November 17th, 2017
Learning from Obstacles in Science

The Western diet is high in fats and sugar and can lead to an increase in metabolic diseases, which cause a chronic state of peripheral inflammation (1). My project this summer aims to observe the effect of diet on brain inflammation. We used a mouse model of tagged peripheral monocytes (3). Monocytes turn into macrophages, which target inflammation in the body and brain (2). These mice were fed either a diet high in fat and fructose or a normal diet for 5 weeks. Then the blood from their brain was washed out, and the brain was sliced. The slices were stained for the genetic tag for the peripheral macrophages. Peripheral macrophages found in the brain suggest that chronic inflammation weakens the blood-brain barrier, allowing peripheral macrophages to cross where they increase brain inflammation. This may cause damage and may have links to diseases such as Alzheimer’s Disease and Parkinson’s Disease, which show increased inflammation in the brain (4). This project would further support the idea that a healthy diet could be a key factor in prevention of brain diseases.

This project, as well as science in general, had many obstacles that I had to overcome. Originally, I planned to analyze a different genetic mouse that modeled Alzheimer’s disease. Those mice were also going to be fed a high fat high fructose or control diet, and were going to be compared to see if there was an increase in peripheral macrophages in the brain in diet treated mice. However, those brains didn’t have the blood cleared from the brain, which limited our ability to see the stain. To overcome that problem, we used the new mouse type that had peripheral monocytes tagged, which had the blood removed from it. With this new mouse model, I would have a smaller number of animals, but I could better test my hypothesis.

I enjoy the day-to-day life in research. I was expecting it to be somewhat repetitive, but that was far from the case. I had many problems that I had to solve and was constantly learning, which made the time fly by. My day was broken up by working on different parts of my experiment, writing and reading literature, and meeting and talking with my lab members. The best part for me was that I constantly learned new things. There were many hiccups in my summer experience, which were disheartening at times. However, solving these problems and further learning more made it rewarding as well. The Tansey lab has many members who have been very helpful in solving these problems. I enjoyed being a part of a larger team, as there were so many projects going on that I could learn from.

References

  1. De Sousa Rodrigues, M. E., Bekhbat, M., Houser, M., Chang, J., Walker, D., Jones, D. P., Oller do Nascimento,C., Barnum, C. J. & Tansey, M. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain, Behavior, and Immunity 59: 158-172, 2017.
  2. Khoury, J. E., Toft, M., Hickman, S.E., Means, T. K., Terada, K., Geula, G., & Luster, A. D. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nature Medicine 13: 432-438, 2007.
  3. Saederup, N., Cardona, A. E., Croft, K., Mizutani, M., Cotleur, A. C., Tsou, C.-L., Ransohoff, R. M., & Charo, I. F. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE 5: e13693, 2010.
  4. Selkoe, D. J. The therapeutics of Alzheimer’s disease: where we stand and where we are heading. Annals of Neurology 74: 328-336, 2013.
Lindsey Sniffen is a senior majoring in Neuroscience and Behavioral Biology at Emory University in Atlanta, GA. She is a 2017 Integrative Organismal Systems Physiology (IOSP) Fellow in Dr. Malu Tansey in the Department of Physiology at Emory University in Atlanta, GA. Her fellowship is funded by the APS and a grant from the National Science Foundation Integrative Organismal Systems (IOS) (Grant #IOS-1238831). After graduation, she plans to pursue a Ph.D. in pharmacology, and then work in the pharmaceutical industry.
November 14th, 2017
The Pursuit of the Insulin Signaling Pathway

This summer, I’ve been working full time in the Obesity and Metabolism Lab, within the Human Physiology Department at the University of Oregon. The lab as a whole is pursuing several research objectives related to how human health is impacted by obesity and high fat diet (HFD), which affect more people today than ever before. The objective of my research is to understand how insulin-resistance, the hallmark symptom of type-II diabetes, develops as a result of obesity and HFD.

Insulin is a hormone produced in the pancreas that is delivered throughout the body, signaling cells when they need to take up glucose from the bloodstream for energy. Cells respond to this communication with a so called “signaling cascade.” Insulin binds to a receptor protein at the surface of the cell, sending the signal via more protein interactions inside the cell, toward the nucleus. This eventually leads to new proteins being made from the cell’s DNA, which will help with glucose uptake. These pathways can be very complex, and have “cross-talk” with other pathways for different cellular functions. If the exact mechanisms of the entire insulin signaling pathway where known, then it would be much easier to see exactly where diabetes causes a disruption, and potentially develop better treatments or a cure.

My project looks at just one protein in the insulin signaling pathway, called phosphatidyl inositol-3-kinase and one of its regulatory subunits called p55a. I’m looking to see if fat cells (called adipocytes) behave differently when p55a is upregulated. When there are relatively high amounts of this regulatory subunit, does the cell become more sensitized to insulin, or less? Does it take up glucose better, or worse? These observations will hopefully allow me to infer how p55a modulates PI3K’s role in the insulin signaling pathway.

What did you learn working in the lab?

As my first real research experience, I’ve learned a lot about the process of laboratory work. The biggest thing I’ve noticed so far is that my experiment isn’t moving as quickly as I had anticipated. Much of my time has been spent troubleshooting. I’ll try a procedure, it won’t quite work as it should, and I’ll have to re-trace my steps to determine how I can optimize the process or correct problems. It seems like each week something new arises that needs to be re-done two or three times. For example, I’ve been growing mouse cells in flasks which I will use for my experiment once they have “matured” into adipocytes. This process requires about two weeks of careful cell maintenance, and I’ve had to start over once because they didn’t develop properly. The other researchers in my lab have told me that they, too, still spend a lot of time troubleshooting, and that being able to recognize necessary adjustments is a crucial skill for a scientist to possess.

Life as a Scientist

My day-to-day life as a research scientist is quite different than it was in all my previous jobs. The work is very much self-supervised, and I have a freedom to plan out my daily tasks in an order that I choose. On the other hand, certain time-sensitive procedures dictate my schedule very strictly, such as changing out the growth media for my cells. This needs to be done every three days, or the cells can die. When juggling multiple projects such as this, I’ve found that making a specific schedule is key. I often write out game plans which allocate time to each of my required tasks for the coming days. This keeps me working efficiently, without losing sight of the broader goals for my ten-week fellowship.

Working as part of a lab team is my favorite part. Every day, I’m learning valuable new skills from my co-workers and asking them interesting questions. They’ve all been very accommodating and willing to teach me. We’ve discussed all kinds of topics, ranging from protein function to the application process for graduate school. The lab is an intellectual environment in which I’ve definitely enjoyed spending my summer.

Shawn Melendy is a junior majoring in Biochemistry at the University of Oregon in Eugene, OR. He is a 2017 APS STRIDE Fellow working in Dr. Carrie McCurdy’s Obesity and Metabolism research lab at the U of O. Shawn’s research is funded by the APS and a grant from the National Heart, Lung and Blood Institute (R25 HL115473-01), as well as Dr. McCurdy’s grant from the NIH (R01 DK095926). After finishing his bachelor’s degree at Oregon, Shawn plans to attend graduate school and earn a PhD. in biochemistry, pursuing a career as a research scientist.
November 7th, 2017
Atomic Force Microscopy on Titin, the Mega Protein

This summer in Flagstaff, Arizona at Northern Arizona University (NAU) I worked with Dr. Samrat Dutta in the Nishikawa Lab for biomechanics performing atomic force microscopy (AFM) on the N2A region of titin molecules at different pulling speeds in both the presence and absence of calcium. Titin is found in vertebrate muscles and is the largest known protein molecule (Nishikawa et. al, 2011). Currently, we know that titin functions in passive muscle movement. However, it may provide an important addition to our current understanding of both active and passive muscle function (Nishikawa et. al, 2011). Understanding titin isn’t just revolutionary for muscle theory, Nishikawa’s lab is applying this new information to improve prosthetics. AFM is a non-conventional type of microscope (shown below) that allows us to record the stiffness and stability of biomolecules such as titin by pulling on its spring-like domains. The titin is chemically attached to a surface and the AFM traverses that surface and records changes in its topography using a laser. This experiment allows us to predict the behavior of titin and its contribution to muscle force under different conditions.

Working with AFM has been a steep learning curve for me. AFM wasn’t a process that I was at all familiar with before this summer. With guidance from Dr. Dutta over the course of these 10 weeks I’ve learned about the chemistry, function, and potential of AFM. Unfortunately, we received low usable data yields and this may have been a result of the protein unfolding before the experiment began. As a result, there was a lot of tweaking of our methods to gather a larger set of more accurate data. The analysis of our data afforded me an opportunity to learn physics and chemistry beyond the scope of my university classes. However, we have not yet completed the analysis of our data. I look forward to seeing the outcome of our experiment and contribute to the ever-growing data on titin. Hopefully, my research will answer how much force titin can contribute and in comparison to previous works, does the N2A region of titin react differently than other regions.

What was it like working in the lab?

Dr. Kiisa Nishikawa’s lab group is filled with scientists doing various projects in all different disciplines of the muscle physiology field. Throughout my time at NAU, I had the opportunity to network and learn from all different kinds of people such as postdocs, graduate students, and full professors. They all guided me through my new environment at NAU and supplied me with both professional and scientific knowledge from their different disciplines. Working in a collaborative group meant having support during disappointing moments and always having someone to run ideas by. When the experiment wasn’t producing the amount of data we expected, a team of graduate students and postdocs helped my mentor and I brainstorm possible causes and solutions. This brainstorming session was how we determined that dialysis may be a useful alternative to our previous protein purification method. Working with a large team also means that you must share resources and space which, can make things more difficult. Overall, this summer was an invaluable experience in many aspects and it wouldn’t have been possible without the American Physiological Society (APS). I want to thank APS for allowing me and so many other undergraduates the opportunity to contribute to different fields of research.

References

  1. Nishikawa, K. C., et al. Is Titin a ‘Winding Filament’? A New Twist on Muscle Contraction. Proceedings of the Royal Society B: Biological Sciences 279(1730), 981–90, 2011.
Blair Thompson is studying biology at Scripps College in Claremont, California. She is a 2017 fellowship recipient of Integrative Organismal Systems Physiology (IOSP) funded by the APS and a grant from the National Science Foundation Integrative Organismal Systems (IOS). She worked with Dr. Samrat Dutta and Dr. Jenna Monroy at Northern Arizona University this summer. After graduation, she plans to attend medical school and become a physician.
November 3rd, 2017
Does Light Pollution Cause Heart Disease in Mice?

Light levels at night have significantly increased since industrialization1. During this same period of time, there has also been an increase in the incidence of heart disease. Previous studies have shown that light pollution, which is experimentally called dim light at night (DLAN), disrupts circadian rhythms1-2 and increases the likelihood for developing obesity2-3, but its connection to cardiovascular disease is not known2, 4. My experiments this summer determined if DLAN increased atherosclerosis the mouse aorta. I also analyzed eating behavior to confirm previous studies that DLAN causes a higher proportion of eating to occur during the day than normal2. My research is part of a larger project that focuses on disruption of daily rhythms and heart disease. The project will hopefully give new insight into possible causes of the global increase in heart disease. A greater understanding can lead to prevention and treatment of heart disease.

Dr. Pendergast often reminds everyone in our lab that results will not always support the hypothesis. However, she also says that unexpected or negative results are still relevant and can lead to new experiments. The first couple of rounds of my experiment were mainly just working out kinks in the experimental protocol such as adjusting light levels to set up the DLAN conditions. I also learned new techniques including genotyping using PCR, mouse care, analyzing eating behavior, and aorta dissection and cleaning. Preliminary eating behavior data show that exposure to DLAN may lead to eating at the wrong time of day in mice. The atherosclerosis data obtained so far has shown high levels of atherosclerosis in male mice exposed to DLAN, and normal levels in female mice. Although the sample number is still low, the results do seem to suggest that exposure to DLAN increases atherosclerosis in male mice.

Since I am doing research with mice, mouse care is an everyday task in my research experience. Using mice for experiments is exciting because they provide data simply by being housed in their light-tight boxes with food and water. Getting results and sharing them with the lab is one of my favorite parts of research because it always leads to a discussion of what the results mean and the future directions of the experiment. However, the analysis of this data, such as watching hours of videos of eating behavior, is not the most exciting process. Being part of a research lab is interesting because of the daily discoveries about animal physiology, which lead to thoughtful discussions about how they relate to everyday life. Overall, research has been a valuable experience for me that has strengthened my time management, leadership, and problem-solving skills.

References

  1. Fonken, L. K.; Aubrecht, T. G.; Melendez-Fernandez, O. H.; Weil, Z. M.; Nelson, R. J. Dim light at night disrupts molecular circadian rhythms and increases body weight. Journal of biological rhythms 28(4), 262-71, 2013.
  2. Fonken, L. K.; Workman, J. L.; Walton, J. C.; Weil, Z. M.; Morris, J. S.; Haim, A.; Nelson, R. J. Light at night increases body mass by shifting the time of food intake. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18664-9, 2010.
  3. McFadden, E.; Jones, M. E.; Schoemaker, M. J.; Ashworth, A.; Swerdlow, A. J. The relationship between obesity and exposure to light at night: cross-sectional analyses of over 100,000 women in the Breakthrough Generations Study. American journal of epidemiology, 180(3), 245-50, 2014.
  4. Morris, C. J.; Purvis, T. E.; Hu, K.; Scheer, F. A. Circadian misalignment increases cardiovascular disease risk factors in humans. Proceedings of the National Academy of Sciences of the United States of America, 113(10), E1402-11, 2016.
Robert Wendroth is a senior at the University of Kentucky in Lexington, KY, majoring in Chemistry and Biology. He is working at the University of Kentucky in Dr. Julie Pendergast’s lab. He is a 2017 UGSRF fellow, which is funded by the American Physiological Society. After graduation, Robert plans to attend medical school and become a physician who also performs research.
October 31st, 2017
My Summer Researching and Learning About Worms and Alternative Medicine

My research project explores the possible future uses of the alternative medicine Astragalus, which is a Chinese herb known for its immune stimulating effects, such as decreasing melanoma tumor growth. I am specifically looking for immune system responses in transparent roundworms called C. elegans. I am treating the worms with different concentrations of the Astragalus medicine, then observing how their immune system pathways have reacted. My research expands the information available on alternative medicines and their validity. This project could lead to further, more specific studies as well as studies on other animals and potentially humans. Astragalus could be proven to be a viable medication for disease or replace current cancer treatments and medications.

Working in a research lab has proved to be very interesting and exciting. I started out the summer unsure of myself and the techniques involved with my project. There were many standard procedures and instruments I needed to familiarize myself with to successfully and effectively perform tests. Over time I became more comfortable and could do most tests and procedures on my own, only after being instructed by my research host, of course. My research was unsuccessful at first as I couldn’t get the desired result from polymerase chain reaction (PCR) with the house-keeping gene actin. We reran the end-point PCR and ran another gel but still had no results. After taking another step back and rerunning the cDNA synthesis with my RNA sample, we finally had a successful PCR result. I know there are many techniques I have yet to master in my research journey.

I was surprised by how long certain experiments took and how much everyday maintenance was required to continue working with the worms. Much of my time was spent counting the worms for survival assays or synchronizing the worms to prepare for a test. Also, there was constant upkeep of Nematode Growth Media plates and E. coli stock. I also had to adjust to working independently on my research as opposed to working in a class. I had to prepare all the materials I needed and go through the steps on my own instead of having everything laid out for me. The best part of research was getting successful results and making progress, the worst part was becoming frustrated when results were undesirable or no results were produced at all.

Alyssa Knudson is a junior at Coe College majoring in Biology and Molecular Biology and minoring in Music and Chemistry. She is a part of the Coe College Cross Country and Track and Field teams. She is also involved in Pre-Health Club, Biology Club, and Intergenerational Connections at Coe and a member of the co-ed service fraternity Alpha Phi Omega. She has participated in a 10 week research program working under Dr. Cassy Cozine the summer after her sophomore year. After college she plans to go on to graduate school and get her degree in Genetic Counseling.
October 27th, 2017
Stressed Rats and a Stressed Undergraduate

Chronic stress leads to a greater likelihood of the development of many conditions including post-traumatic stress disorder (PTSD), anxiety, irritable bowel syndrome (IBS), functional dyspepsia and other gastrointestinal (GI) dysfunction. This indicates a likely rearrangement of neural pathways and regulation, although the mechanisms of how this happens are not yet known. As an APS Undergraduate Summer Research Fellow, I worked for ten weeks under my research mentor Dr. R. Alberto Travagli studying the neurochemical oxytocin’s role in stress adaptation. My project focused on the regulation of oxytocin signals between the brain and GI tract under conditions of chronic stress in rats. In other words, I studied whether oxytocin has a different effect on the brain and gut of rats after they have been stressed.

Following a 5-day stress treatment on each rat, oxytocin was microinjected in the dorsal vagal complex (i.e. the brain area that directly signals the GI tract). The response to these injections on gastric tone and motility in two areas of the stomach were then recorded and analyzed. The research is still ongoing, but we hope to answer a few questions: How does the regulation of oxytocin change after stress adaptation? Does oxytocin work through different neural pathways after homotypic stress (i.e. same stress each day) or heterotypic stress (i.e. different stress each day)? Since females have a greater likelihood of developing GI disorders, do sex/estrogen levels affect the regulation of oxytocin under stress? Although we are still collecting data, I am very excited to see the results when completed and honored to participate in this research!

What surprised you most about working in the lab?

Upon starting this project, I was surprised by how much skill is required to complete the tasks at hand. Although the technology we use to inject oxytocin and record the gastric response is quite advanced, it can easily be faulted by a human mistake. For example, if I did not suture the sensors tight enough to the stomach, the responses were difficult to read and interpret. There was a huge learning curve to carrying out the research day-to-day and then it was another challenge to ensure I was as consistent as possible between animals. Additionally, I was surprised by how much my project changed between the beginning and end of the summer. For example, early on we injected a new pathway-blocker out of curiosity, expecting it to have little to no effect on oxytocin injections. Surprisingly, however, in one treatment group it seems to be blocking the effects of oxytocin. After, we used that pathway-blocker for every animal and its effects may be crucial to our final conclusions.

I am very grateful to the American Physiological Society for providing me this opportunity because it has made me realize how challenging a career as a basic research scientist is! This summer has exposed me to how exhausting, long, and physically demanding lab research can be. But, I love the big-picture parts of research; designing the experiments, analyzing the results, and adjusting when results are not as predicted. It is amazing to work on research that could be part of a bigger solution (i.e. understanding of anxiety/IBS/colonic pain), especially when you can collaborate with other researchers and pool data to come to even more conclusions within each study. However, I will admit that lab research is grueling work and, like the rats, I was a little stressed at times! I look forward to next year’s summer project so that I can experience translational or clinical research and gain a more holistic view of the research world.

Julia Zimmerman is a sophomore majoring in Neuroscience at Swarthmore College in Swarthmore, PA. She is a 2017 Undergraduate Summer Research Fellow (UGSRF) working in Dr. R. Alberto Travagli’s lab at Pennsylvania State University College of Medicine in Hershey, PA, funded by the APS. After graduation, Julia intends to pursue work as an MD-MPH, or MD-PhD, bridging basic research into the clinical world.
October 24th, 2017
Understanding Muscle Force During Cyclic Movements: Does Titin Play a Role?

During cyclic every day movements, such as running, jumping, and walking, our muscles go through cycles of shortening and stretching. While there has been extensive research on muscle function for the last 50 years, there is no current muscle model that can accurately predict natural movements. For example, when active muscle is stretched, it produces more force than expected based on current theories of muscle contraction. Likewise, when active muscle shortens, it produces less force than predicted by current theories. For years, scientists have been measuring properties of muscles under highly controlled conditions. The classic force-velocity relationship shows that force generated by a muscle is inversely related to the velocity of the shortening. However, this relationship changes during natural, more life-like movements. Recent work suggests that for a given velocity, muscle force is higher during cyclic contractions than the traditional force-velocity relationship. My research investigates the role of the elastic protein titin in the force-velocity relationship measured under different conditions. Using a mouse model with a mutation in titin, I conducted in vitro muscle experiments to compare the force-velocity relationship in cyclic and controlled (isotonic) conditions. Hopefully, my results will shed light on titin’s role as a spring in active muscle. If titin truly does store energy like a spring, this could account for the extra force and lack of force in the stretch-shortening cycles. This research will allow us to better understand movement on a whole organism scale, which can prove quite useful in prosthetic design and bioengineering, for example.

Much like the active muscle, doing research in a lab goes through cycles, except instead of stretch-shortening cycles, it is periods of challenge and reward. Some days, you go into lab, collect great data, and leave feeling utterly fulfilled. However, other days, you go into lab and it seems as though you spent your entire day trouble-shooting. Mainly though, our experiments worked and we were able to collect useable data. We have yet to fully analyze our results, but preliminary results seem to support our expectations.

In general, I have found my lab group experience to be very similar to my experience with playing college soccer. Both activities involve a group of people working toward a common goal. While in soccer, your team is working together to win, in the lab, there are many scientists working together to uncover a truth. Collecting and analyzing data is a collaborative effort and, to me, that was the best part of summer research. Working as part of a lab team allows you the opportunity to constantly learn and build off of others. It teaches you to adapt, be open to new ideas, and to use your time efficiently. The worst part of day-to-day life in the lab, is that sometimes data collection does not go as planned and you need to figure out what went wrong.  However, this aspect doesn’t seem so bad when you have your lab team to help brainstorm.

Overall, my time in the lab has been an incredible experience. It has helped me grow as both an individual and as a scientist and has stimulated my interest in future research opportunities. It is an experience I would highly recommend to other undergraduate students!

Lindsay Piwinski attends Pitzer College in Claremont, CA. She is a 2017 Undergraduate Summer Research Fellow (UGSRF) doing research with Drs. Jenna Monroy (Pitzer College) and Kiisa Nishikawa (Northern Arizona University, Flagstaff, AZ). She hopes to attend graduate school in the future and continue pursuing research.
October 20th, 2017
Impact of Injury on Inflammation

For my research project, I will compare the levels of a known marker of inflammation in and around motor neurons in rats with and without cervical spinal cord injury. We will examine rats with chronic C2 incomplete spinal cord injuries, and compare them to uninjured tissues. We will be examining the frozen and preserved tissue under a microscope to quantify the different levels and locations of inflammatory markers at the different time points. The results of this experiment are important because they will enable us to better treat those who have suffered from the devastating effects of spinal cord injuries. This experiment is necessary to determine if p38 MAP kinase (a specific known marker of inflammation) is activated following spinal cord injury. The results will allow us to determine how to proceed in our search for successful rehabilitative treatments for patients. If p38 MAP kinase is activated following injury, it may call for future studies to investigate treatment of this specific cause of neuroinflammation in order to improve the outcomes of the rehabilitative treatments our lab is studying. Neuroinflammation can decrease the positive effects of rehabilitative efforts, and therefore is something we need to study so we can reduce this inflammation and better treat those who are suffering from spinal cord injury.

Life in the Lab

My experience in the lab was very educational. I did not realize how many different things actually go into research. I became familiar with behind-the-scenes tasks that you do not realize need to be done. For example, we spent a large majority of our time sectioning tissue, which I never realized would be such a large and time-consuming part of the experimental process. In addition, I became independent in many different techniques and procedures used in our lab. I learned proper animal handling and care, the methods used for immunohistochemistry, as well as proper imaging strategies and techniques on the Keyence microscope that we use in our lab. I also learned how to problem solve when problems arose. I found that one of the biggest challenges in research is how time-consuming and detail-oriented everything is. It is necessary to plan very far in advance and plan other aspects of your day around what is needed in lab. I was studying for the MCAT while completing my research project this summer, and I found it very difficult to dedicate time to studying. However, I quickly learned to manage my time wisely and study during down-time in lab and in the evenings. I believe this skill is not only valuable for research, but will also help me throughout my life.

Although what I did day-to-day varied, there were certain tasks that remained constant. For example, animal care and running exposures was something that needed to be completed by someone every day, so I was usually around to help out with those two things. In addition, the weeks were organized in a way that there usually was not more than one big task going on at a time. For example, there were weeks focused on surgeries, as well as others focused on perfusions and harvesting. What I did between rounds of animal care throughout the day varied depending on the week and what needed to be completed. Some days were filled with staining, while others dealt with microscopy. In my opinion, the best part of working in a lab was how often you were able to see your hard work pay off. Although the experiments tend to take at least a few months to complete, there are many milestones where you begin to see the outcomes of all of your hard work. Personally, I thought the hardest part of my time in research was not having set-in-stone days. Your schedule can vary every day depending on the point of the project you are in and what needs to be done, so you need to be able to adjust your plans and schedule around your lab responsibilities.

One of the best parts about working in a lab is being a part of a large team with a common goal. It is much more rewarding to accomplish a goal when everyone is working on it together in my opinion, and it’s nice to always have people around who are willing to help you and your project succeed. Research is usually not a one-person job, and for good reason; there is so much that goes on to ensure that a project is successful, and everyone in lab is needed. Throughout my research experience, I have developed a deep appreciation for how important research is to the functionality of many different aspects of society. Advancements in everything from technology to medicine would not be possible if scientists were not working hard in lab each and every day, and I am glad I will be able to take this appreciation for research into my future career. Research is a tough task, but it is truly life-changing in more ways than one.

Ashley Holland is an undergraduate at the University of Florida in Gainesville, FL. She is working in the lab of Drs. Gordon S. Mitchell and Elisa Gonzalez-Rothi at the University of Florida under the UGREF fellowship funded by APS. After graduation, Ashley hopes to attend medical school and use her skills acquired during her research experience to further the medical field and help her patients in new and innovative ways.
October 17th, 2017
In the Lab for the First Time

Throughout the summer, I have been participating in what is my very first research experience. Apart from learning and doing techniques for the first time,  the biggest challenge this summer has been trying to explain what I have been doing for the past month and a half to people that have asked me. My host’s research laboratory works on trying to understand the molecular mechanisms behind heart diseases, specifically working with the mitochondria. This organelle, also known as the “powerhouse of the cell”, is the one responsible for producing energy inside the cell. My project is focused more on mitochondrial dynamics, the fusion and fission processes the mitochondria go through to maintain their relative stability, and the proteins that facilitate them. I have been working to measure and quantify the presence of these proteins in different populations of mitochondria; and recently, I have been checking to see if these proteins become acetylated in samples that have gone through ischemia/reperfusion. Ischemia/reperfusion injury, also known as IR, occurs when the heart tissue is deprived of oxygen and nutrients; then goes through a period of reperfusion, when blood rushes back into the system. This sudden re-oxygenation period causes damage to the heart tissue. If fusion and fission proteins have become acetylated, inactivated due to the addition of an acetyl group, they could be affecting the stability of the mitochondrial population and possibly furthering damage during IR injury.

Life as a Scientist

Being that this is the first time I’ve worked in a research laboratory, it’s been great to finally have the chance to apply some of the knowledge I’ve acquired in my classes to something tangible; or understanding how various subjects I’ve learned from are applied in real life. I’ve spent the last six or seven weeks learning and improving my techniques in order to measure protein expression.  In practices and even in actual runs, we’ve gone over procedures that take pretty much a whole day in order to eliminate possible errors with results. Currently, we’re working with the data we’ve gotten to see if we have to run more experiments in the next few weeks.

I guess the most surprising thing about this summer has been that the life as a scientist runs as a normal nine-to-five workday. Sure, there have been some instances that we stay later than usual or come in earlier to get things done; however, I had imagined something very different I suppose.  Working as part of a lab team has been a great experience, mostly because you learn to have responsibility as a scientist and a coworker. Many of the areas and materials are used by everyone in the lab, so it becomes your responsibility to keep everything organized and stocked. You tend to think about leaving things in the order that you would like someone else to leave them. Apart from that, helping anyone out in the team goes a long way, because at the end of the day, we are all working towards the same goal.

Roberto Guzmán is a sophomore majoring in Cellular Molecular Biology at the University of Puerto Rico, Río Piedras Campus. This summer, he is working in Dr. Sabzali Javadov’s lab at the University of Puerto Rico, Medical Sciences Campus. He is a Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow funded by the APS and a grant from the National Heart, Lund and Blood Institute (Grant #1 R25 HL115473-01). After receiving his bachelor’s degree, he plans to obtain a MD and continue into health related research.
October 13th, 2017
Impact of Soybean Oil High Fat Diet on Hypothalamic Feeding Circuits in Mice

It is well known that consuming fatty foods induces obesity, although relatively little attention is given to the effects of different types of fat. The neuroendocrine hormone leptin is known to reduce body weight and fat through inhibition of food intake and increased energy expenditure (Friedman, 2011).  Leptin’s actions are mediated by leptin receptor (OB-r), which is expressed in the arcuate nucleus of the whole hypothalamus (Meyers et al., 2009; Swanson and Sawchenko, 1980).  Leptin may rapidly inhibit food intake by altering the secretion of hypothalamic neuropeptides such as neuropeptide Y (NPY), a stimulator of food intake, and/or corticotropin-releasing hormone (CRH), an inhibitor of food intake. (Jang, et al., 2000). STAT3, a neuronal transcription factor involved in the hypothalamic leptin signaling pathway via OB-r is necessary for the effects of leptin on food intake and hepatic glucose metabolism (Buettner et al., 2006).  In this study, male C57BL/6N mice were fed one of four iso-caloric diets for a duration of 17-27 weeks:  a high fat diet (40%) made up of coconut oil (HFD), a high fat diet containing soybean oil (SO) which is high in polyunsaturated omega-6 fatty acid linoleic acid (LA-HFD), and a vivarium chow control (VC). We hypothesize that transcription levels of OB-r and STAT3 will be down regulated in HFD mice, and that transcription levels of NPY and CRH will increase in the HFD mice. Pre-designed oligonucleotide primers for GOIs will be used and optimized for efficiency and specificity. RNA will be isolated from whole hypothalamus brain samples from each diet using an RNA isolation kit. Gene analysis (qPCR), will be performed to measure transcription levels of each gene. We have been able to cut and section whole hypothalamus brain samples from each diet, and have run efficiencies on the OB-r and STAT3 primer. Our efficiency results so far have shown OB-r and STAT3 primers giving good melt curves and efficiency values that lie within our acceptable range of 90-110%. The next steps will be to run efficiencies on NPY and CRH, and afterwards run qPCR with the isolated RNA samples. This work will give further insight on the regulation of specific genes in different types of diet.

Overcoming Challenges

Going into this project, I had prepared to dedicate a lot of my time to being in lab. I was responsible for my own schedule, which allowed me at times to enjoy some shorter days in lab, while understanding that some days would require me to stay longer to get the required amount of work done. Often, things would not go as planned, as some of the experiments did not yield expected results. When that occurred, I took a step back for a closer look at all the possible sources of error in the experiment. Often, these errors were shown in the experiment’s results, so the source of error was more easily tracked. Sometimes, however, these errors resulted in having to change different aspects of the project. For this current project, we had to change some of the primers that we were using because some of them did not yield good band/efficiency results. Luckily, while this did change what primer was initially going to be explored, it did not change the region or the overarching hypothesis of this project.

Going into lab every day has changed my work ethic greatly. Being able to set my own schedule for experiments has been extremely nice for me, and has allowed me to see personally the progress I am making in my project and the experience I am gaining in lab, which is one of the many pros of being a scientist. This experience has made me more aware of the importance of setting my own schedule, and how flexible it needs to be to account for possible errors in the experiment and setting up various meetings with professors, lab mates, and technicians, which can be considered a con of being a scientist. Experiments will often not give good results, and it may sometimes be frustrating to have to go back and troubleshoot each individual experiment. Having lab mates there, however, was a huge help in overcoming some of the challenges I faced with my experiment. Working as part of a lab team has shown me that each member of the lab collaborates with their peers’ projects and helps each other when necessary. I have learned a lot about each of my lab mates, including their project layout and work ethic. Working together with my lab mates this past summer has allowed to connect with them and gain experience from their guidance and help.

Edward Truong is a junior majoring in Cell, Molecular, Developmental Biology at the University of California in Riverside, CA. He is a Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Margarita Curras-Collazo’s lab at the University of California in Riverside, CA. Edward’s fellowship is funded by the APS and a grant from the National Heart, Lung and Blood Institute (Grant #1 R25 HL115473-01). After graduation, Edward plans to attend medical school and pursue a career as a physician.