Monthly Archives: December 2018

Apoptosis! How Endoperoxides Could Be a Difference

Artemisinin – also known as Qinghoasu – is produced by the sweet wormwood tree Artemisia annua. For hundreds of years, unaware of its potential in treating cancer and malaria, the sweet wormwood tree was used in ancient Chinese medicine to treat fevers, which we now know were caused by the Malarial parasite. It wasn’t until 1972 that the Chinese scientist Youyou Too and her collaborators isolated the active anti-cancer and anti-malarial ingredient from Artemisia annua, Artemisinin. The active portion of Artemisinin is an oxygen-oxygen bond that forms free radicals when exposed to iron. These free radicals then disrupt cellular function, thereby inducing cell death. In the case of cancer cells, research has shown that most types of cancer cells have increased intake of iron compared to non-cancerous cells. As a result, iron reacts with Artemisinin, producing free radicals, inducing apoptosis, and causing cell death. Therefore, Artemisinin may also be effective when treating cancer. However, despite Artemisinin’s effect on cancer and malaria, there are disadvantages to its usage. Since Artemisinin constitutes less than only about 1% dry weight of the sweet wormwood plant it has limited availability in developing countries and it is very costly to extract. Additionally, the original Artemisinin molecule has trouble reaching its target due to its limited bioavailability. Therefore, we have synthesized analogues of Artemisinin that have the same oxygen-oxygen bond as the original Artemisinin molecule but are smaller and inexpensive to make. This Summer, my lab and I have been testing the novel analogues on A549 lung cancer, MCF7 breast cancer, BEAS-2B normal lung, and MCF10A normal mammary cell lines to see the effect of the analogues on inducing cell death. We have witnessed an increase in cell apoptosis in cancerous cells and not in normal cells and will continue testing the various analogues to find the one with the greatest efficacy at the lowest dose. 

Realities of Research

In my journey as a researcher, I have learned a lot about the advantages and downfalls of researching. Before entering Benedictine University, there was a stigma in my mind towards researching. I couldn’t imagine myself sitting in a lab because the idea of this sounded monotonous and unpleasing. Once I began researching, I realized the importance of it, making me love what I do now. Witnessing the novel drugs killing cancer cells was fascinating and exciting because I was able to make useful discoveries. Furthermore, I have gained knowledge on how to maintain various cancer and normal cell lines using proper cell culture protocol. I have seen just how easily cells can become contaminated and the headache involved with sterilizing everything and starting over. I have learned to follow safety protocols better to prevent future contamination. Additionally, I have become fluent in the usage of various lab equipment and techniques including the flow cytometer, absorbance reader, fluorescence microscope, Western Blotting, and protein assays. Having to perform some of these experiments multiple times due to errors I’ve made has helped me better my technique. Although not all the experiments I completed turned out how I wanted due to human error, the experiments that went correctly supported my original hypothesis.

Life of a Scientist

The day in the life of a scientist begins early in the morning. I wake up, get ready, and am in the lab by 9:00 am daily. Every Monday, Wednesday, and Friday I begin the day by placing media to feed the cells in the water bath. While the media is warming up, I check confluency of the cells to determine whether I need to split them or just feed them. From there, I feed or split cells, clean the hood, and continue with the rest of the day. I then go to my research mentor’s office to determine which experiments need to be completed first, conduct those experiments, and end the day discussing the results. The best part of being a student researcher is the flexibility. I can do so many unique experiments with the cells I am growing, allowing me to test various things simultaneously. Additionally, I have a phenomenal research team and we enjoy conversing with one another. The worst part of researching is the long hours spent in the lab. It does get exhausting to be in the lab all day, however, with my great research group I find ways to help the time pass by. Researching has shown me the importance of interdisciplinary work with the collaboration between the organic chemistry lab and my lab, as well as the importance of effective communication.


Mohammed U. Haq is a senior majoring in Health Science at Benedictine University in Lisle, IL. He is a 2018 Undergraduate Student Research Fellow (UGSRF) working in Dr. Jayashree Sarathy’s physiology lab at Benedictine University in Lisle, IL. Mohammed’s fellowship is funded by APS. After graduation, Mohammed plans to pursue a career in medicine with an interest in conducting research in medical school.
Detrusor, Urothelium and Mitochodria – Oh My!

The summer of 2018, I worked under Dr. Johanna Hannan at Brody School of Medicine in order to study sex differences in bladder dysfunction and study the impact of obesity-induced bladder dysfunction. With one-third of Americans, aged 40 years or older, reporting to have some level of urinary incontinence, we know that bladder dysfunction is a common condition.1 Both males and females experience bladder dysfunction, but they can experience varying degrees of stress or urge incontinence, overactive bladder, and obstructed bladder. Overall, females experience greater urinary incontinence compared to males.1 Our other interest, obesity induced bladder dysfunction, is pertinent because an increased BMI correlates with a higher risk of urinary incontinence. The mechanism that obesity-induced bladder dysfunction occurs is poorly understood. Specifically, we looked at the urothelium, the inner lining of the bladder responsible for signaling, and the detrusor smooth muscle, which contracts the bladder to dispel urine. Our interest within these tissues were mitochondria, the powerhouse of the cell, responsible for creating ATP; mitochondria is a model indicator of cell health. To study the health of mitochondria, we measured mitochondrial respiration within mice urothelium and detrusor smooth muscle layers of the bladder. Different substrates were added to promote or inhibit certain pathways within oxidative phosphorylation so that differences in mitochondrial metabolism could be studied. We believe that impaired mitochondrial function is contributing to the decreased contraction and inflammation that leads to bladder dysfunction in obese men and women.

Realities of Research

Working within a research lab is an experience you never forget. Life as a research scientist is different than what I had previously thought. It was not every day that I was running experiments; there were days where I read papers in order to understand and apply the results from the experiments. While we had originally believed that females would have decreased mitochondrial respiration because they had a higher prevalence of bladder dysfunction, the data obtained from an oxygraphy-2K (it measures oxygen within a chamber) showed that males actually had lower respiration. These results were found in the presence of a fatty acid which seems to impact male bladder metabolism. Though our hypothesis was proved wrong, our results are significant because they uncover novel information related to males having an impaired fatty acid metabolism.

The best part of working in a research lab was contributing to the field of science. Though our hypothesis was proved wrong, the data still had relevance to bladder dysfunction and how it impacts the population. Before our research, there was little to no information on bladder mitochondria in males and females. On the other hand, the worst part of research was when a machine would malfunction during the experiment. It not only compromised the results, but the tissue that was in it was also rendered compromised. Whenever this happened, there was always someone in the lab that I could ask for help. Also, this experience demonstrated that is it okay to ask for help – especially from people within the lab! They probably experienced the same problem and had their own tips and tricks to prevent it from happening again. Collaboration and discussion were encouraged in the lab; it is something I hope to continue to practice as I continue a career in science.




  1. org. (2018). American Urological Association – Bladder Health. [online] Available at:


Hanna Kosnik is a junior at East Carolina University in Greenville, NC working towards majors in Biochemistry and Chemistry. She conducted research under Dr. Johanna Hannan in the Department of Physiology at Brody School of Medicine in Greenville, NC. Hanna is recipient of the 2018 Undergraduate Summer Research Fellowship (UGSRF) funded by the American Physiology Society (APS). After graduating, Hanna plans to pursue a career in medicine.
My Summer of Science with the Ts65Dn Mouse

This summer I worked in a lab that studies the Ts65Dn mouse, which is an animal model for Down syndrome. Previous studies have shown that people with Down syndrome suffer from sleep apnea during the night, which exacerbates some of the cardiovascular and neurological deficits that are already associated with the disease.  My role this summer was to collect breathing and metabolic data from an older cohort of this strain as they were exposed to various gases that stressed their respiratory system. Other members of the lab collected data on the muscular and neurological functions of these mice. The overall goal of our work is to identify the causes of the deficits found within this strain of mouse. In the long run we are hopeful that the work we are doing could eventually lead to therapies for people with Down syndrome who suffer from sleep apnea.


Before my summer research started I had already been working in my current lab for about two semesters. I did not really have to adjust to much about the lab besides the fact that I was going in all day, every day. I was conducting my experiments using a barometric plethysmography technique. This technique involves placing mice in a chamber that records several respiratory outputs as air is pumped into and out of the chamber. Even though I was familiar with the technique that I used to collect breathing data, there were a few calibration issues that required some troubleshooting when I first began collection. Once those issues were fixed data collection went smoothly. In addition to conducting plethysmography experiments, I was working with the rest of my lab to harvest and freeze organs that were dissected from our mice in order to look at the specific proteins related to muscle function. We are currently working through analyzing and interpreting our data, but so far have found interesting results that lead us to believe that there is a neurological component that is modulating the deficits found in the Ts65Dn mouse.

Over the course of my summer, I realized that the life of a scientist varies every day. I was on a strict schedule during plethymosgraphy data collection because the mice needed to be tested during specific hours and within days of each other in order to attain accurate results. On the days that I was helping with harvesting and freezing organs, the work moved quickly because organs needed to be removed in a timely fashion in order for them to be viable for further testing. Once all of our mice were euthanized the work calmed down a bit and I was able to take my time analyzing my data, running stats and working through interpretation of statistical outputs. I really enjoyed watching the older members of our lab work through their experiments. I have learned a lot from them and it is helpful to be able to see what my life could look like if I continue down this path. I did struggle a bit at first with learning new techniques and how to run some statistical tests, but having to work through issues and figure those things out for myself has already made me a better scientist. I think that learning how to troubleshoot and work through experimental/statistical/interpretational issues on my own has been the most valuable part of my summer research experience.


Brianna Eassa is a senior Biology major at Le Moyne College in Syracuse, NY. She is a 2018 Undergraduate Summer Research Fellow (UGSRF) working in Dr. Lara DeRuisseau’s lab at Le Moyne College. The UGSRF award is funded by the APS. In the future, Brianna hopes to continue to work in a lab setting in order to get more experience to learn what direction she wants to go towards when entering graduate school.


Protecting the Miracle of Childbirth

The spectacular process of human reproduction is complex, time consuming, and, above all, fascinating! Much has been learned over the years dealing with the mechanisms of pregnancy in many of Earth’s lifeforms. The research on genetics, like uncovering the entire human genome, makes incredible strides toward fully grasping why certain physiological processes happen. However, there are still numerous question marks, specifically speaking about women’s health during pregnancy and after, that require research and understanding. Full efforts are being undertaken that aim to ultimately lead to safer pregnancies, better means of treating diseases, and developing new techniques.

Research Project

Preeclampsia is a disorder during pregnancy characterized by high blood pressure and excess protein excretion. Because the condition is not entirely understood, treatment options are far and few between for women suffering. Currently, the only remedy is a low-dose treatment of aspirin. The effects and mechanisms of this aspirin treatment is not completely understood either, so the purpose of my study is to attempt to demystify the workings of the treatment. Specifically, I am targeting human trophoblast cells, the major cell type involved in the development of the placenta, an organ that provides nutrition to the developing fetus. By varying different doses of aspirin, I am examining the changes, or lack of change, in the trophoblast DNA. If changes are observed, we will have knowledge on how and if aspirin will help women suffering from preeclampsia, which will ultimately lead to a safer pregnancy for both the mother and child.

Realities of Research

It has been an exciting experience working in a research lab. Not only have I learned valuable techniques, but I am directly impacting the future of medicine, even if it is in a seemingly small way. I have been surprised by the level of attention and precision that is addressed when conducting research. I always knew that attention to detail was important, but the extent to this precision that I have been performing has shocked me along with how these techniques were practiced. For example, RNA isolation is a delicate, yet simple process that requires attention and a good grasp on how to pipette well. If a step is skipped, such as forgetting to add the homogenate additive, then the RNA yield could be put at risk. It is too early in my research stages where results and conclusions can be made. Typically, one trial of cell growth requires one full week, so multiply one trial by the many that we are attempting and the overall experiment becomes lengthy.

Life of a Scientist

The day-to-day life of a young scientist has been exciting. While not all of the parts of my day are groundbreaking and entertaining, it is still a rewarding process. I usually begin my day with notebook entries, planning, and reading up on current events in my field. My research involves a fairly strict time schedule, so in the afternoon, the experimenting and cell ‘farming’ as I call it, can begin. I was surprised by the equipment that I have at my fingertips.  Nothing is more thrilling than looking through a $45,000 microscope or running a 6 well plate through a machine that you can’t even pronounce. The best part so far for me has been the adjusting to a real life laboratory. I have begun to entertain the idea of having my own lab in the future, and becoming familiar with how a lab is run has been a wonderful experience. The worst part has been the waiting that is required between experiments. It makes me wish I had a magic wand that would make the cells grow and be ready for testing at the flick of my wrist. It has been so wonderful working with everyone in my lab. I love the feeling of having an independent project, but still being under a larger umbrella of research with my coworkers where we can discuss information and findings.


Brandon Cooley is a junior at the University of Iowa where his is studying biology. His future plans involve graduation with his degree and enrolling in an MD/PhD program where he can further develop his researching skills while being present as a clinician in a hospital!
What I Learned From 10 Weeks of Experimenting

My research project focuses on the Parkin protein found in the mitochondria of the cell. Mitochondria is essentially the energy source for cells. Without it, cells, organs and eventually the body would stop functioning. It is in high abundance in muscles that need energy to contract, such as the heart. Parkin helps in removing the damaged mitochondria from the cell, making room for healthy mitochondria to thrive. If Parkin is nonfunctioning, diseases such as type two diabetes and heart disease can arise.

My project analyzes Parkin expression in the hearts of four groups of rats: lean sized rats with a sensitivity to insulin, obese rats with insulin resistance, and two groups of both obese and lean rats that were placed on a diet. Overall, this will test the effect a restricted diet has on this proteins expression in the heart. We will monitor if something as simple as a diet will bring the protein back to normal levels. If the diet proves to restore protein levels, perhaps this will become an alternative to medication for specific heart diseases.


Realities of Research

I started research with the expectation that if I followed the protocol, everything should go right, and I would get results. I found to my surprise, that this was a huge misconception. Sometimes reagents expire, or machinery doesn’t work properly. Sometimes the building experiences a power outage. Although this can be a little disheartening, it made me appreciate the results I did obtain so much more. In our lab we had weekly duties/ chores, and everyone helped each other out. We had a very open and friendly atmosphere. If we had some downtime, we would help another person out with their experiment. This comes in handy when trying to balance starting an experiment over, all the while saving time. The results I ended up obtaining were not what we expected. When looking for my original protein the project was based on, we couldn’t get results. We then probed for another protein in the same pathway and obtained some data. This didn’t change the research question much because the proteins were in the same pathway.


Life of a Scientist

The Procedure I did was western blotting. It’s a two-day procedure: one long day (~10-12 hours) followed by a short day (~3 hours). I would usually catch the bus to lab at 10 am and leave anywhere from 8 pm to 4 am (a onetime occurrence). There are about six hours of waiting during the first day, so in this time I would make gels, refill buffers, work on assignments, or eat lunch. The best parts of lab work were learning new procedures and mastering them, obtaining results, and the friendships we made. I loved working as a team. Usually, one person would excel in one area and not in the other, so we became a unit, helping each other work our way towards results. The worst part was the unpredictable schedule. I became apprehensive to making plans, whether that be for scheduling doctor appointments or spending time with family and friends, because I didn’t know if I would need to start a part of an experiment over again and stay longer than expected.


Chelsy Cummings is attending the University of California Merced, Merced, CA. As a fellow in the STRIDE fellowship program, Chelsy is being hosted by Dr. Rudy M. Ortiz who is also a professor at the University of California Merced, Merced, CA. Chelsy’s future plans include studying abroad this fall. She is excited to be traveling to London to complete her studies and is looking forward to progressing her research project and presenting those findings at EB in Spring 2019. During that time, she will also be preparing for graduation and volunteering at Valley Children’s Hospital to acquire some experience in the medical field.