Association pre-K activity, Where does the blood go?2, which teaches students blood is pumped to first to the lungs to pick oxygen then flows back to the heart before it is pumped to the body. We elaborated on the circulatory pattern to include blood flow through different organs to ‘give’ oxygen to organs so they can ‘work’ and ‘do what they need to do’; then, through veins blood flows back to the heart and then to the lungs to pick up oxygen. We printed heart, lung, artery, and vein in different colors on individual large cards; on two additional cards we printed stomach and muscle in lower case on one side and STOMACH and MUSCLE in upper case on the other; the latter two cards would be used to indicate digestive and exercise states. In groups of 6, students would pass a red plastic ball, which represented blood would be passed heart à Lung à Heart à artery à stomach à muscle à vein à Heart. around the circuit at different speeds to represent differences in blood flow during different activity states. For the introduction, we found images of heart, lung, vascular circuit, and ChooseMyPlate from on-line sources3,4. Luckily, for their own activities Lisa and Sylvia had students work in preassigned groups of 6. Implementing the teachers’ proven practices familiar to the students, we’d work with those same 6 student groups and made a set of cards for each group. Each group needed a leader; we recruited two exercise physiology graduate students from my husband’s lab (Dylan and Hyoseon) for a total of 6 adults. We had a practice run. I sent Lisa an email with details and called her to answer any questions. We were set.

            Let the PhUn begin. We arrived at the school early, supplies in hand, and a bit nervous. No matter what happens or what is said or asked, stay on track, have fun. Students are attentive and love learning. The teacher(s) will help students maintain focus. When her class gets riled, Lisa says three words, “Class, class, class.”; to which they reply “Yes, yes, yes.” and settle back down. We began with a short definition of physiology: the study of how your body organs each work and how all organs work together to keep you moving and breathing.

            We introduced ourselves as physiologists who study exercise and kidneys. One student quietly asked, ‘You study how we pee?’ Holding back laughter, I answered, ‘That’s right!’ We projected simple anatomically correct diagrams of heart and lungs on the Smart Board® to facilitate discussion with the students about basic anatomy and function. We wanted them to tell us what they knew. They eagerly answered questions and shared what they knew about the heart, lungs, and other organs. 1st graders want the world or whoever is listening to know what they know. Many students already knew the brain ‘tells other organs what to do’! They knew that when the chest ‘gets big’ the lungs fill with air and oxygen is added to blood. One student explained ‘if food goes down your air pipe you might die, but you can do this’ as he mimicked the Heimlich maneuver; then he clarified ‘air can go down your food pipe, you’ll just burp like this (he burped), but you’ll be ok’. He was totally serious. With straight faces we validated him, and got back to the script.

            1st graders know the body needs oxygen, the lung brings in oxygen, and the heart pumps blood around the body. I was not that smart in 1st grade. Mike held up a red ball to represent blood and introduced a new concept: first the heart pumps blood to lungs where it picks up oxygen, then blood returns to the heart, and then the heart pumps the blood to organs – muscle and stomach – then blood flows through veins back to the heart. He tracked the circuit: Heart à Lung à Heart à artery à stomach à muscle à vein à Heart. He told them we’d be learning how the heart, lung and blood work to make sure your organs get enough oxygen whether you’re resting or eating or exercising. He asked them to get into their work groups, as the teachers guided them. For each group of 6 students, 5 sat with cards labeled Heart, artery, stomach, muscle, and vein to form a circle around the 6th student who held the Lung card; each group had an adult leader. Mike asked the class, “What happens when you sit quietly, listening to Ms. B. and Ms. P.?” With stomach and muscle in small font, students slowly passed the red ball around the circuit as the individual group leader directed and explained oxygen loading and delivery. Next, “After lunch, do your muscles or stomach and intestines need more blood?” Students answered “Stomach and intestines!” They flipped the stomach to STOMACH to represent greater blood flow and calmly pass the ball through the circuit again. Next, “What happens when you exercise? Does your heart beat slow or fast? How slow or fast do you breathe when you exercise?”, Why?” “Now which needs more blood – your stomach or muscle?” They flipped stomach card back to lower case, flipped muscle to MUSCLE, and passed the ball through the circuit at a faster, louder pace.

The take home message. With students still sitting in groups, we reminded them how important daily exercise and good nutrition are to heart, lung and overall health and asked them to name different types of exercise. We encouraged non-competitive exercise and daily exercise with family and friends. Finally, students grouped themselves based on organ and lifted their cards as they shouted out their organ in the correct circulatory order: “Heart! Lung! Heart! Artery! Stomach! Muscle! Vein! Back to the Heart”!

We’ve worked with these phenomenal teachers for two consecutive years. They have patiently helped tailor the PhUn activity to their students each year        . We ask for feedback and tweek accordingly. The activity runs smoothly, even when it doesn’t. The first year just after Mike asked about changes during exercise, there was a fire drill. What happened next was nothing short of amazing. The students quietly set the cards and balls down and formed two lines; we followed suit. The teachers escorted us out to the main parking lot where all other students and staff were lined up. Everyone was perfectly quiet. Once we got the all clear, the teachers lead us in single file back to the classroom where we finished the activity. “Keep calm, and carry on.” Trust your teacher, trust yourself and have PhUn.

 

Resources

1) The Anatomy Apron No. 2534M, written by J. Bryson and L. Vessuto with illustrations by J. Nunamaker and J. Zeigler, ©1986 Educational Insights

2) http://www.heart.org/HEARTORG/Educator/FortheClassroom/ElementaryLessonPlans/Elementary-Lesson-Planswww.heart.org/HEARTORG/Educator/ FortheClassroom/ElementaryLessonPlans/Elementary-Lesson-Plans_UCM_001258_Article.jsp#.XKRJQIX9qL3

3) http://kok.ovh/index.php?q=heart+-+human+body+parts+-+pre+school+know+your+body+-+animated+videos+for+kids

4) ChoseMyPlate.gov

Alice Villalobos received her B.S.in biology from Loyola Marymount University and her Ph.D. in comparative physiology from the University of Arizona-College of

Medicine. After teaching Anatomy & Physiology II and Introduction to Human Nutrition in the Department of Biology at Blinn College guest lectures at Texas A& M University on the topics of brain barrier physiology and the heavy metal for the last 5 years, she has moved recently to Texas Tech University. There she will join the Department of Kinesiology & Sports Management and teach Physiological Nutrition for Exercise.
Physiology in the Caribbean

Often people think of Puerto Rico just as a place to vacation, but they are wrong. There are many people living here who get up every day and work in a variety of areas looking towards the future like those who work in the fields of science and physiology. There are academic physiologists on our island that teach our new generations in the classroom but at the same time perform research. Students who choose to pursue a PhD degree can either stay on our island or continue to study in the United States. Once they are done they might either want to come back, stay in America or travel elsewhere. In many different places worldwide, you can find Puerto Ricans working towards giving back and improving our island, even if they cannot physically be here. When scientists decide to stay, we often want to encourage and educate our students to follow their passions. On our island at the K-12 level many of the students initially know about few career options and only want to be doctors or lawyers since that is all they have heard about from their parents or families. They don’t know that there are other careers available to them in the sciences. Some students go to college thinking “I’m afraid; I don’t know what I’m going to do when I’m done. I don’t know if medicine is my dream” and it’s not until they take a research course that they decide, some of them, to change their careers. For this reason, outreach to the K-12 community is very important to us. In 2017, we were hit by a massive hurricane and a lot of the population subsequently migrated to the United States as our economy and resources were badly affected. However, we did not become discouraged. During 2017-2018 we still impacted more than 250 school students. We teach our k-12 community about science, and how to be able to see and experience physiology using different educational techniques, which envelop auditory memory, visual memory and kinesthetic memory to capture the students’ attention. We want to ensure that students are not overwhelmed by the amount of material in science classes. Often, it’s not the amount of material that is the problem but how the material is given, and how to provide relevant examples to students to keep their attention. We also haven’t forgotten about those who have already finished college and are already teaching these students. We have given workshops to approximately 40 teachers to enhance their incorporation of physiological concepts into the classroom in order to impact more students. Since students have different visual, auditory and kinesthetic memories we aim to provide the teachers with tools such as instruments or activities that can help students find science interesting and entertaining at the same time. With these steps we want to make sure that the next generation of Puerto Rican children have the knowledge and desire to follow our footsteps and pursue scientific careers on our island.

Before finishing a bachelor’s degree in chemistry with a math minor, I took a research course in my senior year. That course helped me to understand that what I wanted to pursue was a career in research. After undergraduate studies, I worked for six years as a laboratory technician and on many occasions my superiors suggested I enroll in a PhD program, but I thought that I was not prepared and I was very afraid to fail. Eventually I made the decision to pursue a PhD in biomedical sciences and I loved it. I currently work at a university where undergraduate courses are predominantly offered and I continue to perform research related to obesity and depressive disorders. At my institution I began to understand the need for students to prepare and be competitive in their area. I also realized that the K-12 community is very important because it is our future, for this reason I spend part of my time bringing physiology concepts to schools.

Dr. Gladys Chompre

Associate Professor

Pontifical Catholic University of Puerto Rico 

 

PhUn in the Country

My professional philosophy is that an important part of my job is to expose the public to science. A big part of that involves getting my face out in the community and talking to them about what science is. I use PhUn week as an opportunity to open the door to the public and invite them into the world of science. In my reflections on my own progression through the educational system I felt that there was not much information given about careers in science. As I went through my scientific training in graduate school, I came to feel a personal conviction that it was my professional obligation to educate the next generation about what science is and what career opportunities exist in science.

What value do you see this providing to the community?

I see this as being valuable to the scientific community, in that it actively exposes students to biomedical science and gives a human face to the abstract notion of ‘scientific research’. It is also a valuable experience for the community I worked in as they are a small rural district and might not otherwise have access to this type of experience/programming.

Who was involved?

To set up the activity I contacted the STEM teacher for the Carlisle, IA school district. The activity was tailored to grades K-3 and took place at Carlisle elementary school. They only have one teacher for the whole district, so this made coordination and scheduling relatively easy. I used the built-in schedule for science education and visited every single classroom in the school over the course of ~ 1 week. I taught in 4, 50-minute classes a day for 8 days. In total this PhUn week activity reached 650 students.

What were your educational objectives?

I had several educational objectives I considered when planning the activity. I wanted to help students develop an understanding of what blood vessels are and how they work. I also wanted to introduce some concepts about how preventative measures such as exercise could improve cardiovascular fitness. Finally, I wanted to engage students in an activity that would give them an appreciation for application of the scientific method.

What activities did you design?

I started each class by spending some time talking about the basics of what blood vessels are and the important function they serve in the body. I also talk a little bit about how abnormal function of blood vessels plays a role in different diseases. To illustrate some of the principles that pertain to blood flow and vascular resistance I designed an activity where students measure transit of a volume of water through pipes (straws) of different diameters. The students formulated hypotheses prior to their experiments, collected and tabulated data, and then we discussed how their results fit with their hypothesis. The students enjoyed the opportunity to role-play being a scientist and were all very engaged throughout the activity. After the discussion of results and hypotheses I brought the discussion back to the effect of blood vessels on health and talked about how regular exercise could affect health by affecting the relative size (degree of constriction) in blood vessels.

Did your prior experiences with PHUN week shape your approach this time?

In prior PhUn week activities I noted that we often had difficulty completing everything we had planned. In the course of planning this activity I decided that I wanted to accomplish everything on my agenda in time frame given. This helped to shape the nature and number of activities that I did for this particular year. Another consideration in designing the activity was that it would be accessible and adaptable for different grade levels from K through 3.

How were the activities received by the students?

The students really loved the activities. My perception was that they were very engaged in what was happening. Part of this engagement stemmed from building a competition into the activity, but it also helped that students are intrigued by the notion of a scientist. The activity of doing what a scientist does was enough of a hook for a lot of students. All the students seemed to be eager to plot their data and see how it compared to findings from other groups. The excitement of discovery and the unknown is an innate trait that we tap into to make this activity a success.

What if anything would you change if doing it again?

Even with all the planning, I think I bit off a bit more than I could chew. Going forward I think I would either need to scale things down or enlist additional help if I was going to do the same thing again. I think also that in the future I’d like to try to find more specific tie-ins to curriculum that the STEM teacher is trying to build so as to augment their curriculum rather than depart from it.

Sarah Clayton, Ph.D. is an Assistant Professor in the department of Physiology and Pharmacology at Des Moines University Medicine and Health Sciences, in Des Moines, Iowa.

 

Interactive exercises to learn about our muscles and heart for 4th and 5th graders

Often times I think back to one of the joys of elementary school recess, which allowed us to run around the playground, hang off monkey bars, hopscotch, jump rope, and engage in other fun activities with our friends. Unfortunately, many schools have reduced or removed recess time from elementary schools despite the documented positive benefits of physical activity and unstructured play time. When I learned about the PhUn week program and the opportunity to teach kids about physiology and better understand how their bodies work I “jumped” at the opportunity. I have coordinated a PhUn week activity for the past three years for 4th and 5th graders at a local school with a teacher who was already involved in numerous STEM related projects for her students. She was very enthusiastic since while she had introduced her students to different aspects of STEM she was lacking a physiology component.

When I began planning my first PhUn week activity, I wanted to provide interactive, hands-on activities and give additional meaning to the term “active” learning. My own research has focused on skeletal muscle and exercise physiology so it was logical to use my expertise in this area. I also knew I would need other faculty or students to help implement my plans. Two of my undergraduate students quickly volunteered, and they recalled their own memories of elementary school and knew we could make a positive impact on these students. The plan was to spend one full class period with the 4th graders and another period with 5th graders. We began by asking the students if they knew how their muscles worked and why they got tired. Several students explained that we had nerves that made our muscles work, but did not know how nerves and muscles communicated. All students agreed that when they ran or carried heavy backpacks their muscles got tired.

We had 3 stations to study muscle strength and fatigue. The first helped the students see how their brains turned on their muscles by measuring electrical activity in their muscles with electrodes on their skin. To visualize how their nerves controlled their muscles we used iWorx to measure forearm electromyographic activity (EMG) while gripping a force transducer with increasing force. On the computer each student saw how when they gripped harder there was more EMG. To study muscle strength, they measured grip strength with a handgrip dynamometer and compared strength between their left and right hands and among classmates. To experience muscle fatigue, they squeezed the spring handgrip exercisers until they could not squeeze anymore. They also measured their grip strength after the handgrip exercise and saw how their strength decreased with fatigue. They were enthusiastic about all activities and wrote notes about what they learned such as, “We learned our muscles have electricity” and “When you grip something hard your muscles are tired”. I can definitely say that I was tired after several hours of keeping up with active elementary students, but it was so rewarding to see the passion with which the students performed the activities.

My Second PhUn Week For my second year, we used the same activities as year one, but added a station to teach heart physiology and utilize the PhUn Week squeezy hearts as a teaching tool. We talked about how the students can use a stethoscope to listen to their hearts beating and pumping blood to their muscles. The students enjoyed using the stethoscopes to listen to their own hearts and their classmates’ hearts. All the students had used “play” stethoscopes growing up, but were excited to use real doctor’s stethoscopes. We also explained how our hearts worked using the PhUn Week squeezy hearts. In addition the students learned about the location of blood vessels and importance of blood flow. As in the past year, they eagerly told us and their teacher what they had learned about their heart and muscles. As this was the second year, the teacher noted how it inspired her students and throughout the year she had her students reflect back on these activities when talking about how our bodies function. I was encouraged by many students mentioning having remembered material from the previous year’s PhUn Week activity, and were also able to draw parallels between family member’s health and learned content (e.g., “my dad has high blood pressure!”).

My Third PhUn Week For our third year, I decided to switch up the activities to learn about our skeletal muscles while keeping the heart/stethoscope activity. The goals were to help the students learn about how their skeletal muscles provide power and balance and how their hearts work harder during exercise. To learn the importance of muscle power, we used a vertical jump test (Just Jump Mat) to record jump height. Top performer’s jump heights were recorded on a white board to crown the “jump champion”, which fostered friendly competition and motivation for the activity. Next, students learned about how their muscles and vestibular system helps their balance ability.

To learn about balance ability, students performed a Y balance test (YBT™) in which they stood on one leg on a center platform and reached the alternative leg as far as possible in 3 directions (anterior, posterior medial, posterior lateral). They also stood on split foam rollers to learn how their muscles contracted to maintain their balance and keep them from falling. As in the past year, students used stethoscopes to listen to their own hearts and classmates’ hearts at rest and after they had jumped around for several minutes. We explained how their hearts beat faster during exercise to send blood and oxygen to their working muscles. They enthusiastically told us about their plans to practice their jumping power so next year they would be crowned jump champion. Students remembered material from the previous year’s PhUn Week when they measured muscle EMG and were also able to draw parallels that jumping higher was powered by higher muscle EMG. I am planning more fun physiology activities for next year. I continue to see the positive impact we are having on potential future scientists and making physiology accessible to all. It is also extremely rewarding to see the passion and unbridled energy of the students. I have gained even greater respect for our elementary school teachers who create the best learning environment they can while keeping so much active energy in check! I would recommend we all incorporate jump championships and physical activity into our classes (even college) since we know that activity increases brain blood flow which improves learning not to mention a little friendly competition!

Kimberly A. Huey received a Ph.D. in Biomedical Sciences from the University of California, San Diego and completed postdoctoral training in skeletal muscle physiology at the University of California, Irvine. She is currently a Professor of Physiology in the Department of Health Sciences at Drake University. Dr. Huey’s research focuses on contractile and cellular adaptations in skeletal muscle to changes in loading and activation such as exercise or disuse as well as the effects of medications on muscle function. Within the American Physiology Society, she has served on the Education Committee and Women in Physiology Committee and is currently serving on the Communications Committee. She is a Fellow in the American Physiological Society and American College of Sports Medicine.

From the College to the Elementary School Classroom

I have participated in the American Physiological Society’s (APS) Physiology Understanding Week (PhUn Week) for eight years now. Each year I have visited pre-school, kindergarten, or first grade classrooms. I have been teaching at the college level for over 20 years and I do not have children of my own. Therefore, adapting to teaching children has been a challenge. The first thing I learned (the hard way, as usual) is that I need to be very careful with the words I choose. I stood there talking about “increases” and “decreases” assuming they were basic words. The teacher pulled me aside and suggested I switch to the terms “goes up” and “goes down”. I had no idea! Once I realized how much I was unable to judge the best words to use, I began sending a script to the teacher in advance for feedback. I have also learned that elementary school lessons often very structured. College instructors create course objectives and structure their courses to meet and assess them, but it is rare that we create highly structured lesson plans for each topic. One teacher introduced me to a simple way to structure my PhUn Week activities and it has helped me significantly. The components in the table below form a simple recipe for a successful lesson with young children. I usually have four different lessons that last about 12 minutes each and I have found this structure to work very well. Component Description Hook/Motivation/Engage Tell a story, show a video clip, show pictures, etc. Big Idea State what they are going to learn. “Today we are going to learn about …”. Teach Teach them what you want them to learn. Don’t ask, tell. Model Show them the activity they are about to do. Guided Practice/Check for Understanding Make sure they know what they are going to do. Independent Practice Students participate in the activity. Closure/Review Ask them to tell you what they learned. Hook/Motivation/Engage A big difference I have found between college and elementary school students is that the children have a lot of energy, and therefore it is important to find a way to reel them in. However, they are also very curious, so it is not hard to engage them with the right “hook”. Big Idea As I mentioned above, these children and very curious and I have found them to be very anxious to learn. I often wish more of my college students had this incredible drive to learn! It is important to be clear about what they are about to learn and state the “big idea” that will come out of the lesson. Teach In college, instructors often start by asking questions. I have found that when I ask children questions, almost all of them raise their hands and want to answer. I have also found that many of them do not have the right answer; they simply like to be called upon. Wow, what a contrast to college students who often have the right answer but still do not raise their hands! To ensure a smooth and efficient lesson, it is best to first teach them what you want them to learn. It helps to have the children repeat terminology and other information back to you, as they tend to enjoy that, it helps them learn, and makes the teaching more interactive. Model You do not want to spend too much time talking and teaching or you will lose the students’ attention. This is one thing elementary and college students have in common, but I have found that children have an even shorter attention span. It is important to get to the fun stuff, which includes actually seeing and doing something to engage their curiosity and facilitate learning. With the children though, it is particularly important to first model what they are going to do to ensure they understand the activity. Guided Practice/Check for Understanding Once you have modeled the activity, it is time to let them try it out on their own. However, you do not want to let them go completely on their own right away. It is important to have a transition period when you check that they understand what they are supposed to do. You can explicitly ask them, “now what are you going to do”? You can also have one or more of the students model for the class as you provide feedback. This will help ensure better success with the activity. Independent Practice Now they are ready to fully engage with the activity as you watch and help, as needed. I am always impressed by how well they do once they have been properly guided prior to the activity. They tend to be very creative and thoughtful and it is fun and rewarding to watch. Closure/Review Now is the ideal time to ask questions. As I stated above, children love to answer questions. At this point, they have the knowledge to answer correctly. This is often my favorite component of the lesson because it is rewarding to see how much they learned. Working with elementary school children has been a learning experience for me. I learned very quickly that you cannot simply “water down” college content and teach it to children. This lesson plan structure has been invaluable to me and the success of my PhUn Week lessons.

Kim Henige received her Ed.D. in Education (emphasis: Science Education) from the University of Southern California and her M.A. in Physical Education (emphasis: Exercise Physiology) from California State University, Northridge (CSUN). Kim is currently a Professor in the Department of Kinesiology at CSUN where she teaches exercise physiology and applied exercise physiology courses. In addition, she directs the CSUN Kinesiology Peer Learning Facilitator program and is the course director for CSUN’s Freshman Seminar. Kim’s scholarship is focused on improving student enjoyment and success through active learning and peer mentoring.

PhUn week activities to a larger multi-level group after Hurricane Maria

A year ago Puerto Rico went through one of the most difficult and devastating events in our modern history, Hurricane Maria, after this category 5 hurricane hit our island we were left without water, electricity, communications and without other basic needs. The schools and universities suffered great damage and because of the slow recovery, the return to normalcy was an upstream battle. However, hope and desire to fight inspired a group of Puerto Ricans scientists, members of the American Physiology Society (APS) Chapter of Puerto Rico, to power through the devastation and personal issues and make sure that PhUn Week took place.

The APS Chapter of Puerto Rico usually develops PhUn week on the campus of several primary and secondary schools creating several activities throughout the week relating to the topic of that year. This activity always resulted in a great positive energy and amazing feedback from the participating students. This PhUn week came to be expected from the students in the participating schools and students would anxiously and excitedly wait for it to happen. Hurricane Maria instigated a change this year, due to the devastation and the damage that occurred to various participating schools. So, we decided to carry out PhUn Week in the laboratories and halls of the Pontifical Catholic University of Puerto Rico Ponce Campus with the purpose of being able to provide and exciting introduction to physiology simultaneously to a larger number of students from different grade levels (elementary, intermediate and higher levels for a total of 102 students).

A university environment gave us the ability to present the different sections of PhUn Week in both the classroom and a proper research laboratory environment, which provided a unique experience to the students. For PhUn Week, the theme of Neuroscience was selected, two sessions were prepared, one with an introductory information in a mini lecture format and a discussion session at the end of the activity to listen to the opinions of the students and provide information that summarized what was learned. In addition, five hands-on activities were held between these two sessions, which were: anatomy, histology, optical illusions, hippocampal function and cerebellum function. To properly work with the large number of students invited; different hands-on activities sessions were created to divide the students into small groups and therefore establishing an environment with more accessibility to the information being given.

We wanted the students to be able to see, listen and have a hands-on relationship with the chosen neuroscience topic. In order to facilitate their learning experience there was an emphasis on the varied hands-on activities. In the anatomy section students explored a human brain, the brain areas, and its function. The histology section, students learned how to use a microscope and viewed fluorescent staining of rat brain cells, such as neurons, astrocytes, and others. The third section showed Optical Illusions, which are images that appear to differ from the reality; in this case the brain captures the information and interprets it depending what had been stored. The next section activity explained the importance of the hippocampus in the process of learning and memory, in this activity, students saw a complex picture for ten seconds, then they were shown a second picture, and asked to explain the picture that makes the complex picture. Finally, in the cerebellum activity, important for motor function and coordination; we asked students to put on goggles with a prism effect and try to throw the balls into box 6 feet away, after about 20 attempts, the students were asked to remove the goggles and quickly throw more balls.

At the end of the activites we observed that the students were very excited, with a positive attitude towards physiology even though they recently went through a negative experience of the Hurricane. Changing students from an everyday school environment to an educational environment in a university campus, with laboratory areas and with different activities provided them with the joy and hope that everything could change in the future. Our goal as a group was for the students to have a day where the Hurricane would not be discussed, and to maintain a series of activities where everything would be normal and without the problems from Maria. In addition to bringing them happiness, we achieved a growth of interest in the areas of study of the university and laboratories, they asked about the facilities and what was done in each laboratory and its instruments. At the end of this activity, we observed that with great effort a bit of hope was achieved. The hurricane negatively impacted all who participated, Professors, researchers, graduate students and yet everyone helped make PhUn week a reality and a positive experience for the students.

We wish to thank all the people who organized this activity from Pontifical Catholic University of Puerto Rico, Ponce Health Sciences, and University of Puerto Rico Ponce Campus and special thanks to Dr. Gladys Chompre, Myrella Cruz, Dr. Dinah Ramos Ortolaza, Dr. Caroline Appleyard, Agnes González Charles, and Samuel Bronfen Quinones. Thanks to this post-hurricane Maria PhUn week we discovered that as a university community, when we come together, we make a difference and this activity will be one that will continue, no matter the events, we will offer education and happiness to the whole community.

Christine D. Rodriguez-Flores graduate student of the Biology Department at the Pontifical Catholic University of Puerto Rico (PUCPR). In addition to doing research, I am interested in providing scientific knowledge to the next generation of K-12 students. This is why I helped coordinate the Physiological Understanding Week in 2018. Even with the disaster of Hurricane Maria last year, we followed the plan of bringing the Phun week activity to our students giving them knowledge and hope. The data collected was presented at EB Conference 2018: Translation of Physiology Understanding (PhUn) Week Activities to a Larger Multi-Level Group of Students in a Scientific Environment following Hurricane Maria in the PhUn week and in the Teaching of Physiology sections. In the future, I am still interested in bringing to the students an experience with science in a simple manner and make them enjoy the full spectrum of scientific learning.

 

 

A decade of PhUn Week fun in Birmingham

Several of the physiologists at the University of Alabama at Birmingham (UAB) have provided considerable time and effort into making PhUn week a great learning experience for K-12 students and teachers in the area. Carmel McNicholas-Bevensee and Kathy Berecek were early PhUn week explorers, taking active learning experiences to the K-5 classrooms in the area, while Mike Wyss conducted both classroom sessions and sessions at the McWane Science Museum in Birmingham. More recently, David and Jennifer Pollock have joined the UAB PhUn week efforts and greatly enhanced its reach.

The original format of UAB PhUn week was to go out to area schools to teach relatively simple, albeit important lessons to K-5 students. Some of the first experiences were to simply take a cow heart to the schools. We quickly realized that the size and weight of a cow heart made the experience difficult, and thus changed to a pig heart-lung preparation, which was more manageable. A plastic tube was inserted into the lungs connected to a bicycle pump, with which the lungs could be expanded with air. For most students this was in itself exciting, but adding to the excitement, the presenter dressed in a white coat and Personal Protective Equipment (PPE) and told the students that as they participated in touch the heart, they too needed to don PPE. We kept the oral presentation short (< 10m), but provided enough background to help the students understand what they were about to experience. Models of the pumping heart, helped the students to gain insight into how blood flows through the pig heart and how the heart worked in them. For middle school students this expanded into 50-minute classroom sessions with human brains, in which the students began to touch the brains and identify major areas.

While many of these experiences were great, one of the most fun experiences is taking the Lung-O-Meter into a grade 2 or 3 classroom. The experience is relatively simple, but teaches several lessons that the teacher can build on. The ingredients are several empty, gallon milk jugs, a plastic tub that has about a > 2-gallon capacity, magic markers, a measuring cup (or graduated cylinder and a flexible plastic tube. The object is to have each team of about 3 students each mark gradations on the milk jug (hopefully in mL), cap the jug when completely filled, turn it upside down, place it in a tub of water remove the cap, place the plastic tube inside the jug, and then blow into the tube to determine lung capacity. The students then put their data points on a graph on the white board in front of the room relative to the student’s weight and height, to estimate whether there is a relationship between these variables. Thus, the lesson teaches them about measurements, scientific process, team work (each student in the group gets an assigned task) and individual differences. Mostly though, it teaches them science can be fun, and what is more fun than 30 7-9 year olds getting to splash around in water in their classroom.

With this or any other similar activity, it is very important to partner with the teacher and administrators in learning experience. Perhaps of prime concern to both groups is that the class time be used to address key learning objectives, typically linked to the Next Generation Science Standards and/or the state’s science course of studies. It is a great benefit for the visitors to explain to the teacher ahead of the visit, the first principles underlying the activity. Grade K-5 teachers often have relatively little formal science background, and thus these PhUn week experiences can be a great learning experience for them as well, as long as they are presented in a collegial way, remembering the visitors can learn much from the teacher about pedagogy of K-5 students. In general, it is best if the PhUn week teams include a faculty-level physiologist, who can help coordinate the activity, but recognizes that the best ideas for the activities likely will come from physiology students/postdocs who design them. Also, the faculty member can often assuage hard feelings when a school cancels an event at the last minute. This will happen and usually relates to emerging situations at the school that are not easily foreseeable.

Just a brief word about mass presentations versus classroom visits. Our presentations at McWane Science Center for both PhUn week and Brain Awareness Week reach a huge number of students in one week (>2,000), especially when they are scheduled for school break periods. However, these events typically do not link up the teachers to the physiologists. Often, once a teacher and physiologist link together in the classroom experience, the teacher is much more likely to engage the physiologist or join in other learning programs that are offered by the physiologist’s institution. Also, the science museum presentations are typically short (2-5 min.) and more focused on the excitement/wonder of science, while the classroom presentations can go more in depth. Over the 10+ years of UAB’s PhUn week, we have reached about >13,000 students in classrooms and >14,000 in the science center.

The engagement of the faculty physiologist also helps researchers address the Broader Impacts that NSF and in part NIH are demanding in applications for research grants. Both granting agencies want to encourage researchers to translate their science to the public, and PhUn week activities can do just that.

Mike Wyss, Professor of CDIB, Medicine, Neurobiology and Psychology and Director of the Center for Community OutReach Development and the UAB STEM Center received his Ph.D. in Neurobiology from Washington University in St. Louis. In his postdoctoral studies at Washington University School of Medicine under Larry Swanson and Max Cowan, he learned to apply cell biological methods to elucidate the roles of the limbic cortex in behavior and the hypothalamus in autonomic control. He served on the APS Council and is past Chair of the APS Education Committee.
Kathy Berecek received her Ph.D. from the Department of Physiology and Biophysics at the University of Michigan and subsequently was a postdoctoral scholar at the Universities’ of Michigan, Heidelberg and Iowa. Dr. Berecek is a Professor in CDIB, and a Senior Scientist in the Vascular Biology and Hypertension Program and the Cell Adhesion and Matrix Center. She is also is a Fellow of the AHA, the AHA Hypertension Council, the AHA Council for Atherosclerosis, Thrombosis, and Vascular Biology, and the APS Cardiovascular Section.
Dr. Carmel McNicholas-Bevensee received both her B.Sc. (Hons) degree (1989) and Ph.D. (1992) from the University of Manchester (England). After completing her postdoctoral training in the Department of Cellular and Molecular Physiology at Yale University in the laboratory of Dr. Gerhard Giebisch, she worked for Bristol-Myers Squibb Pharmaceutical Research Institute and then joined the UAB faculty where she is an Assistant Professor in Cell, Developmental and Integrative Biology (CDIB).
We’ve come a long way, but K-12 students still need exposure to physiology

   You know you are old when the elementary school part of your K-12 science education would likely disqualify a teacher if he/she tried the approach today. At the start of the week, my 8th grade teacher wrote about 10 science factoids on the blackboard.  On Friday morning, the blackboard was erased and we were given a quiz to see what we “learned” by reading these weekly science tidbits. Science was very boring, although I do recall one funny experience learning about the scientific process. We were asked to interpret some “data,” using inductive reasoning to discern a pattern, make a generalization, and come up with an explanation. We were told the following: “A man drank gin and tonic water and got drunk. He then drank vodka and tonic water and got drunk. And finally he drank rum and tonic water and again he got drunk.” The class enthusiastically and unanimously concluded that tonic water causes you to get drunk.

Despite these beginnings to my science experience, I chose to major in biology in college and learned about physiology thanks to a vertebrate physiology class I took my senior year. On my last day of college, I sat on the floor of the incredible instructor of this course and said, “What can you do with a degree in biology if you don’t want to go to medical school?” He quickly responded, “You seem to really like physiology, so you should get a PhD in physiology.” I blindly followed his advice even though I was clueless what this would entail, but I learned quickly and managed to get accepted into a graduate program where my passion for physiology grew, especially regarding neural control of the cardiovascular system.

The administration of several US Presidents since the late 1950’s has acknowledged that K-12 schools need to do more to educate our population in STEM fields by providing opportunities to ensure that tomorrow’s leaders have the skills needed to be innovative and to maintain a competitive economy. The acronym STEM was popularized in the 1990’s.  This is also the era when some national organizations developed opportunities to include exposure to science outside of the classroom and into public arenas. For example, in 1996 The Dana Foundation spearheaded the development of Brain Awareness Week to “to increase public awareness of the progress and benefits of brain research.” It has evolved into a global education initiative with more than 5,600 partners in 120 countries. When I was on the APS Council in 2005, the APS Education Committee promoted an event that would rely on APS members to reach out to their communities to help increase awareness about physiology. This was the beginnings of Physiology Understanding (PhUn) Week, an aptly named event since it was intended to show the public that physiology is fun. We were so lucky that APS Leadership saw a need and was willing to invest a relatively small amount of money (in recent years about $40,000 annually) to stimulate interest in physiology in what has become thousands of young children and hundreds of K-12 teachers each November.

Although I was an early advocate of the program (voting in favor of APS support for the event), my first time to be an active participant in a PhUn Week event was 2009. A teacher at a Jackson MI high school (Nancy Lefere, Lumen Christi High School) contacted APS after reading a notice about the program in a teacher’s magazine. She asked APS how she could find a physiologist who could come to her classroom to participate in PhUn Week, and APS contacted me, and I then reached out to Nancy.  I was surprised to learn that she actually teaches a high school physiology course! My colleague Stephanie Watts and I have been going to Lumen Christi High School every year since then. I may be biased, but I think everyone enjoys learning about things that control your blood pressure and heart rate, so we use that as the theme for our PhUn Week activity.

The activity we use at Lumen Christi High School is designed with three goals in mind. One, the students will learn some basic cardiovascular physiology. Two, the students will engage in experimental design. Three, the hands-on activity will educate the students about the cardiovascular effects of drinking caffeinated beverages and aerobic exercise, especially combining the two. Provided one has access to automatic blood pressure and heart rate monitors, the hands-on activity can be done with minimal investment of money (purchase of beverages), and it can be completed in a typical class period.

In the week leading up to the visit by Stephanie and me, Nancy uses the K-W-L- approach to learning as students make lists of things that they Know and Wonder about blood pressure and heart rate. The Learn items are shared with us after our visit to the classroom at the end of the week. Our visit provides students with a valuable opportunity to learn more about blood pressure and heart rate by a Power Point® presentation and the hands-on activity. Some examples of K-W-L items we have gathered over the years are shown in the accompanied K-W-L Chart.

For the hands-on activity, students work in pairs, one being a “researcher” (collects the data) and one is the “subject”. Students receive instructions on the proper way to take their blood pressure using automatic blood pressure cuffs (proper placement of the cuff, arm resting close to heart level, feet flat on floor, relaxed, breathe normally, no talking, etc.). The researchers take and record the blood pressure and heart rate of the subjects on a chart we have prepared in advance. Measurements are made three times: at rest, about 30 minutes after drinking a beverage, and immediately after doing 3-minutes of aerobic exercise (e.g., running, jumping jacks, push-ups). We routinely bring a graduate student with us, giving him/her an opportunity to get engaged in a lively outreach event. And the more hands on deck, the more organized we can be to make sure the students are making the blood pressure and heart arte measurements correctly.

Because the teacher submits the Know and Wonder items in advance of our classroom visit, the presentation can include answers to many of the questions the students posed. The presentation also engages the students by gathering their responses to a variety of questions about blood pressure and heart rate. We used iClicker® technology to gather responses, but if clickers are not available one can do a manual tally of responses to the questions. Typical questions include “Do you know anyone diagnosed with hypertension?”; “Which of the following has the highest blood pressure (or heart rate): a hypertensive man, blue whale, giraffe, or bird?”; “Do you know anyone who had a stroke (or heart attack)?”; “What effect does caffeine (or exercise) have on blood pressure (or heart rate)?”; “Do you think your blood pressure is higher when you are standing, sitting, lying down, or it makes no difference?”

We also talk about the components of experimental design: formulating a hypothesis, developing methods to test a hypothesis, identifying the controls and variables, collecting and recording data, and making a conclusion based on the experimental results. We ask the students what they expect to happen to their blood pressure and heart rate if they consume caffeine and if they exercise. Usually most of the students say that “Drinking caffeinated beverages and exercise will increase my blood pressure and heart rate.”

All students had been asked to refrain from consuming caffeinated beverages for at least 24 hours prior to class. Students are asked in advance if they are sensitive to caffeine and if so, they would not be asked to drink a caffeinated beverage. Parental consent is required to be a subject. Students are divided into groups based on the caffeine-content of the beverage they drink. At a minimum, the study can be done with two beverages: a caffeine-free (0 mg/oz) soft drink and a caffeinated energy drink. We have used either NOS® (10 mg caffeine/oz.) or Rockstar® (15 mg/oz.) energy drink. If possible, all of the beverages used should have the same sugar content so that variation in sugar level is not a factor in the results of the experiment. Also, all students should drink the same volume. It is convenient to use 12-oz as this is the amount in most soft drink cans. The temperature of all of the beverages should also be the same; we use beverages at room temperature.

An almost uniform response is that students who had consumed the energy drink comment that they felt their heart racing after 3-min of exercise. The Figure to the left shows the combined results from our last two visits in which we were able to analyze results from 11 students that drank the caffeinated soft drink and 13 students that drank an energy drink. Systolic pressure (SBP) and heart rate (HR) are both significantly increased after exercise compared to baseline levels in both groups of students. Perhaps surprisingly the results were not significantly greater in those drinking the caffeine-free (CF) beverage versus the caffeinated (C) beverage. One caveat is that blood pressure in these young kids probably begin to correct fairly quickly after they stop exercising. By the time they get back to their seats and settle down to get their pressure and heart rate taken again, it might begin to fall. Students often say they learn not to drink a caffeinated drink before exercising!

In summary, this week-long experience of studying blood pressure and heart rate is a form of active, discovery learning that uses the K-W-L approach in conjunction with a hands-on activity. This format is well-suited to peak the students’ interest in physiology and research because they see for themselves the results of their own study. It mattered more that the students got to be involved in experimental design and conducting the experiments than in the actual results of the experiment.  All participants – teachers and students – have PhUn!

The Future of PhUn Week

Many of the APS members who participate in PhUn Week events of other K-12 activities were disheartened to learn that the current APS Council has voted to halt the use of APS funds to support PhUn Week events beginning in 2019. I urge those interested to contact APS Council members to encourage them to reconsider this decision.  These events could likely continue with about $20,000 each year. We can bypass the distribution of PhUn Week T-shirts for the APS members and teachers participating in the event and the sports bags given to the students. The trading cards and squeezy hearts could continue to be given as reminders to the kids of the “PhUn” they had on that day in November when a physiologist visited their school. Another option for support of this event is getting dedicated individuals or groups who would be willing to endow the program. Maybe this blog can be used to find APS members willing to help regain support for PhUn Week.

Sue Barman received her PhD in physiology from Loyola University School of Medicine in Maywood, Illinois. Afterward she went to Michigan State University (MSU) where she is currently a Professor in the Department of Pharmacology/Toxicology and the Neuroscience Program. She has had a career-long interest in neural control of cardiorespiratory function with an emphasis on the characterization and origin of the naturally occurring discharges of sympathetic and phrenic nerves. She is also a Fellow of the APS and served as its 85th President. She has also served as a Councilor of APS and Chair of the Women in Physiology and Section Advisory Committees of the APS. She is active in the Michigan Physiological Society, a chapter of the APS. She established a jeopardy-style Michigan Physiology Quiz in which teams of undergraduate students compete in answering questions about physiology. Students that participate say it is a great way to study for the MCATs. Sue has had a passion for mentoring young physiologists. She is also a recipient of an MSU Outstanding University Woman Faculty Award, a Distinguished Faculty Award, and a Distinguished Service Award from the Association of Chairs of Departments of Physiology.
A PhUn Week Experience Influenced by Excitement

 

I was initially asked to participate in PhUn Week by a staff member within the American Physiological Society (APS) headquarters. Reluctantly, I agreed to put one more activity on my busy schedule.  As the time approached for the PhUn Week presentation to an elementary school group, an exceptional amount of thought came into what I would present to engage the students.  I don’t exactly remember the minute details of what my first PhUn Week presentation was about; however, I will never forget the enthusiasm and excitement shown by the elementary students once they became engaged and participated in the presentation.  I was immediately convinced that PhUn Week presentations delivered all over the United States were helping to dispel the myth that “science was boring and very difficult.”  As I recall, the PhUn Week presentation caused the students to ask a lot of relevant and also irrelevant questions.  The point was that they were not afraid to raise their hands and to make a comment or ask a question about cardiovascular or renal function.  One memorable moment was the excitement that the participants showed when the trace of their EKGs were displayed upon a screen and their heartbeats were magnified over a speaker system.  As the crowd watched the tracing and heard the sounds of the heartbeats from their brave classmate who volunteered, they simultaneously placed their hands over their heart to feel if their own hearts had a similar beat.  As a result, the number of volunteers tremendously increased and so did their heart rates. During this and other PhUn Week presentations, the initial “ice-breaking” moments opened up the excitement and many possibilities and understanding of physiology.

My PhUn Week presentation experience was not only unique with elementary students, the excitement and engagement was exhibited throughout elementary, middle and high schools. During the various educational stages of the participants, there was something that made them more curious about understanding physiology, which resulted in questions, or something they could relate to and wanted to share with the group.  The responses were observed in classrooms in Augusta, GA, the inner city of Washington, D.C and various suburbs in Maryland.  In my experience, the excitement and curiosity for physiology did not significantly vary, whether the PhUn Week presentations were given to a science interest group or to a gym full of elementary or high school students.  To my surprise, the PhUn Week presentations were also well-received by teachers and administrators.  One would think that the PhUn Week presentations would be an opportunity for the teachers to take a well-deserved break, grade papers or simply prepare for the next class.  Instead, the teachers watched intensely and on many occasions, interjected scientific principles previously discussed in the class.

My preparation and prompts utilized for PhUn Week have evolved over the years. Initially, the presentation depended upon WiFi connections to play videos, the transportation of electronic equipment that would display EKG tracings and speakers for the magnification of heart sounds, to the construction of a urinary system out of plywood, polyvinyl chloride (PVC) pipes and plastic containers. Out of all the PhUn Week presentations, the construction and transportation of the urinary system was the most eventful.  Although, the system was tested, which included pouring a “small amount” of water through a funnel, which was connected to the aorta and the water was divided at an intersection of the PVC pipe to depict the renal arteries and filtered through additional funnels connected to polyethelyne (PE) tubing, to depict the ureters.  The flow of the liquid through the kidneys (the filtering component) down into the ureters, which was connected by considerable amount of clay, was the area of most concern.  On the day of the presentation, and after a brief introduction, I asked for a volunteer to come up on stage to assist me with the process.  My instruction was: to please pour a “small amount” of water upon prompting.  Little did I know that the fourth grader was very excited, and he poured almost a half-gallon of liquid into the urinary system display at one time.  As expected, the ureters, which consisted of PE tubing, could not withstand the large of amount of volume and pressure exerted upon the system.  As a physiologist, we are trained to “think on our feet.” My first action was to stop the flow of fluid, the second was to reinforce the PE tubing funnel connection with more clay.  Paper towels were needed, of course, to clean up the “spill of excitement” on the floor.  During that demonstration, the students were able to successfully see how red “blood” goes through the urinary system to produce a clear or “light-yellow tinted urine.”  The class and teachers were very patient, excited, appreciative, and helpful during this certain PhUn Week presentation.  Now, I often think about other ways in which a hands-on urinary system could have been presented to a group of elementary school students.  Nevertheless, the excitement experienced by everyone that day will go down as one of my most memorable PhUn Week presentations in more ways than one.

Over the years, I have looked forward to the PhUn Week presentations and have been asked to return to certain sites on multiple occasions. The impact and appreciation exhibited by the students, teachers and administrators are tangible: you are making a lasting impression upon young students.  I received numerous e-mails from the PhUn Week participants expressing their gratitude of my presentations, and excitement for the learning of physiology.  My most prized possessions from the PhUn Week presentations are the hand-written cards and letters from the many students.  The most creative cards also include a drawing from the particular presentation, possibly including a spill during the constructed urinary system.  I must say that PhUn Week has generated an exposure to students of all ages for an excitement in the field/possibilities of physiology.  Activities such as PhUn Week are vital for developing and continuing the “pipeline” for the biomedical workforce.  Although the participation in these PhUn Weeks were considered an added event on my schedule, I am convinced that it is very important for the understanding and future of physiology.  I am also energized by the excitement exhibited by the PhUn Week participants, and students.

 

Dr. Dexter Lee graduated from Jackson State University with a Bachelor’s degree in Biology, proceeded to get a Masters’ of Sciences degree from University of Akron Ohio, and finally obtained a PhD from the University of Missouri-Columbia. His research focuses on the acquisition of hemodynamic data using mouse models of chronic hypertension to identify molecular markers and inflammatory cytokines that regulate blood pressure through renal-dependent mechanisms. Currently, his laboratory is studying the role of peroxisome proliferator activated receptor-alpha and its regulatory effect on inflammatory markers during hypertension.

 

Years of PhUn Week!

 

My first foray into K-12 education was when I volunteered to my daughter’s second grade teacher to come and do science in her classroom during the year. Since that time thirty years ago and subsequently as the scientist-in-residence for our school district, I have routinely taught portions of first and second grade science, visited all of the seventh grade classrooms with science activities, and gone with my university students to teach renal physiology to high school students.  Thus, getting involved in PhUn Week was not much of a stretch for me.

 

 

 

By this time, I have done PhUn Week with the entire seventh grade annually since 2006. I missed 2005 because I was a guest lecturer at Africa University in Zimbabwe during the fall semester when the PhUn Week pilot was launched.  My initial involvement with PhUn Week was to visit the classrooms of my 7th grade teacher colleague and former APS Frontiers in Physiology teacher Sally Stoll.  Since she taught all 7th grade science and life science was a large portion of her curriculum, we planned an entire unit on physiology that was supplemented by the exercise activities that we offered together for the students.  We started with having the students measure their pulse before and after light exercise and expanded to having the students determine their heart rates, breathing rates, and skin temperatures before and after exercise.  Adding measurement of skin temperature not only brings in the issue of where to measure skin temperature and the concept of where the body thermostat is but also exhibits true homeostasis as while heart and breathing rates increase with light exercise, skin temperature almost always decreases with exercise!  During this collaboration, Ms. Stoll was teaching life science during the fall semester so we could plan PhUn Week around the same time as the national launch in 2005.

 

After Ms. Stoll retired, Maria May (a former student of mine when I taught animal physiology to biology majors) came on as the 7th grade science teacher.  She was perfectly willing to have me come to her classroom and do similar activities with her students; however, due to state and district curricular changes life science is not now the main topic for 7th grade science.  Thus, the effects of exercise on heart and breathing rates and skin temperature is not quite the culmination of an entire unit but still fits into the curriculum during the spring semester.  For the last few years, we have conducted our PhUn Week activities in the spring but signed up for PhUn Week in the fall along with everyone else.  I now spend one whole day doing the exercise activities with the students (teams of students are assigned different types of exercise like running in place, jumping jacks, step tests, and running in the hall), one whole day talking about careers in physiology, and one whole day doing a case study activity diagnosing kidney diseases with fake urine for Ms. May’s students.  The kidney disease case studies were written for the APS by current Education Committee chair Jeff Osborn a number of years ago and I use them routinely with students from middle school through college.

 

Now as an experienced science outreach person, I can verify that all levels of students love science activities. I have even taken science activities to the non-profit day care center on whose board I serve as a summer activity for 3-year-olds on up.  My college students have affirmed to me that they learned renal physiology better by having to teach it to advanced biology and anatomy and physiology high school students.  All science professionals need to be able to communicate their science with others for the future of science and their careers!

Barb Goodman received her Ph.D. in Physiology from the University of Minnesota and is currently Professor in the Division of Basic Biomedical Sciences of Sanford School of Medicine of the University of South Dakota. She has been involved in numerous education and communication initiatives of the APS since 1990 including co-authoring two learning cycle units for the APS Frontiers in Physiology Curricular Development program, sponsoring numerous teachers in her laboratory, and serving as a physiologist-in-residence at a number of APS Summer Teaching Forums.