Category Archives: Undergraduate Physiology

Some Serious Monkey Business
Lucas Barrett
Senior, biology major
University of Kentucky

My Research Project

My research project was focused on using the African green monkey as a translational animal model for human disease. I was particularly interested in the gene that encodes for a protein known to be a component of cholesterol transport. The protein also has a natural ability to protect against certain parasites. In humans, two different versions of this gene have been associated with early-onset kidney disease. Our lab found a version of this gene in the African green monkey that is associated with high blood pressure, and I continued this discovery by looking for additional monkey species that have a similar version of the gene.

In order to find more monkeys with the insertion, I took tissue samples from animals at our vivarium, from which I then extracted DNA.  I also followed the kidney function of monkeys with different variations of the gene to discover whether it was associated with kidney disease in the African green monkey. I assessed kidney function by measuring chemical levels from blood and urine samples which helped determine whether this gene was a marker for kidney disease in this animal model. The main goal of this summer’s project was to identify the African green monkey as a model to study this specific type of kidney disease in humans through the investigation of alternate versions of this gene.

Realities of Research

Doing research has been both the most rewarding and most frustrating endeavor that I have ever undertaken. Being engaged in new scientific discovery is exciting, but the time and effort that go into research can be exhausting. A particularly difficult part of research this summer was troubleshooting why an experiment or laboratory technique did not work as expected.

I was most surprised at how acceptable and common it is to be wrong. Amazingly, in the scientific community, there is nothing inherently bad about being wrong as long as you learn from and adapt to the information you uncover. Working as part of a team in the lab was one of the best parts of this experience. Being able to discuss different projects and rely on others for help as they rely on you was enjoyable, and pushed me to be an expert on my assigned tasks. At the same time, I learned to be competent and well-versed in the other tasks going on in the lab.

Life as a Scientist

Working and living as a scientist for the summer was an experience full of joy and fun, but I also learned a lot that I didn’t know about the day-to-day life conducting research. I was fortunate to go for three weeks to the island of Saint Kitts in the Caribbean islands to do field work that involved collecting data and samples for the lab.

Most people I told about this trip assumed that a stay in the Caribbean would be laid back and more akin to a vacation than a work trip, but nothing could have been further from reality. Out of the 20 days we were on the island, we only took one day completely off from work and I did not anticipate how tiring it would be to work outside in a tropical climate. Despite falling into bed most days from exhaustion, I learned more every day and was fascinated by working with our live animal model; instead of simply working with blood, urine and tissue in the lab.

Lucas Barrett is a senior majoring in biology at the University of Kentucky in Lexington. He is a 2019 Undergraduate Summer Research Fellow (UGSRF) working in the laboratory of Dr. Jeffrey Osborn at the University of Kentucky.  Lucas’ fellowship is funded by the American Physiological Society. After graduation, Lucas plans to pursue a career as a physician-scientist studying human disease. He plans to enroll in a medical scientist program after finishing his degree at the University of Kentucky.

PoWeRful mice and the effect of satellite cell depletion
Alec Dupont
Junior, biomedical science major
Auburn University

My Research Project

My project involved examining the adaptation of skeletal muscle to resistance exercise in mice that had been depleted of muscle stem cells (satellite cells). Generally, muscle growth is accompanied by an increase in protein synthesis and the differentiation of satellite cells into muscle nuclei. During this project, we examined if growth happens without the addition of satellite cells into muscle. As certain clinical populations have reduced satellite cell content and muscle mass, our project aimed to provide insights into how muscles respond to a growth stimulus with the loss of this cell population.

We used Progressive Weighted Wheel running (PoWeR) as a model for resistance exercise. PoWeR involves voluntary running activity of the mice in weighted running wheels. The weight placed on the running wheel is gradually increased over the course of four to eight weeks, overloading the musculature and causing a growth response called muscle hypertrophy. Using a genetic mouse model that allowed for the selective depletion of satellite cells, we compared sedentary- and resistance-exercised mice in groups of satellite cell-replete (vehicle treated) and -depleted (tamoxifen treated) mice. We compared muscle hypertrophy and other physiological adaptations between groups to determine the effects of satellite cell depletion. At the completion of this project, we hoped to gain a further understanding of the role satellite cells play in muscle growth.

Realities of Research

My main focus for the summer was using muscle tissue from the PoWeR mice, and making it possible to obtain data and useful information. I accomplished this through immunohistochemistry, a laboratory technique where we cut cross sections of the muscle and stain them for proteins of interest. This staining allowed us to visualize the sections under the microscope, image them and quantify the images using different forms of software. This technique presented certain challenges because the tissue must be carefully prepared and stored to prevent degradation. Poor quality tissue introduced variability outside of what is normal to the mice models. For example, having to overcome challenges and work to optimize a stain meant visualizing newly formed RNA in muscle nuclei. The stain can appear too dull and the quality would not be high enough to draw conclusions unless the procedure was optimized. Overcoming these challenges provided stunning images and reliable data. We found that although satellite cells were not absolutely required for muscle growth in response to weighted wheel running, there was a decrease in growth in the satellite cell depleted mice.

Life as a Scientist

The day-to-day life of a research scientist presented me with a constantly changing experience that was more engaging than the traditional classroom setting. There was always a new aspect of the project to investigate. It was incredibly satisfying to see your work come together in data that tell a cohesive story. The process of getting there was occasionally tedious though. For example, we’d normalize our data to the number of fibers in the muscle cross section and when the software couldn’t count for us, we were forced to count by hand. When the sections were between 600 and 800 fibers in a study with 48 mice, that part of research tended to drag. But that was only a minor inconvenience to a necessary bump in the road towards a satisfying research project.

Alec Dupont is a junior at Auburn University in Auburn, Alabama, studying biomedical science. He is a 2019 Undergraduate Summer Research Fellow (UGSRF) working under Dr. Charlotte Peterson at the Center for Muscle Biology at the University of Kentucky in Lexington. Alec’s work is funded by the American Physiological Society’s UGSRF program and a grant from the National Institute of Health to Dr. Charlotte Peterson and Dr. John McCarthy (AR060701).

Cycle Training promotes bone growth following Spinal Cord Injury
Jayachandra Kura
Junior, Applied Physiology and Kinesiology
University of Florida
2019 UGSRF Fellow

My Research Project

Figure 1. Transverse view of long bone with red ROI

This past summer, I worked in Dr. Joshua F. Yarrow’s research lab at the Malcom Randall Department of Veteran Affairs Medical Center. Dr. Yarrow’s lab explores the effectiveness of pharmacologic and exercise treatments following spinal cord injury (SCI). For the specific SCI we studied, the posterior end of the 9th thoracic vertebrae was surgically removed, exposing the spinal cord underneath. A machine delivered an impact causing hindlimb paralysis. My research  used Sprague-Dawley rats that were given either a 1) SCI, 2) surgical control (SHAM), 3) SCI + Bodyweight Supported Treadmill Training, or 4) SCI + Passive Bicycle Training. We scanned the distal femurs at baseline, two weeks and four weeks after SCI using a micro tomography (microCT) scanner.

In order to observe the effect of each treatment on the spongy cancellous bone, a technician would individually draw a region of interest (ROI) in the transverse view of the femur (Fig. 1) to include the internal trabeculae while excluding both the growth plate and solid cortical bone. However, repeating this on more than 100 slices for every sample at every time point is very time intensive. Instead, I worked to adapt a registration procedure for the spinal cord injury model. The registration was created by using two scans at different time points are aligning them in 3D. An ROI was created at baseline and then applied to the two-week and four-week scans, reducing the amount of labor required. I then compared the data from registered images to data from nonregistered images. I also helped to develop a script that allowed the computer to automatically draw the ROI with minimal manual correction, which further improved efficiency.

Realities of Research

Figure 2. Spinal Cord Injury Model. However, instead of a contusion by weight drop, there is a machine performing the impact.

My introduction into research has definitely been equal parts trying and gratifying—trying in the sense that every solution I created seemed to raise a host of other questions that needed to be addressed. I remember when I finally figured out how to register two different time point images, but I then needed to decide what size volume of interest (VOI) to use so the computer knew which landmarks to use to align the two different bones. Intuitively, using a large VOI should provide more datapoints for the computer to use. Doing so caused the solid cortical borders to be well-aligned, but the internal structures weren’t. Repeating this with multiple samples yielded the same results, which suggested that, in bone remodeling, an individual bony landmark’s relative position to the cortical border changes with time. However, using a small VOI caused poor alignment of the two images. This seemed counterintuitive, so when I looked over previous scans of SCI samples, I observed a trend of severe bone loss occurring below the injury site. The registration procedures outlined in the literature couldn’t directly translate to a SCI model as those outlined procedures required clear internal bony landmarks. Without these data points, the automatic registration software couldn’t produce an accurate alignment.

In this seemingly never-ending cycle of forming new ideas only to eliminate them later on, I didn’t come any closer to developing a script, but I did develop a lot of patience and perseverance. I found research to be inherently challenging, but the setbacks I encountered only made me grow as a person and researcher, and ultimately, made the end result of creating a “mostly” functioning protocol all that more rewarding. I’ve also come to realize that there is never a true “end” in research as there arealways things that can be improved or new questions that can be asked. This opportunity for continual growth was really exciting and intrinsically motivating.

Life as a Scientist

Compared to my past work experiences, research has by far been the most enjoyable. Never did I have a bout of the “Sunday scaries,” where I was enveloped with the existential dread of going to work the following day. In contrast, my work environment was low-stress and was dictated entirely by my own drive and will to work. The lab was filled with diverse, interesting individuals and I enjoyed the conversations I had and the relationships I formed with my labmates. Although there was always monotonous data entry, most of the work I did within the lab was challenging and fun. I always felt the work I was doing was meaningful.

I recall a conversation I had with my labmate who’d recently graduated: I had jokingly asked what it was like not having class. He laughed and said, “I spent the last four years—every fall, spring and summer semester—taking classes and working here at the hospital. If you think about it, when you’re an undergraduate, you’re basically working 70+ hours a week with all the stuff you do, so you really never have to think about anything except for school. Now that I’ve graduated and work 40 hours a week here in the lab, my work ends when I leave. But I remember going home and sitting on my couch not knowing what to do with myself, thinking, ‘Man, time to find some hobbies.’” Being out of school, if only briefly, allowed me to finally begin to appreciate this. Now sitting on my own couch trying to find things to do, I’ve found this freedom to be exciting and paralyzing.  I definitely feel that the physician/scientist career path is like a pipeline and there’s constant pressure to continue moving towards the end. To be honest, I haven’t put much thought into the adult I want to be outside of my career or really explored the things I find fulfilling. I’m just thankful for the opportunity to have had these experiences, both in and out of the lab, and believe that this summer was largely beneficial for my growth not only as a researcher, but also as a person.

References:

L Arsuaga, J & Villaverde, Valentín & Quam, Rolf & Martínez, I & M Carretero, J & Lorenzo, Carlos & Gracia, Ana. (2013). Arsuaga et al. 2007.

“Establishment of a Rat Model of Spinal Cord Injury (SCI).” Neural Regeneration Research, www.nrronline.org/viewimage.asp?img=NeuralRegenRes_2016_11_12_2004_197145_f1.jpg.

Jayachandra Kura is a junior majoring in applied physiology and kinesiology and minoring in Japanese at the University of Florida in Gainesville. He is a 2019 American Physiology Society Undergraduate Summer Research Fellow (USGSRF) working in Dr. Joshua F. Yarrow’s lab at the North Florida/South Georgia Medical Center in Gainesville, Fla. Jayachandra’s fellowship is funded by the American Physiological Society and the Department of Veterans Affairs. After graduation, Jayachandra plans to pursue a career as a physician scientist.

An Internship to Cure Obesity
Caleb Smith
Senior, Applied Health Science
Messiah College
2019 UGSRF Fellow

My Research Project

Trayagli & Anselmi (2016). Vagal Control of Gastric Functions

When exposed to a high-fat diet (HFD), both human and rat models show inflammation in the brainstem. The specific area of concern is called the dorsal vagal complex (DVC) which is responsible for maintaining homeostasis, or the balance, of energy and gut function. Specific neuronal cells in the brain, called astroglia, along with inflammation, help to control the DVC.

Previous studies have shown models that experienced a short period of energy regulation after a 24-hour period of excessive eating when exposed to a HFD. Therefore, the purpose of this study was to determine how that energy balance is restored during exposure to a HFD through the activation of the astroglial cells. As part of this study,  control and HFD chow were fed to a rat model for one, three, five and 14 days. The brainstems were removed and cut into thin slices and the astroglial cells were tagged with proteins that illuminated under specific lighting. This process, known as immunohistochemistry, allowed for the density of astrocytes and physical characteristics—like size and shape—to be analyzed. To process the role of the astrocytes in this energy metabolism regulation, small tubes called cannulae were surgically inserted into the DVC in order to directly administer fluoroacetate, a drug that inhibits the function of astrocytes. Once the rats recovered from surgery, a five-day control and HFD exposure were fed to the rats while food intake and body weight were measured twice daily.

While data was still being collected, preliminary data confirmed the role of astrocytes in metabolic regulation during HFD exposure. That meant astrocyte activation was necessary in controlling metabolic balance when exposed to HFD. Ultimately, painting the picture of how energy balance is controlled will be essential to producing a therapeutic drug that can help treat obesity.

Realities of Research

Working in a lab was similar to what I expected while still being very different. In many ways, research in a lab is exactly what you would expect: you make solutions, follow very strict procedures and analyze data for results. The techniques that I learned in high school and college labs were carried over with regards to safety, proper procedure, how to handle materials and how to pipette. I would come in and begin my day the same way by weighing and giving rats shots. In other ways, the lab was not what I expected it to be.

There were long periods of time, whether a few hours or days, where researchers were writing manuscripts to submit to journals, editing their own or other colleagues’ manuscripts, writing grant proposals or reading research happening in someone else’s lab to stay up to date on the current information. Not every minute was spent performing an experiment and analyzing data. The rest of my day involved one or two various procedures, so every day was different. Usually, I would have one or two main goals or techniques for the day. Some days it was immunohistochemistry or analyzing material under a confocal microscope. Other days I performed surgeries on rats or loaded brain tissue onto microscope slides. I was surprised by how similar this lab was to high school or college labs.

In some instances, we had to develop our own techniques. For example, we performed surgery on rats using the procedures and equipment we developed. Other procedures followed strict protocol that had been around for many years, like immunohistochemistry. The lab mentors had a strong understanding of their expectations for the outcome of an experiment, so we were able to successfully perform the experiments and get conclusive results that either supported or refuted the hypothesis. The results were what we had expected. We had a solid background understanding that allowed us to make a very scientifically guided hypothesis. However, that didn’t mean we didn’t have to start over in some cases. There were surgeries that did not go as planned, which resulted in having to start over and try again. Not everything in a lab runs perfectly or goes according to plan. Accidents happen, mistakes are made, and fresh starts were common. Luckily for me, no changes in the overall plan had to be made. Preliminary data suggested that we were going to receive conclusive results.

Life as a Scientist

Brain-Gut Laboratory Members at Milton S. Hershey Penn State University College of Medicine

Over the summer, I was able to dive into the life of a scientist and see what the day-to-day job was like. I was highly surprised by how much time was spent doing activities other than hands-on, standard research much like one would expect from high school or college labs. I couldn’t believe how much time each scientist spent doing work on a computer. In fact, my summer lab seemed to spend about half of the time performing procedures and the other half is spent on the computer doing activities like writing grant proposals, writing articles to be published in a journal, reviewing journal articles, ordering supplies and reading recent research. I just never realized how much time would be spent on these things, but the best part, was performing surgeries on rats. I was able to independently perform hands-on science in a way that, quite frankly, made me feel pretty cool. Who wouldn’t think it sounds impressive saying they’ve given a rat surgery before? I liked being involved in physical work instead of taking care of business on the computer. The surgeries were challenging enough that they required critical thinking, simple enough that I could feel confident in what I was doing and unique enough that every rat’s surgery was a little different. Plus, it was neat to see the success of the surgeries I performed. On the flip side, the worst part of the job was immunohistochemistry. The process was very tedious and with the large number of samples I had to do, it became quite exhaustive and—dare I say—boring. I would spend days at a time washing samples, mixing them in different solutions, transferring them between containers and very carefully plating them on microscope slides.

The fact is that research does not always involve exciting and intriguing work. The other interesting aspect of working as a scientist was working as part of a lab team. Each person had independent projects that they were working on, but every project related back to the overall theme of the lab and contributed to the overall goal of the study. It was neat to be able to hear from other people about their findings and being able to learn as a collective. It was nice to be able to ask anyone in the lab for their input on a matter because person had an understanding of the science behind almost every project, even if it wasn’t their own. It allowed me to feel independent and like I was contributing my own work while having a support system in place in times of uncertainty or confusion. Ultimately, my summer research fellowship was a wonderful experience that allowed me to engage in hands-on research and experience the daily life of a scientist.

References:

Buckman,L.B. et al. Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice. Mol. Metab 4, 58-63 (2015).

Camilleri,M. Peripheral mechanisms in appetite regulation. Gastroenterology 148, 1219-1233 (2015).

Clyburn,C., Travagli,R.A., & Browning,K.N. Acute High Fat diet Upregulates Glutamatergic Signaling in the Dorsal Motor Nucleus of the Vagus. J. Amer. Physiol. Gastro. Liver Physiol. 314, 623-624 (2018).

Daly,D.M., Park,S.J., Valinsky,W.C., & Beyak,M.J. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J. Physiol 589, 2857-2870 (2011).

de Lartigue,G., de La Serre,C.B., & Raybould,H.E. Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav. 105, 100-105 (2011).

Kentish,S. et al. Diet-induced adaptation of vagal afferent function. J Physiol 590, 209-221 (2012).

Janssen,P. et al. Review article: the role of gastric motility in the control of food intake. Aliment. Pharmacol. Ther. 33, 880-894 (2011).

Troy,A.E. & Browning,K.N. High fat diet decreases glucose-dependent modulation of 5-HT responses in gastrointestinal vagal afferent neurons. J Physiol 594, 99-114 (2016).

 

Caleb Smith is a senior majoring in applied health science with a pre-professional concentration at Messiah College in Mechanicsburg, Pennsylvania. He is a 2019 Undergraduate Summer Research Fellow (UGSRF) in the lab of Dr. Kirsteen Browning at the Penn State Hershey Medical Center’s College of Medicine in Hershey, Pennsylvania. Caleb’s fellowship is funded by the American Physiological Society. Upon graduating, Caleb hopes to continue into the medical field by becoming a physician assistant. 

A Summer Study: Respiratory Rehabilitation After Spinal Cord Injury
Amari Thomas
Senior, Biology
University of Florida
2019 STRIDE Fellow

My Research Project

The human body central nervous system.

Because the central nervous system is in control of every process taking place within the body, an injury to this system can be detrimental and sometimes fatal. Injuries to the cervical region of our spinal cord can be extremely difficult because they often lead to breathing impairment. The phrenic motor nucleus in this region innervates our diaphragm, which controls inhalation by creating a negative pressure ventilation system.

It has been shown that acute intermittent levels of low oxygen help to address the concern for the functional recovery of breathing after injury. This occurs because the phrenic motor nucleus elicits neuroplasticity. A key protein, phosphorylated-ERK (p-ERK), is involved mechanistically in the phrenic motor nuclei response to varying levels of low oxygen.

P-ERK’s expression can be analyzed through epifluorescent microscopy. The cervical spinal cord tissues were harvested from rodents and stained using inmunoflouresence, – a procedure that stains the tissues in a way that allows them to emit certain colors when viewed on a microscope. We injected cholera toxin B between the pleural cavity in the outer layers of the rodents’ lungs before injury, which allowed for selective localization of phrenic neurons. We imaged this tissue to assess different expression patterns of p-ERK after spinal injury and varying levels of intermittent hypoxia.

Once we analyzed the expression of p-ERK in phrenic motor neurons after spinal injury and intermittent hypoxia we were able to develop a better understanding of intermittent hypoxia and its elicited plasticity after spinal injury. This research will guide therapeutic strategies for improving breathing in people with spinal injury.

Life as a Scientist

Using rat models as a method for testing before human clinical trials.

My experience as a scientist this summer opened my eyes to the realities that occur behind the scenes of groundbreaking research. For example, I always believed clinical trials to be amazing advancements in research, but never truly understood all of the experiments that take place before humans are even brought into the picture. The work done in our lab on rats propose a model for human experimentation. This opportunity has also made me realize that things may not always go exactly as planned the first time around and that is perfectly okay. Often, these trials and errors allow us to learn more about the research we are doing in order to propose different hypotheses or use alternate methods. There is no right or wrong when it comes to research because it is a learning and growing experience.

Acknowledgements

Elisa Gonzalez-Rothi, DPT, PhD, Research Assistant Professor, University of Florida Department of Physical Therapy

Gordon S. Mitchell, PhD, Professor of Physical Therapy, University of Florida Department of Physical Therapy

Latoya Allen, PhD, University of Florida Department of Neuroscience

Marissa Ciesla, PhD, University of Florida Department of Neuroscience

Amari Thomas is a first-generation college student majoring in biology at the University of Florida in Gainesville. She was born and raised in Miami Gardens, Florida, where access to research labs and quality educational resources are minimal. Due to her academic success in grade-school and extracurricular involvement, Amari was accepted into one of the top universities in the country for her undergraduate education. She has continued to thrive in her undergraduate career by gaining dean’s list awards for academics, mentorship positions and an outstanding fellowship from the American Physiological Society. By working in a research lab, Amari has expanded her career options and strengthened her knowledge of the human body and its many processes. She hopes to obtain a medical license after graduating and plans to apply the knowledge learned in the research lab. Amari is a 2019 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow in the lab of Dr. Elisa Gonzalez-Rothi at the University of Florida in Gainesville. Amari’s fellowship is funded by the National Heart, Lung and Blood Institute (NHLBI; R25 HL115473-01).

The Circadian Rhythm’s Role in the Kidney
Emilio Roig
Junior, Microbiology & Cell Science
University of Florida
2019 STRIDE Fellow

My Research Project

According to the Centers for Disease Control and Prevention (CDC), one out of every three people in U.S. is affected by high blood pressure, which is also known as hypertension. Hypertension is a serious health concern because it significantly increases the risk of heart disease, stroke and kidney damage. In healthy individuals, blood pressure dips at night, allowing the heart to experience a period of time in which it is not under significant stress. However, some individuals have been diagnosed with what is termed as “non-dipping” hypertension in which blood pressure is constantly elevated, putting them at greater risk for cardiovascular disease. The fluctuation of blood pressure between night and day is regulated by our body’s circadian clock. The circadian clock is the body’s intrinsic time keeper, telling us when to wake up, when to eat and when to sleep. At the molecular level, every cell in the body also contains its own clock, including kidney cells. To better understand the circadian contribution to blood pressure, my research project for the summer of 2019 has been focused on studying the role of Per1, is one of the main circadian regulators in the kidney. The kidneys are responsible for filtering blood and are directly involved in the control of blood pressure. By removing the circadian rhythm gene Per1 from a specific region of the kidney, its contribution to blood pressure can be determined by comparing it to normal individuals that have the Per1 gene. Our goal for this project was to demonstrate why some individuals develop hypertension or fail don’t experience the normal drop in blood pressure at rest. Understanding the mechanism behind why some people develop “non-dipping” hypertension could potentially lead to better cures and therapies, thereby lowering the risk of cardiovascular disease.

Realities of Research

Even though this was not my first time working in a lab, it was the first time that I began working full time. Five days a week, my day began at 9 a.m. and would finish at 5p.m. However, sometimes I would find myself in deep thought about my project beyond those hours. I learned quickly that research is taking a step out into the unknown, meaning taking time to truly understand the complexities of the body’s physiology. Often,the results of my experiments were unexpected and generated more questions than answers. Other times the experiments would simply fail; the first Western Blot I ever attempted was an adventure. By spending a large majority of time in the lab, I have gained a new appreciation for researchers. Being a researcher takes persistence, creativity and an open mind.

Life as a Scientist

My sheer curiosity about the world is what originally drove me to become involved in research as soon as I began college. The American Physiological Society gave me the opportunity to develop as a scientist, immersing me in the vast complexities of scientific phenomena. Science can often be frustrating because things don’t always go as planned. But the moment new discoveries are made, every failure along the way becomes irrelevant. Persistence took on a new meaning for me the moment I had begun trying my own experiments, and that’s the beauty of science. When something finally is successful, it can open a whole world of possibilities.

Emilio Roig is a junior majoring in microbiology and cell science at the University of Florida (UF), located in the city of Gainesville. He is a Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Michelle Gumz’s lab at the UF College of Medicine. His summer of research was funded by the American Physiological Society and through a grant from the National Heart, Lung, and Blood Institute (Grant #1 R25 HL115473-01). After graduation, Emilio plans to pursue a career in medicine so that he can fulfill his dream of preventing and curing disease.

Blood Flow and Other Bodily Functions: An Investigation of Vascular Function and Endurance Sports
Andrea Rico
Junior, Health Sciences
University of Texas at El Paso
2019 STRIDE Fellow

My Research Project

My research project was focused on measuring the vascular function and rate of blood flow in arteries of the upper and lower body extremities using flow- mediated dilation (FMD) and plethysmography. We investigated the differences in vascular function on endurance sports that are upper-body predominant, lower- body predominant and mixed combination. FMD is an advanced test that uses ultrasound to measure dilation changes in the diameter of arteries, such as those in the forearm. This is a method to assess the endothelial vascular function in humans. Plethysmography measures changes in volume of blood in different extremities like the upper- or lower-body extremities. These changes are measured with blood pressure cuffs attached to a machine known as the plethysmograph. This test can dictate the amount of blood flowing through the limb and time where peak blood flow happens. It is highly effective when it is used to find changes caused by blood flow. An endurance sport is any sport that has prolonged periods of physical stress. Swimming, for example, combines both cardio and light strength exercises mostly in the upper body, which trains the body to use oxygen more efficiently. Cycling combines both cardio and light strength exercises mostly in the lower body, increasing leg strength and endurance. American football involves a lot of resistance training in both upper and lower extremities. Comparing vascular function and structure in these three sports can help to determine specific changes with training modalities.

Realities of Research

This is my first time working in a lab and my first real research project, so it was pretty scary at first. However, as time passed, I started learning something new every day, including new techniques and skills. I slowly began to understand more about my project and its importance. It has been very exciting to be able to work on this project and being able to see the results.

Life as a Scientist

Working in a lab and being able to work with individuals who share the same passion has truly being an extraordinary experience. One of the greatest things that I personally have witnessed is seeing how all lab members collaborate with one another and help each other out. It has truly been an unforgettable experience to get to know everyone and share endless memories with one another. I love being part of a lab!

Andrea Rico is a junior at the University of Texas at El Paso majoring in health sciences. She is a 2019 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Gurovich’s lab. Andrea’s fellowship is funded by the American Physiological Society and through a grant from the National Heart, Lung and Blood Institute (Grant #1 R25 HL115473-01). After graduation, Andrea hopes to pursue a PhD in occupational therapy and work at a local hospital or practice.

2019 Summer of Science – ABC, PCOS, NAFLD the Summer Science Alphabet
Jessica Myer
Sophomore, Health Science
University of Missouri
2019 STRIDE Fellow

My Research Project

Infographic produced by the National Polycystic Ovarian Syndrome Association containing statistics about PCOS and its symptoms.

This summer I had the opportunity to be an American Physiological Society (APS) Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow and work alongside Dr. Stanley Andrisse in the endocrinology laboratories at Howard University and Georgetown University. Our labs study the mechanisms of polycystic ovarian syndrome (PCOS), non–alcoholic fatty liver disease (NAFLD) and insulin resistance. PCOS is the leading cause of infertility among women and affects many more women than statistics suggest. As a consequence of premature use of hormonal birth control, a large population of women may be unaware that they have symptoms of PCOS. In order for our mouse model to exhibit the symptoms of PCOS, we gave them low-dose testosterone and monitored them. NAFLD is a continuum of liver inflammation that inhibits the liver’s ability to process lipids normally, which causes fat accumulation. We induced NAFLD in our mouse model by feeding a high-fat diet for 30 days before tissue extraction. We were specifically looking at the mechanisms behind the lipid accumulation in hopes of discovering how therapies for the reversal of consequences are associated with insulin resistance, NAFLD and PCOS. The better understanding of the processes will be beneficial to combating obesity and the sister diagnoses that come along with it.

Realities of Research

Example of a protein assay, which is completed to determine the concentration of proteins in each sample.

There have been many parts of research that surprised me or were not as I expected. The biggest shock to me was how long it would take to complete one process. For example, running a Western Blot —the main technique I have been doing—takes an entire day for each step. Western blots are used to detect specific proteins in samples. The entire cycle for one blot takes a week, but thankfully I was able to work with four blots at a time. I was surprised at how relaxed the lab environment was, as there was a lot of down time while tests are being run, but there is always something to work on. In the lab, I learned many techniques that were used to discover protein concentrations, RNA concentrations, protein presence and so much more. As expected, the experiments had their ups and downs. We had some great weeks of data and some days where I would take an image and not get any significant results. Overall, I would say that we made great progress this summer. Most of our results have been as expected; although, when we cross a road bump, there are many tweaks we can make. We can increase the amount of sample in our Western Blots, increase the time we block the blots between antibodies, increase wash time or increase the concentration of antibodies. If none of those steps resolve the problem, we go back to published research to see what other scientists have done and how we might be able to learn from them. We never had to start over due to error, but we did complete an extraction during my last few weeks of research which was the beginning of the sampling process.  I thought it was so cool to see exactly where the samples come from and how they are obtained. The research question has not changed. In fact, it has become more focused as we gained more data for the control and knock out samples. Our research is ongoing and I am excited to see what the future holds.

Life as a Scientist

The day-to-day life of a scientist is very rewarding. It is exciting to go into work and be able to see changes and progress that are being made. I was surprised by the laid-back environment and the independence of it all. Once I was fully trained on a technique, I was able to run it on my own and also how to correct errors. I was impressed with how much I was able to multitask in the lab. One of the best parts of working in a lab was being able to see the data come together as publishable images and also images that I took was a great experience. The biggest adjustment for me was getting up so early, since I worked in the lab—across the city—starting at 7a.m. Although this seemed so early at the beginning of the summer, it turned out to be perfect time. I was able to manage well my schedule and had the late afternoons and nights to explore the wonderful city of Washington D.C. I accomplished so much in the lab as well as had a wonderful tourist experience. The worst part of this summer was ending my summer research experience and leading back to school! I loved being in the lab and working with Tina and Bobby and the other lab assistants. Tina is about to start her third year of medical school at Howard University and Bobby went to international medical school and is applying for his Master’s in Public Health.

References

PCOS Challenge Inc. (Ed.). (n.d.). What is PCOS? Retrieved from https://www.pcoschallenge.org/what-is-pcos/

Stewart, C. (2016, November 14). Pierce BCA Protein Assay Kit For Quantitative Total Protein. Retrieved from https://www.biocompare.com/Product-Reviews/239559-Pierce-BCA-Protein-Assay-Kit-for-quantitative-total-protein/

Jessie Myer is a sophomore majoring in health science at the University of Missouri in Columbia, Mo. She is a 2019 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Stanley Andrisse’s lab at the Howard University College of Medicine and Georgetown University Medical Center in Washington, D.C. Jessie’s fellowship is funded by the American Physiological Society and through a grant from the National Heart, Lung and Blood Institute (Grant #1 R25 HL115473-01). After graduation, Jessie plans to attend medical school and become a pediatric cardiologist.

Using CRISPR to Explain the ART of Artemisinin Analogs
Suhayl Khan
Senior, Health Science
Benedictine University
2019 STRIDE Fellow

My Research Project

Diagram showing how the CRISPR-Cas9 editing tool works.

Artemisinin is a drug derived from the Artemisia annua plant. It is known for its anti-malarial properties, but has also been found to have anti-cancer properties. The active portion of artemisinin is an oxygen-oxygen bond called an endoperoxide. When in contact with free iron in a cell, this endoperoxide breaks and creates oxygen radicals which are extremely reactive. These oxygen radicals then proceed to react with cellular components such as membranes and proteins which eventually leads to cell death. Previously, it had been found that DMR1 and HSM2—two analogs of artemisinin— are particularly effective in inducing cell death in cancer cell lines but not in normal cell lines. This summer, my lab and I worked on figuring out why this is so.

 

It has been found that cancer cells contain a higher iron concentration than normal cells. This higher iron concentration is due to higher concentrations of transferrin receptors—the receptor that transports iron into the cell— in cancer cells when compared to normal cells. We believe that the specificity of our artemisinin analogs to cancer cells is due to the higher concentration of iron in cancer cells. To test this, we planned to use Clustered Regularly Interspaced Short Palindromic Repeats, or CRISPR, a gene editing technique that can remove the transferrin receptor gene in lung cancer cells. Then, we would test our analogs on these transfected cells to determine if a lower iron concentration would show the analogs as ineffective. However, we were unable to test our analogs on the transfected cells because the transfected cells died three days after successful transfection. This proved to us that transferrin receptor is required for cell growth and the proliferation of cancer cells, and that cancer cells cannot survive with low iron concentrations. In the future, we plan on using CRISPR to overexpress the transferrin receptor gene in normal lung cells and testing our analogs on these cells to see if the specificity of our artemisinin analogs is indeed due to iron concentration within the cell.

Realities of Research

Cell culture flasks and media in a laminar airflow hood.

Doing research this summer has been very enlightening. In all honesty, before starting research, I imagined it to be a bit boring. I couldn’t see myself really enjoying sitting at a bench and waiting for experiments to run and cells to grow. Surprisingly, when doing research on a subject that you enjoy, it all becomes very exciting. I have learned so much about cell culture techniques and how to maintain a lab this summer. I found myself waiting in anticipation for an experiment to finish because I was so curious to know the results.  I couldn’t wait for cells to grow to large, usable percentages because I wanted to get the next experiment running. Admittedly, it was always disappointing when certain experiments didn’t go as planned or when a lengthy experiment needed to be done multiple times due to errors in previous runs. However, I have learned that even when experiments yield unexpected results, those results still contribute to the research we are conducting. It is not uncommon for an experiment to produce strange results that only make sense after hours of thinking “How could this have happened?” Fortunately, all data that we obtained this summer—expected and unexpected—contributed to my original hypothesis

Life as a Scientist

My day-to-day life as a scientist consisted of waking up early, getting to lab and checking on the cells. Every Monday, Wednesday and Friday the cells have to be fed. If they have grown exponentially, they needed to be split into a new flask. The cell media must be warm, so I had to turn the water bath on and place tubes of media in the bath well before I needed them. I checked the cells under a microscope and estimated the amount of cell growth of each individual flask. If a flask had less than 80% cell growth, the media needed to be discarded and replaced. If a flask had cell growth of 80% or above, then the cells needed to be removed from the current flask and placed into a new one to give them more room to grow. After feeding and splitting was completed, I met with my research mentor and discussed what needed to be done for the rest of the day. The biggest surprise about being a scientist was realizing how little I know about my field of research. Going into research, I believed that I had decent knowledge of physiology and biochemistry. Despite this, I spent every day learning something new and interesting about these fields. My favorite part about research is that there always seems to be more to do. Because of this, there was never a moment where I was bored with nothing to do. That being said, my least favorite part was that there were certain days where an experiment was particularly long and I found myself either overwhelmed with the amount of work to be done or exhausted by the amount of work I completed. Fortunately, working as part of a lab team took a huge amount of stress and burden off of my shoulders. It was very nice to have people to talk to and help me out whenever I need help with a task. Overall, life as a scientist is very rewarding and I have learned so much since I started research this summer.

Suhayl Khan is a senior majoring in health science at Benedictine University in Lisle, Ill. He is a 2019 Short-Term Research Education Program to Increase Diversity in Health-Related Research (STRIDE) Fellow working in Dr. Jayashree Sarathy’s lab at Benedictine University. Suhayl’s fellowship is funded by the American Physiological Society and a grant from the National Heart, Lung and Blood Institute (Grant #1 R25 HL115473-01). After graduation, Suhayl plans to pursue a Master of Healthcare Administration or Master of Public Health.

2018 Summer of Science – Out of Breath

Research Project

My research project this summer has focused on evaluating lung function in patients with cystic fibrosis (CF), a disease that causes excessive mucus build-up in the lungs and digestive organs. Symptoms include substantial breathing difficulty and exercise intolerance, and patients with CF undergo hours of treatment per day that involve medication, chest physiotherapy, and exercise. One important medication is albuterol, a bronchodilator that ensures the delivery of antibiotics, steroids, and other inhaled treatments to airway tissues.

To assess lung function, these patients regularly do breathing tests where, after taking in a full breath, they breathe out as hard and fast as possible. I have been using a mathematical measure, called “slope ratio”, to evaluate these breathing tests and investigate the impact of albuterol and/or exercise on lung function. Lower slope ratios indicate improved airway function, and we hypothesized that albuterol and exercise would decrease slope ratios. My research may aid understanding of how albuterol and exercise affect the lung, which might eventually lead to better treatment strategies for lung disease.

Patients with CF performed the above-mentioned breathing tests during three separate visits: 1) after inhaling albuterol, 2) after exercise, and 3) after both albuterol and exercise. Following this data collection, research has been heavily data-based: the data from just nine patients took weeks to fully analyze. However, developing a conceptual understanding of “slope ratio” kept me engaged; I also developed my skills with writing code (i.e. macros in Excel) to streamline my data analysis, which was a fun learning experience. The results we obtained from our slope ratio analyses closely matched our research hypotheses, were quite interesting to interpret and made logical sense regarding the effects of albuterol and moderate-intensity exercise. Briefly, we found that albuterol decreased slope ratios significantly, suggesting albuterol improves airflow and drug delivery in previously congested airways.

Realities of Research

Mentally, scientists have to remain vigilant; when they encounter contradictions to their prior knowledge, they critically re-evaluate their hypotheses and conceptual understanding. I enjoyed interpreting results and discussing hemoglobin/slope ratio concepts with post-docs in the lab, both one-on-one and in daunting lab meetings. And while it was difficult to work with seemingly-endless data, learning how to write macros helped me to be productive, learn a new coding language, and keep myself engaged.

 

Winston Guo is a junior and Neuroscience major at the University of Minnesota- Twin Cities in Minneapolis, MN. He is a 2018 Undergraduate Research Excellence Fellowship (UGREF) recipient, and is working in Dr. Michael Joyner’s Human Integrative Physiology Lab at the Mayo Clinic in Rochester, MN. Winston’s fellowship is funded by the APS. After graduation, Winston hopes to attend medical school and eventually become a practicing physician.