Monthly Archives: February 2020

Heart Health: Slowing the Progression of Heart Failure
Amal Altaf
Junior
Biological sciences (BS) and global health (BA)
Barrett at Arizona State University

My Research Project

Cardiac fibroblasts are cells in the heart that are involved in producing proteins such as collagen. An accumulation of these proteins leads to a medical diagnosis termed fibrosis, which plays a major role in the progression of heart failure. Proteins such as angiotensin II are known to activate fibroblasts and promote fibrosis. Reactive oxygen species (ROS) are unstable molecules in the cell that have been suspected to play a role in angiotensin-II-induced inflammation and, consequently, fibrosis. An imbalance of ROS in the cells is called oxidative stress. While no treatment is known to reverse fibrosis, a class of drugs known as angiotensin converting enzyme inhibitors (ACEI) are able to slow its progression, even after ACEI treatment has been stopped. However, it is unknown how ACEI treatment is able to protect against fibrosis.

In this experiment, I was tasked with investigating whether the protection against fibrosis was a consequence of a more favorable oxidative stress profile in response to angiotensin II treatment. Using heart tissue from the left ventricle of rats my lab was able to test our hypotheses. The rats were divided into three treatment groups, each treated for a total of six weeks, The treatment proposed on the rat models is depicted by the table below.

Because ACEI has been previously shown to protect against fibrosis, we hypothesized that hearts from hypertensive rats previously treated with ACEI would show decreased protein expression of pro- and anti-oxidant enzymes in response to angiotensin II, which corresponds to Group 3 in the table above. Understanding whether oxidative stress is altered due to prior ACEI treatment will allow for a better understanding of the mechanisms through which the heart can become more resistant to fibrosis. This may contribute to a better understanding of cardiac fibrosis and the development of novel treatments that may slow or prevent heart failure.

Realities of Research

Loading of Western Blot gel.

It surprised me, but I quickly learned that research involved a great deal of trial and error. I learned that while every step in the research plan is well thought out, there is still a lot of uncertainty. However, that was not a bad thing, because that uncertainty is exactly what we are targeting through our research. We sought to understand things we did not already know. My experience this summer forced me to learn new techniques, such as those of western blotting, imaging via film, and technology and analysis. I was also been fortunate enough to shadow others in the lab and gain better understanding of several other procedures such as surgeries, cell culture and immunohistochemistry.

More often than not, the results I received were different from what I expected, which led to several discussions with my research host about possible explanations and potential next steps, very often being revised. It almost reminded me of the game “Chutes and Ladders.” We would make progress in the direction we expected, then come across unexpected results which sometimes brought us back to square one or took us in a new direction. I’m not entirely sure how many times we had to start over, but we certainly had to go back and change our plan several times. We actually just revised our research question a few weeks prior to wrapping up the summer research!

Life as a Scientist

The daily life of a scientist is much more than mixing chemicals and making graphs. My life as a scientist this summer provided me with insight into the reality of working in a research lab. Beyond the trial and error, the uncertainty and the constant learning that all made each day in this field so intriguing, there was also a great amount of collaboration involved. Working as part of a team was one of my favorite parts of being a scientist. I worked towards a common goal with my lab team, but also worked with people outside of my lab, even those whose research had a different focus. My least favorite part of working in the lab was how writing-intensive it was.

When picturing a scientist, a person in a lab coat working at a lab bench usually comes to mind. In reality, the life of a scientist involves a considerable amount of writing in order to obtain grants to fund the research and to communicate the research. While this hasn’t been completely applicable to my case (since I’m not writing grants—yet!), I would still consider it to be the “worst” part about the day-to-day life of a scientist. All in all, my time in the lab this summer allowed me to gain an invaluable understanding not only of the research project I worked on, but also the realities of research and the life of a scientist.

Amal Altaf is a junior double majoring in biological sciences and global health at Barrett, The Honors College at Arizona State University in Tempe, Ariz. She is a 2019 Undergraduate Summer Research Fellow (UGSRF) working in Dr. Taben Hale’s lab at the University of Arizona College of Medicine in Phoenix. Amal’s fellowship is funded by the American Physiological Society. Upon graduating, Amal hopes to pursue medical school to eventually practice as a physician

Summer Study: A Journey from Heart to Kidney
Yuliia Kashyrina
Sophomore
Pre-allied health major
Howard Community College, (Columbia, MD), class of 2020

My Research Project

When asked about the most vital organ in the body, most people would point out the heart without hesitation. It is indeed an essential pump that helps deliver oxygen and other nutrients from food to the body’s cells. The heart also helps fight infection and creates blood clots after injury. The principal function of the heart is maintaining solute circulation. When it comes to removing these solutes, the kidney kicks in. Without the kidney, the blood would accumulate metabolic waste made by the body as a result of your activities, drastically increasing the pressure in your blood vessels due to a large amount of solutes being added.

On a large scale, my project investigated a possible mechanism by which the body can function to lower your blood pressure. On a smaller scale, I investigated the effect that a hormone released by your heart can have on certain types of kidney cells.

Realities of Research

Working in a research lab was fun. Fresh out of school, I rejoiced in this great feeling of assuming responsibility (finally) for every part of the project from the experimental design and hypothesis, to implementation, statistical analysis and drawing conclusions. I learned how to passage cells into various flasks, petri dishes and transwell inserts, how and when to feed them andhow to freeze them. I also learned different techniques of fluorescent imaging which uses fluorescent dyes to label molecules of interest, protein concentration measuring techniques, measuring current/resistance of cells in transwells and measuring cellular oxygen consumption rate, which was essentially how certain cells “breathe.”

Even with a very insightful mentorship from senior personnel in the lab, it took some time to tailor every protocol so that my experiments would produce clear results. In some cases, an experiment was great in theory but challenging to reproduce. For example, when we attempted to track changes in the mitochondrial calcium in response to acute application of the drug using a fluorescent dye, the drug delivery technique would greatly affect the results. It is no doubt that this particular experiment required a little bit more work, but within the 10-week time frame of my fellowship that experiment did not make the priority list.

Life as a Scientist

The best—and probably the worst— part about doing research was sometimes having to come to the lab at 7 a.m. on a Sunday. At the same time, I was able to have proper time off work so I could start a new week fresh and well-rested. Sometimes, however, my curiosity led me back to the lab again and again. In the end, there were two main things that I got most out of this summer:

  1. I cannot expect immediate results in science; and
  2. no science would be possible without collaboration within and outside of lab.

I did a lot this summer, from reading articles so that I stayed on track with discoveries, watching others do procedures, attending meetings and journal clubs, making presentations—you name it! Working in basic research is definitely a lot more than making hypotheses and carrying out experiments.

Yuliia Kashyrina is a sophomore majoring in pre-allied health at Howard Community College in Columbia, Md. She completed the Undergraduate Summer Research Fellowship (UGSRF) through the American Physiological Society during summer 2019 and worked under Dr. Daria Ilatovskaya at the Medical University of South Carolina, Division of Nephrology, in Charleston, SC. The UGSRF program was funded by the American Physiological Society. Yuliia is planning to transfer into biology/biological sciences to a four-year university in the fall of 2020 and seek an advanced degree in physiology upon completion of her bachelor’s degree.