Novel Mechanisms of Preeclampsia Prevention via SGK1 and Corticosteroids

Preeclampsia, a hypertensive disorder in pregnancy, affects more than 6 million pregnancies per year worldwide. It is a dangerous condition during pregnancy which involves high blood pressure, proteinuria, and swelling. The Santillan lab has shown that single dose early of BMTZ early in pregnancy will reverse late pregnancy hypertension and proteinuria (1). The molecular mechanism by which this reversal occurs is unclear. One potential pathway involves serum/glucocorticoid regulated kinase 1 (SGK1), a serine/threonine kinase stimulated by corticosteroids. SGK1 dysregulation and human genetic variants in SGK1 have been associated with hypertension. The overall goal of this study is to determine whether SGK1 and its regulation play a role in preeclampsia.  If so, BMTZ has the potential to prevent preeclampsia in humans. Because mir-365 has been shown to decrease SGK-1 expression in human placentas from pregnancies with poor placentation, I will examine the effect of vasopressin and SGK1 in placental cells on mir-365 expression. In addition, it will be determined if placental mir-365a-3p is differentially expressed in human preeclampsia. This project is significant because it may help to determine how BMTZ protects from preeclampsia and whether BMTZ could be useful in humans.

 

Research in the lab can be very stressful. Things may not go as well as expected and troubleshooting is a process. Regardless, I had the opportunity to learn many new techniques that would help me in the future. I was surprised how research is comprised of so many different aspects. A little difference in one experiment may change the whole outcome. I learned a great set of skills like how to maintain a cell culture, perform an ELISA, BCA, and extract RNA. It took a while for me to start up on my experiments because I had to research some more background information to ensure I knew what I was doing. My experiments went smoothly, but it was later found that the drug I was using to treat the cells was not working in our mouse model; therefore, it may not be working with my cells as well. My project was put to a halt to first determine if the drug was correctly performing. The drug was aliquoted about a year ago and may have degraded. I would have to wait in order to determine whether I was able to continue or to start over. In the meantime, I worked with my mentor with small projects and learned useful techniques. Additionally, I worked on the second portion of my project involving whole placental tissues. The tissues were RNA prepped and analyzed via qPCR. The results showed that there was a significant difference with p-value of 0.016. This makes sense because Xu found that miR-365 negatively regulates IL-6 and it, in turn, is transcriptionally regulated by Sp1 and NF-κB. (2) So, transcriptional down-regulation of miR-365 should result in increased IL-6. This was interesting to hear, but we cell culture was needed to determine this and it was on standstill.

 

There were some busy days and other days there was a lot of down time. For example, one day there may be multiple tests to complete in a day, other days an experiment would consist of wait time. The most surprising part of participating in the lab is that I realized that a lot of the down time is used to write papers or grants. Research involves a great deal of writing to express the study to the public eye and document previous studies to help ongoing studies. I am appreciative of researchers because without those papers I would not have been able to understand my study without background information. Most days were very stressful trying to balance all of the work and trying to understand why a certain mechanism happened. My least favorite part during my time in the lab was working so hard on an experiment and in the end, not having it work out. The best part was working along with my mentor to learn new techniques and tests. I’m also glad that people around the lab worked well with one another and that they would take the time to reach out and teach me.

 

References:

  1. Santillan, M., Santillan, D., Scroggins, S., Min, J., Sandgren, J., Pearson, N., Leslie, K., Hunter, S., Zamba, G., Gibson-Corley, K. and Grobe, J. (2014). Vasopressin in Preeclampsia: A Novel Very Early Human Pregnancy Biomarker and Clinically Relevant Mouse Model. Hypertension, 64(4), pp.852-859.
  2. Xu et al. miR-365, a Novel Negative Regulator of Interleukin-6 Gene Expression, Is Cooperateively Regulated by Sp1 and NF-κB. Journal of Biochemistry 286: 21401-21412, 2011
Carolyn Lo is a junior majoring in Human Physiology and Biochemistry at the University of Iowa in Iowa City, Iowa. She is a 2018 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working with Dr. Mark Santillan at the Carver College of Medicine in Iowa City, IA. Carolyn’s fellowship is funded by the APS and a grant from the National Heart, Lung and Blood Institute (NHLBI) (Grant #1 R25 HL115473-01). After graduation, Carolyn plans to pursue a doctorate degree in medicine.

Leave a Reply